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Parkinson’s disease (PD) is a neuro-degenerative disease, which develops with age and has 
symptoms such as tremors, amnesia, and hindered movements. In this paper, the analysis 
of functional Magnetic resonance imaging (fMRI) data is performed to differentiate activity 
of the brain between PD affected person and a normal person. The amplitude of low 
frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo) 
and functional connectivity features are used for the analysis. Further, Gabor filters and 
wavelet decomposition are applied on feature images to improve classification accuracy. 
Three different classifiers, namely Naïve Based, Logistic Regression SMO and Decision 
Stump have been used for classification.  The Decision Stump shows 65% classification 
accuracy with Gabor filter and 90% classification accuracy with wavelet transform analysis. 
This shows the wavelet transform method is more suitable over Gabor filter in the 
classification for fMRI data of PD. 
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1. INTRODUCTION

Parkinson's disease (PD) is a chronicle movement disorder
that gets worse with age and affects millions of people [1]. PD 
is symptomatically characterized by lack of coordination, 
memory loss and bradykinesia because of the breakdown of 
vital nerve cells in the brain. Nerve cells are responsible for 
producing dopamine, the essential chemical for proper brain 
functioning [2]. 

In literature, several diagnoses have been proposed for PD, 
but the diagnosis still relies on clinical symptoms [3]. 
However, the early stage symptoms are not sufficient to 
diagnose PD. Various Neuro-imaging methods are SPECT-
imaging, MRI and PET to diagnose PD have shown promising 
results [3, 4]. But these methods are still not conclusive since 
they do not provide characteristic features of functional 
connectivity [5, 6]. These methods come with notable 
limitations. SPECT imaging, though useful, provides lower 
spatial resolution compared to other neuroimaging techniques, 
which can hinder precise localization of affected regions. MRI 
primarily captures structural changes, which may not reveal 
the early functional abnormalities critical for PD diagnosis. 
PET imaging, while offering high sensitivity, is invasive, 
requires the use of radioactive tracers, and involves significant 
cost, making it less accessible for routine diagnostics. These 
shortcomings underscore the need for a more effective 
approach, such as fMRI, which is non-invasive, provides high-
resolution functional and structural imaging, and captures real-
time neuronal activity, offering greater potential for early 
detection of Parkinson's disease. But by performing fMRI 

analysis, functional connectivity of neurons is explored for the 
diagnosis of PD.  

Analysis of fMRI data encompasses evaluation of activity 
at specific regions of interest. Numerous strategies for 
extraction of activity data are found in the literature. 
Decomposition of fMRI time series data using a wavelet is one 
such scheme discussed in the studies [7, 8]. In another study, 
the fMRI data is filtered using wavelets and correlation 
between resulting signals giving functionally connected brain 
topography [9]. Gabor wavelet pyramid was used by Kay to 
measure voxel activity patterns [10]. In this paper, analysis of 
fMRI data is done to differentiate between PD patients and 
healthy subjects. There are few advantages using fMRI data. 
fMRI is a non-invasive technique, eliminating the need for 
surgical procedures or radiation exposure. fMRI provides 
high-resolution images of brain structure and function, 
enabling precise localization of affected areas.  fMRI measures 
brain activity, providing insights into functional changes 
associated with Parkinson's disease. 

The rest of the paper is organized as follows: The analysis 
steps, features extracted and region of interest are explained in 
Section 2. In Section 3, Gabor filter, wavelet analysis and 
classification method are discussed followed by results in 
Section 4. The paper is concluded in Section 5. 

2. RESEARCH METHODS

The flow chart for fMRI Data analytics using Gabor and
wavelet filters of PD patients is given in Figure 1.
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Figure 1. Flowchart of data analysis 

The data set was collected from the Parkinson's progression 
markers initiative (PPMI) [11]. The data set comprised 10 
healthy patients including 6 males and 4 females, and 10 PD 
patients, including 5 males and 5 females for resting state 
fMRI. The scan amounts for a period of 504 seconds with a 
TR of 2.4 seconds for each patient. The age group of subjects 
was 40-75 years. 

For the analysis of PPMI data set, the following software 
platforms are used: MATLAB 7.10.0, SPM8, NIFTII for 
Image View, and REST. There are advantages for these tools:  

MATLAB 7.10.0: 
1. High-level programming language: Easy to learn and use,

with extensive toolboxes and libraries. 
2. Rapid prototyping: Quick development and testing of

algorithms and models. 
3. Large community: Access to a vast user community and

resources. 
SPM8 (Statistical Parametric Mapping): 
1. Advanced image analysis: SPM8 provides a wide range

of tools for image processing, statistical analysis, and 
visualization. 

2. Neuroimaging expertise: Developed by neuroimaging
experts, ensuring accuracy and relevance. 

3. Integration with MATLAB: Seamless integration with
MATLAB, leveraging its strengths. 

NIfTI (Neuroimaging Informatics Technology 
Initiative): 

1. Standardized format: NIfTI provides a standardized
format for neuroimaging data, ensuring compatibility and 
exchangeability. 

2. Easy data sharing: Facilitates collaboration and data
sharing among researchers. 

3. Wide adoption: Widely adopted in the neuroimaging
community, ensuring compatibility with various tools. 

REST (RESTing-state fMRI analysis toolkit): 
1. Specialized toolkit: REST is specifically designed for

resting-state fMRI analysis, providing tailored tools and 
methods. 

2. Efficient analysis: REST offers efficient and automated
analysis pipelines for large datasets. 

3. Advanced metrics: Calculates advanced metrics, such as
functional connectivity and network measures. 

The selection of MATLAB 7.10.0, SPM8, NIfTI, and REST 
was driven by their specialized functionalities and widespread 
use in neuroimaging research. MATLAB offers a versatile 
programming environment with extensive libraries for rapid 
data processing and algorithm development. SPM8, integrated 
with MATLAB, is a robust tool for statistical and spatial 

analysis of neuroimaging data, designed by experts to ensure 
precision and reliability. NIfTI ensures data standardization 
and compatibility across platforms, enabling seamless sharing 
and collaboration. REST, tailored for resting-state fMRI 
analysis, provides efficient pipelines for advanced 
connectivity and network metrics. Together, these tools form 
a comprehensive framework for accurate and efficient analysis 
of the PPMI dataset. 

2.1 Features extraction 

The following features are used to analyze the PD patients 
and normal persons: 
● Amplitude of Low Frequency Fluctuations (ALFF):

The activity of the brain in the rest state is reflected by 
low frequency oscillations. The ALFF feature is the 
collective power contained in the low frequency band of 
0.01Hz to 0.08 Hz. It helps to perceive the abnormally 
behaving regions in the rest state of the brain. 
Physiological significance: ALFF reflects spontaneous 
neural activity by measuring the amplitude of low-
frequency oscillations, which indicates localized brain 
activity in resting-state conditions. 

● Fractional ALFF (fALFF): The ALFF feature depends
on the physiological noise. A ratio of the total power in
the 0.01Hz to 0.08 Hz frequency band of to the total power 
in the 0 Hz to 0.25 Hz frequency band is obtained, so as
to immunize ALFF from noise. This new measure is
called fALFF feature [12]. Physiological significance:
fALFF is a normalized measure of ALFF that reduces
noise effects, highlighting physiologically relevant low-
frequency oscillations and improving sensitivity to brain
abnormalities.

● Regional Homogeneity (ReHo):  The ReHo feature
relates the synchronization in time series of voxels of
fMRI and their nearest neighbor’s. The Kendall’s
coefficient of concordance (KCC) is determined for the
clusters of 27 voxels on the pre-processed fMRI images
[13, 14]. Physiological significance: ReHo captures the
synchronization of neural activity in adjacent voxels,
reflecting localized functional coherence and
abnormalities in regional connectivity.

● Functional Connectivity: It identifies the network of
brain regions that show spontaneous co-activation. The
functional connectivity of a region of interest (ROI) can
be evaluated by measuring the time averaged course of
ROI and by determining its correlation with time series of
various regions. Physiological significance: It identifies
coordinated activity across different brain regions,
indicating the integration and communication within
neural networks, which is crucial for understanding
disrupted connectivity in PD patients.

A Gabor filter is used for texture analysis in image 
processing, an attempt to identify objects from obscure 
backgrounds. Its impulse response is defined by a 2D- plane 
sinusoidal wave multiplied by a Gabor envelope function [15]. 

𝑔𝑔(𝑥𝑥, 𝑦𝑦; 𝜆𝜆, 𝜃𝜃,𝜓𝜓,𝜎𝜎, 𝛾𝛾) 

= 𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑥𝑥 ′2 + 𝛾𝛾 ′2𝑦𝑦2

2𝜎𝜎2
� 𝑒𝑒𝑥𝑥𝑒𝑒 �𝑖𝑖 �2𝜋𝜋

𝑥𝑥 ′

𝜆𝜆
+ 𝜓𝜓��

The real part of impulse response of Gabor filter is used for 
analysis and is given below:  
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𝑥𝑥 ′ = 𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑦𝑦 𝑐𝑐𝑖𝑖𝑠𝑠 𝜃𝜃 , 𝑦𝑦′ = −𝑥𝑥 𝑐𝑐𝑖𝑖𝑠𝑠 𝜃𝜃 + 𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 

● σ: The standard deviation of the Gaussian envelope and
controls the spatial extent of the filter. Larger values of σ
result in a broader filter, capturing more global features,
while smaller values focus on finer, localized details. In
our study, σ is related to the bandwidth (b) and
wavelength (λ) to balance spatial and frequency resolution.

● ψ: The phase offset determines the symmetry of the filter.
A phase offset of 0 creates a symmetric filter (cosine-like),
while π/2 produces an antisymmetric filter (sine-like). The 
values are chosen based on the dominant structural
features in the region of interest (ROI).

● γ: The aspect ratio defines the ratio of the Gaussian
envelope along the x- and y-axes. Smaller values elongate
the filter, making it more sensitive to edge-like structures,
while values closer to 1 produce circularly symmetric
filters. For our analysis, γ=0.5 is selected to account for
anisotropic structures.

● λ: The wavelength controls the scale of the sinusoidal
wave, determining the frequency sensitivity of the filter.
By analyzing the average diameter of the ROI, appropriate 
scales are selected as {0.8 * average diameter, average
diameter, 1.2 * average diameter}.

● θ: The orientation defines the angle of the sinusoidal wave,
allowing the detection of features at specific directions. In
this study, orientations are set as π/6, π/4, π/3, π/2, 2π/3,
and 3π/4 to comprehensively capture patterns in multiple
directions.

σ is related to bandwidth (b) and wavelength (λ) of Gabor 
filters as:  

𝜎𝜎
𝜆𝜆

=
1
𝜋𝜋
�𝑙𝑙𝑠𝑠 2𝜎𝜎

2𝜆𝜆
=

1
𝜋𝜋
�𝑙𝑙𝑠𝑠 2

2
{2𝑏𝑏 + 1}{2𝑏𝑏 + 1}
{2𝑏𝑏 − 1}{2𝑏𝑏 − 1}

In analysis, bandwidth (b) =1, aspect ratio (γ) =0.5 and 
phase shift calculated after analyzing the average diameter of 
the region of interest as {0.8*average diameter, average 
diameter, 1.2*average diameter}. The total permutations of 
wavelength and orientations give us 18 Gabor filters as shown 
in Figure 2 [16]. These parameters are carefully selected to 
balance precision, scale, and orientation sensitivity for 
effective texture analysis in image processing. 

The filtered images are normalized within [-1, 1] range [17, 
18]. The threshold is calculated by the equitation given below: 

Threshold = Mean – 0.5 × Standard Deviation 

Figure 2. Gabor filter in the frequency domain 

It is a modified form of Niblack’s method. Niblack’s 

method uses mean and standard deviation of pixels in a 
windowed area of image to calculate local threshold and 
segments a single image, while in the proposed method, mean 
and standard deviation are computed over many images.  

2.2 Wavelet Analysis 

Wavelets are primarily used to measure energy of certain 
frequencies of the signal in different intervals of time. The 
range of frequencies can be varied as per size of the time 
interval considered and thus give wavelet analysis resolution 
in both frequency and time.as shown in Figure 3. 

In this proposed work, the Haar wavelet is used for image 
decomposition. The Haar wavelet is chosen due to its 
simplicity, computational efficiency, and effectiveness in 
capturing local features, such as edges and discontinuities, 
within the fMRI images. Its step-like function allows for rapid 
calculations, making it ideal for processing large datasets. 
Additionally, the Haar wavelet offers good data compression 
by producing sparse coefficients while retaining significant 
information, which is essential for efficient feature extraction. 

Figure 3. Wavelet filter decomposition 

In a 2D image, the transformation is applied successively 
over rows and columns of the image. In MATLAB, the 
function ‘wavedec2’ finds the wavelet transform of an image 
using ‘non-standard decomposition’ for desired levels of 
decomposition and for specified mother wavelet. 

The mother wavelet used is ‘HAAR wavelet’ [19]. Its 
mother wavelet function ψ(t) can be described as: 

𝜑𝜑(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧ 1 0 ≤ 𝑡𝑡 <

1
2

−1
1
2
≤ 𝑡𝑡 < 1

0 otherwise

The scaling function ψ(t) is represented as 

𝛷𝛷(𝑡𝑡) = �1   0 ≤ 𝑡𝑡 < 1
0   otherwise

In this work, the wavelet coefficients till decomposition of 
level 4 are obtained. The coefficients thus obtained are used to 
reconstruct images using MATLAB function ‘wrcoef2’ for 
level 4 decomposition to calculate the threshold parameters.  

Also, reconstruction of an image at level 3 decomposition is 
done to provide a smoothed feature image, to which the 
threshold is applied.  

2.3 Classification methods 

The classifiers used in the study are Naïve Bayes, Logistic 
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Regression, SVM based on Sequential Minimal Optimization 
(SMO), and Decision Stump. These classifiers were chosen 
based on their distinct working principles and suitability for 
the classification task. The models were validated by a 10-fold 
cross-validation scheme, with the classification operations 
carried out using the WEKA software. A total of 504 attributes 
were generated to classify between healthy individuals and PD 
patients [20, 21]. 
1. Naïve Bayes Classifier

The Naïve Bayes classifier is based on Bayes’ theorem,
assuming that the features are conditionally independent. It 
calculates the probability of each class given the feature values 
and selects the class with the highest probability. This model 
is particularly useful when dealing with large datasets with 
independent features and works well for problems with 
categorical data. However, its assumption of feature 
independence may not always hold in complex datasets. 
2. Logistic Regression Classifier

Logistic Regression is a statistical model used for binary
classification tasks. It models the probability of a class as a 
logistic function of the input features. Logistic regression is 
widely used in scenarios where the relationship between the 
independent variables and the dependent variable is expected 
to be linear. It is effective when the classes are linearly 
separable and is interpretable, making it a good choice for 
many classification problems in health and social sciences. 
3. SVM based on Sequential Minimal Optimization

(SMO)
Support Vector Machine (SVM) is a powerful classifier that 

separates classes using a hyperplane in a high-dimensional 
space. The Sequential Minimal Optimization (SMO) is an 
optimization algorithm used for training SVMs. It is 
particularly efficient for large datasets and works well with 
both linear and non-linear problems using different kernel 
functions. SVM is effective when there is a clear margin of 
separation between classes, and its performance can be 
improved by choosing appropriate kernels and tuning 
hyperparameters. 
4. Decision Stump Classifier

A Decision Stump is a simple machine learning model that
combines the benefits of decision trees and stumps. Here’s 
how it works: 
● Root Node: The dataset is fed into the root node.
● Feature Selection: The algorithm selects the best feature

(attribute) to split the data. 
● Threshold: A threshold value is chosen for the selected

feature.
● Left Child: Samples with values below the threshold go

to the left child node.
● Right Child: Samples with values above the threshold go

to the right child node.
● Class Label: Each child node is assigned a class label

(prediction).
The algorithm iteratively selects the best feature and 

threshold to split the data. The process continues until a 
stopping criterion is met (e.g., maximum depth or minimum 
samples per node). The final prediction is made by combining 
the class labels from the child nodes. The Decision Stump 
classifier is suitable for simple datasets or as a weak learner in 
ensemble models like AdaBoost. 

2.4 Computational steps 

1. Image Standardization and Elimination of Deviations

The images obtained from PPMI are classified as PD 
patients or normal individuals. The SPM8 tool is used in image 
processing to standardize the scans and eliminate any 
deviations. This step is crucial to ensure that the data are 
comparable across subjects, thus minimizing potential biases 
caused by inconsistencies in the imaging data. 
2. Slice Timing Correction

The Slice Timing Correction tool is used to correct for
acquisition time differences within the same brain scan. This 
step ensures that the functional data from different slices are 
synchronized, which is important for maintaining the temporal 
accuracy of the brain activity measurements. 
3. Realignment

The Realign utility corrects for patient movement during the
scanning process. This step helps eliminate motion artifacts 
that could distort the data, thereby enhancing the quality and 
reliability of the images for subsequent analysis. 
4. Co-registration

The Co-register utility aligns the functional image with the
anatomical image (mean realigned image). This ensures that 
functional data are mapped onto the structural brain images 
accurately, facilitating precise localization of brain activity. 
Co-registration is necessary for comparing brain regions in a 
consistent anatomical space. 
5. Segmentation

The Segment utility is applied to segment various tissue
structures (such as gray matter, white matter, and CSF) from 
the obtained co-registered image. Segmentation is a critical 
step that helps isolate specific brain regions for further analysis, 
improving the accuracy of functional data interpretation. 
6. Normalization

The Normalize utility [22] transforms the images into a
standard brain template. This step ensures that images from 
different subjects are aligned in a common space, eliminating 
anatomical variations. Normalization is essential for 
comparing the data across subjects in a group study. 
7. Smoothing

The Smooth utility is used to smooth the time series of each
voxel [22]. This process helps reduce noise and improve the 
signal-to-noise ratio, making the functional activity more 
detectable and reliable. 
8. Feature Extraction (ALFF, fALFF, ReHo)

ALFF, fALFF, and ReHo feature images are calculated
from the preprocessed images using the REST toolbox. These 
features capture key brain activity characteristics, such as low-
frequency oscillations and regional synchronization, which are 
important for differentiating PD patients from healthy controls. 
9. Co-registration to AAL Brain Atlas

The feature images are co-registered to the AAL brain Atlas
to ensure that the extracted ROIs correspond appropriately to 
the regions of interest (ROIs) [23], defined in the anatomical 
space. This step guarantees meaningful comparisons across 
subjects and allows for accurate identification of specific brain 
regions associated with PD. 
10. Gabor Filtering

The ROIs in the cerebellum are filtered using 18 Gabor
filters. This step enhances the texture of the image by applying 
a set of frequency- and orientation-sensitive filters. The use of 
Gabor filtering helps identify spatial features related to brain 
activity, which can be crucial for distinguishing between PD 
patients and healthy controls. The images are normalized 
within the range of -1 to 1 for consistency. 
11. Thresholding

The filtered images are thresholded to isolate the most
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significant brain regions and remove irrelevant or noisy data. 
The thresholding step ensures that only the most informative 
features are retained for further analysis, allowing the model 
to focus on key patterns associated with PD. 
12. Shape-Based Parameter Calculation

Shape-based parameters, such as perimeter, equivalent
diameter, area, minor axis length, major axis length, 
eccentricity, and orientation, are calculated using MATLAB 
functions. These parameters provide quantitative 
measurements of the shape and size of brain structures, which 
are essential for distinguishing between PD patients and 
healthy controls. 
13. Wavelet Filtering

The ROIs are filtered using wavelet functions in MATLAB.
This step allows for the analysis of the signal across different 
frequency bands, enhancing the feature extraction process by 
highlighting important frequency components related to PD. 
The images are normalized within the range of -1 to 1, and 
thresholding is applied to the filtered images. 
14. Reclassification Using New Set of Parameters

The shape-based parameters calculated in step 12 are
reclassified using the same Decision Table and Decision 
Stump classifiers as in step 6. The process is repeated for the 
new set of parameters to evaluate the performance of the 
classification model with the wavelet-enhanced features. 
15. Comparison of Results

The results from steps 13 and 14 are compared to assess the
effectiveness of wavelet filtering in improving the 
classification accuracy between PD patients and healthy 
controls. 

3. RESULTS AND DISCUSSION

The fMRI data of 10 PD patients (five men, five women,
age range: 41-71) and 10 normal persons (six men, four 
women, age range: 45-74) was processed and then the features 
namely ALFF, fALFF, ReHo and functional connectivity were 
extracted from the processed images. 18 regions of interest 
(ROI's) were analyzed in the feature images using two 
procedures. In the first procedure, Gabor filter was used to the 
ROI images and the filtered images were being threshold 
subsequently. In the second procedure, the ROI images were 
decomposed by 'HAAR' wavelet, then reconstructed by level 
3 coefficients and finally thresholder.  

(a)          (b) 

Figure 4. Sample cross-section of ROI “Left crus I of 
cerebellar hemisphere” (AAL label-91) (a) ROI extracted 

from a healthy person’s ALFF feature image (b) ROI 
extracted from a PD patient’s ALFF feature image 

The normal person’s group in the selected ROI's as in Figure 
4. Formidable differences in shape of regions after

thresholding can be seen in Figure 5 and Figure 6, pointing to 
varying levels of activity between the PD patients’ group. The 
calculation of shape parameters is the approach employed to 
capture the shape approximation. 

(a)            (b) 

Figure 5. A sample cross-section of ROI “Left crus I of 
cerebellar hemisphere” after applying Gabor filter 

(orientation=3*pi/4, wavelength=20) (a) Image after the 
application to Gabor filter (a), (b) Image after Gabor filter 

applied to image (b) 

(a)          (b) 

Figure 6. A sample cross-section of ROI “Left crus I of 
cerebellar hemisphere” after reconstruction from level 3 

approximate (a) Image after reconstruction of image (a) (b) 
Image after reconstruction of image (b) 

The confusion matrices for best performing classifier under 
respective parameter extraction procedure are shown in Tables 
1 and 2. The results are mentioned in Table 3. In the tables, 
“normal” label is used for a healthy person while the “subject” 
label is used for Parkinson's disease patients. Table 4 shows 
the performance measure parameters 

Table 1. Confusion matrix found for parameters extracted 
from Gabor filtered images when classified using SMO 

(Sensitivity=80%) 

Actual 

Predicted 
Normal subject 

Normal TN=8 FP=2 
Subject FN=2 TP=8 

Table 2. Confusion matrix for parameters extracted from 
wavelet analysed images when classified using Decision 

stump (Sensitivity=100%) 

Actual 

Predicted 
Normal subject 

Normal TN=8 FP=2 
Subject FN=0 TP=10 
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Table 3. Accuracy (in percentage) of the achieved by the 
classifiers corresponding to procedure of extracting 

parameters 

Classifiers (%) 

Methods Naïve 
Based 

Logistic 
Regression SMO Decision 

Stump 
Gabor 

Filtering 65 70 80 60 

Wavelet 
Filtering 70 75 80 90 

Table 4. Performance measure parameters 

Precision Recall F1-Score 
Gabor Filtering 0.8 0.8 0.8 

Wavelet Analysis 0.83 1 0.90 

The images resulting from the analysis provide favorable 
repercussions upon observation. Figure 4 shows samples of 
extracted ROI “Left crus I of cerebellar hemisphere” from 
ALFF feature images of a healthy person Figure 4(a) and of a 
PD patient Figure 4(b). On visual inspection, it can observe 
slight differences between the two images. As shown in Figure 
5(a) and Figure 5(b), after filtering with a Gabor filter, the 
images are smoothed and filtered for noise. After threshold is 
applied to the filtered images, the regions are analyzed by 7 
shape-based parameters using different machine learning 
methods. The same procedure is followed for other 10 healthy 
individuals’ and 10 PD patients over the four feature 
categories.  

Similarly, as demonstrated in Figures 6(a) and 6(b), the 
wavelet analysis yields observable differences in regions after 
images in Figure 4 decomposed to 3 levels by HAAR wavelet. 

In this study, the SMO and Decision Stump classifiers were 
evaluated using Gabor filtering and wavelet filtering. The 
SMO classifier achieved an 80% sensitivity with Gabor-
filtered images, while the Decision Stump classifier achieved 
100% sensitivity with wavelet-processed images. The 
performance difference is due to the classifiers' mechanisms: 
SMO, an SVM-based method, excels at handling complex 
patterns, while Decision Stump, a simpler decision tree model, 
benefits from clearer segmentation provided by wavelet 
analysis. Clinically, the 100% sensitivity of Decision Stump 
with wavelet analysis highlights its potential for accurate 
Parkinson's disease (PD) diagnosis. Wavelet analysis 
enhances feature differentiation, leading to better classifier 
performance compared to Gabor filtering. 

In comparison to existing studies, our research introduces 
wavelet analysis and Gabor filtering as advanced methods for 
extracting distinct features from brain activity. Unlike 
traditional methods like resting-state functional connectivity 
or ReHo, which use basic classifiers, our study achieves a 
higher classification accuracy (90% vs. 65%) with wavelet 
analysis and Decision Stump, showcasing improved 
performance over existing fMRI-based PD diagnosis 
approaches. The innovation lies in the ability of these 
techniques to capture complex, multiscale brain activity 
patterns, offering potential advantages for early PD diagnosis, 
where detecting subtle changes in brain function is critical. 

4. CONCLUSION

This study compared the effectiveness of wavelet analysis

and Gabor filtering in classifying functional brain images for 
Parkinson's disease diagnosis, using four classifiers: Naïve 
Bayes, Logistic Regression, SMO, and Decision Stump. 
Wavelet analysis outperformed Gabor filtering, with the 
Decision Stump classifier showing the greatest difference 
(90% vs. 65%). The Decision Stump classifier demonstrated 
fast training and prediction times, handling both categorical 
and numerical features, and can be used as a weak learner in 
ensemble methods like AdaBoost. The higher performance 
with wavelet analysis, especially the 90% sensitivity with 
Decision Stump, indicates its better ability to differentiate 
features, enhancing clinical relevance. Naïve Bayes and 
Logistic Regression showed improved accuracy with wavelet 
analysis, while SMO achieved consistent performance (80%) 
across both methods, highlighting its robustness. 

Clinically, these results emphasize the importance of 
selecting the appropriate feature extraction method and 
classifier for reliable Parkinson's disease diagnosis, critical for 
early detection and treatment. However, the study has 
limitations, such as a small sample size (10 PD patients and 10 
healthy individuals), which may affect generalizability, and 
testing only four classifiers. Future research should use larger 
datasets and explore advanced machine learning models, such 
as deep learning, for better classification accuracy. 
Additionally, integrating more feature extraction techniques 
could improve analysis. 

The research findings hold strong clinical potential, 
particularly for early and differential diagnosis of Parkinson's 
disease. Wavelet analysis and Gabor filtering, as non-invasive, 
cost-effective tools, could aid in detecting early-stage 
Parkinson's disease, enabling timely intervention and 
personalized treatment strategies. 

REFERENCES 

[1] Dehsarvi, A., Smith, S.L. (2019). Classification of
resting-state fMRI using evolutionary algorithms:
Towards a brain imaging biomarker for Parkinson's
disease. arXiv preprint arXiv:1910.05378.
https://doi.org/10.48550/arXiv.1910.05378

[2] Sherer, T.B., Chowdhury, S., Peabody, K., Brooks, D.W.
(2012). Overcoming obstacles in Parkinson's disease.
Movement Disorders, 27(13): 1606-1611.
https://doi.org/10.1002/mds.25260

[3] Haq, N.F., Cai, J., Yu, T., McKeown, M.J., Wang, Z.J.
(2020). Parkinson’s disease detection from fMRI-
derived brainstem regional functional connectivity
networks. In Medical Image Computing and Computer
Assisted Intervention–MICCAI 2020: 23rd International
Conference, Lima, Peru, pp. 33-43.
https://doi.org/10.1007/978-3-030-59728-3_4

[4] Prashanth, R., Roy, S.D., Mandal, P.K., Ghosh, S. (2014). 
Automatic classification and prediction models for early
Parkinson’s disease diagnosis from SPECT imaging.
Expert Systems with Applications, 41(7): 3333-3342.
https://doi.org/10.1016/j.eswa.2013.11.031

[5] Baudrexel, S., Witte, T., Seifried, C., von Wegner, F.,
Beissner, F., Klein, J.C., Hilker, R. (2011). Resting state
fMRI reveals increased subthalamic nucleus–motor
cortex connectivity in Parkinson's disease. Neuroimage,
55(4): 1728-1738.
https://doi.org/10.1016/j.neuroimage.2011.01.017

[6] Luo, C., Chen, Q., Song, W., Chen, K., Guo, X., Yang,

372



J., Shang, H.F. (2014). Resting-state fMRI study on drug-
naive patients with Parkinson's disease and with 
depression. Journal of Neurology, Neurosurgery & 
Psychiatry, 85(6): 675-683. https://doi.org/10.1136/jnnp-
2013-306237  

[7] Desco, M., Hernandez, J.A., Santos, A., Brammer, M.
(2001). Multiresolution analysis in fMRI: Sensitivity and
specificity in the detection of brain activation. Human
Brain Mapping, 14(1): 16-27.
https://doi.org/10.1002/hbm.1038

[8] Faragó, P., Tuka, B., Tóth, E., Szabó, N., Király, A.,
Csete, G., Kincses, Z.T. (2017). Interictal brain activity
differs in migraine with and without aura: Resting state
fMRI study. The Journal of Headache and Pain, 18: 8.
https://doi.org/10.1186/s10194-016-0716-8

[9] Xu, T., Cullen, K. R., Mueller, B., Schreiner, M.W., Lim, 
K.O., Schulz, S.C., Parhi, K.K. (2016). Network analysis
of functional brain connectivity in borderline personality
disorder using resting-state fMRI. NeuroImage: Clinical,
11: 302-315. https://doi.org/10.1016/j.nicl.2016.02.006

[10] Ji, G.J., Hu, P., Liu, T.T., Li, Y., Chen, X., Zhu, C., Wang, 
K. (2018). Functional connectivity of the corticobasal
ganglia-thalamocortical network in Parkinson disease: A
systematic review and meta-analysis with cross-
validation. Radiology, 287(3): 973-982.
https://doi.org/10.1148/radiol.2018172183

[11] Brumm, M.C., Siderowf, A., Simuni, T., Burghardt, E.,
Choi, S.H., Caspell-Garcia, C., et al. (2023). Parkinson’s
progression markers initiative: A milestone-based
strategy to monitor Parkinson’s disease progression.
Journal of Parkinson’s Disease, 13(6): 899-916.
https://doi.org/10.3233/JPD-223433

[12] Zou, Q.H., Zhu, C.Z., Yang, Y., Zuo, X.N., Long, X.Y.,
Cao, Q.J., Zang, Y.F. (2008). An improved approach to
detection of amplitude of low-frequency fluctuation
(ALFF) for resting-state fMRI: Fractional ALFF. Journal
of Neuroscience Methods, 172(1): 137-141.
https://doi.org/10.1016/j.jneumeth.2008.04.012

[13] Zang, Y., Jiang, T., Lu, Y., He, Y., Tian, L. (2004).
Regional homogeneity approach to fMRI data analysis.
Neuroimage, 22(1): 394-400.
https://doi.org/10.1016/j.neuroimage.2003.12.030

[14] Brett, M. (2011). MarsBaR Documentation. Functional
Imaging, pp. 1-45.

[15] Prashanthi, G., Singh, S., Rajan, E.G., Krishnan, P.
(2014). Sparsification of voice data using Discrete Rajan

Transform and its applications in speaker recognition. In 
2014 IEEE International Conference on Systems, Man, 
and Cybernetics (SMC), San Diego, CA, USA, pp. 429-
434. https://doi.org/10.1109/SMC.2014.6973945

[16] Olowoyeye, A., Tuceryan, M., Fang, S. (2009). Medical
volume segmentation using bank of Gabor filters. In
Proceedings of the 2009 ACM Symposium on Applied
Computing, pp. 826-829.
https://doi.org/10.1145/1529282.1529458

[17] Shulman, R.G., Rothman, D.L., Behar, K.L., Hyder, F.
(2004). Energetic basis of brain activity: Implications for
neuroimaging. Trends in Neurosciences, 27(8): 489-495.
https://doi.org/10.1016/j.tins.2004.06.005

[18] Nikolaou, F., Orphanidou, C., Papakyriakou, P., Murphy,
K., Wise, R.G., Mitsis, G.D. (2016). Spontaneous
physiological variability modulates dynamic functional
connectivity in resting-state functional magnetic
resonance imaging. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and
Engineering Sciences, 374(2067): 20150183.
https://doi.org/10.1098/rsta.2015.0183

[19] Jacobs, C.E., Finkelstein, A., Salesin, D.H. (1995). Fast
multiresolution image querying. In Proceedings of the
22nd Annual Conference on Computer Graphics and
Interactive Techniques, pp. 277-286.
https://doi.org/10.1145/218380.218454

[20] Duchesne, S., Rolland, Y., Vérin, M. (2009). Automated
computer differential classification in Parkinsonian
syndromes via pattern analysis on MRI. Academic
Radiology, 16(1): 61-70.
https://doi.org/10.1016/j.acra.2008.05.024

[21] Salvatore, C., Cerasa, A., Castiglioni, I., Gallivanone, F.,
Augimeri, A., Lopez, M., Quattrone, A. (2014). Machine
learning on brain MRI data for differential diagnosis of
Parkinson's disease and Progressive Supranuclear Palsy.
Journal of Neuroscience Methods, 222: 230-237.
https://doi.org/10.1016/j.jneumeth.2013.11.016

[22] Ashburner, J., Barnes, G., Chen, C., Daunizeau, J.,
Flandin, G., Friston, K., Phillips, C. (2012). SPM8
manual. Functional Imaging Laboratory, Institute of
Neurology, 41.

[23] Song, X.W., Dong, Z.Y., Long, X.Y., Li, S.F., Zuo, X.N., 
Zhu, C.Z., Zang, Y.F. (2011). REST: A toolkit for
resting-state functional magnetic resonance imaging data
processing. PloS One, 6(9): e25031.
https://doi.org/10.1371/journal.pone.0025031

373


	1. Introduction



