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In these decades smart transformation and the digital world are emerging with an effective 
enhancement. Meanwhile, the management of water quality has also become an important 
factor in ensuring public health and environmental sustainability. This work presents a real-
time water quality prediction by integrating with an Internet of Things (IoT) based sensor 
data and an optimized quantum convolutional neural network (QCNN) method. The 
continuous update of water data namely pH, turbidity, dissolved oxygen, and temperature 
is collected from various sensors fitted inside water bodies. The dataset is gathered by using 
these sensors that are dynamically monitored using a QCNN method for efficient predictive 
accuracy and computation. Initially, the important features from the data are extracted using 
Modified Variational Autoencoder (M-VAE). The QCNN method works on a quantum 
computing principle that is suitable to handle complex, high-dimensional data. To improve 
accuracy in higher terms, the QCNN parameters are fine-tuned using a metaheuristic 
optimization. Therefore, the proposed algorithm of optimized QCNN ensures robustness 
and reliable performance of water quality in real-time. The validation results of the proposed 
methodology demonstrate prior deep learning models in terms of classification metrics. 
Finally, the proposed work satisfies the advancement in real-time water quality prediction 
and also contributes to a better solution for sustainable water resource management. 
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1. INTRODUCTION

Water quality has been a critical factor in environmental
health and public safety in recent times [1]. The worst water 
quality harmfully affects ecosystems and also leads to 
biodiversity loss and aquatic life disruption [2, 3]. 
Contaminants like heavy metals, pathogens and pesticides can 
lead to natural habitat degradation which affects both flora and 
fauna [4]. Also, contaminated water risks the health of humans 
by causing various diseases namely cholera, dysentery and 
hepatitis. The World Health Organization (WHO) reports that 
millions of people suffer from waterborne diseases annually 
which also highlights the urgent need for effective monitoring 
and management of water resources [5]. Therefore, preserving 
high water quality standards is essential to save both 
ecosystems and human populations from harmful pollutants. 

The increase in water pollution and health issues highlights 
the requirement for proactive water quality prediction [6]. The 
traditional form of water quality evaluation involves periodic 
sampling and laboratory analysis which are insufficient for 
timely detection and response. These techniques are not only 
time-consuming but also provide limited water conditions 

pictures and fail to capture dynamic changes. Several 
prevention methods are used to maintain and improve water 
quality in the priory. Physical methods include filtration and 
sedimentation that only remove particulate matter from water 
[7]. Chemical treatments namely chlorination and ozonation 
that used to disinfect water to avoid pathogens. Biological 
techniques are used as biofilters and constructed wetlands that 
involve natural processes to degrade pollutants.  

These traditional methods have many limitations, regular 
maintenance requirements, the impact of potential 
environmental and the inability to detect and respond to 
sudden changes in water quality [8]. Therefore, there is an 
advanced technology need for real-time water quality 
management solutions by offering continuous monitoring and 
early warning. This prediction can prevent health hazards and 
environmental degradation at an earlier stage. Effective 
prediction also ensures safer water to consume, agriculture and 
recreational activities. 

For an accurate and reliable prediction, the DL has emerged 
as a powerful tool of it. The DL method can provide an 
effective solution even in large datasets and complex patterns. 
It can identify patterns and correlations significantly than the 
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traditional methods [9]. Some of the popular methods of DL 
used for real-time prediction are Convolutional Neural 
Networks (CNNs) are effective for spatial data analysis, 
Recurrent Neural Networks (RNNs) use time-series data to 
predict future, Long Short-Term Memory Networks (LSTMs) 
capture long-term dependencies in sequential data, 
Autoencoders learns an efficient data representation, 
Generative Adversarial Networks (GANs) provides a generate 
realistic synthetic data that suitable to simulate and training 
predictive models, Graph Neural Networks (GNNs) are 
Capable to handle a relational data respectively. Each method 
has a unique style of prediction and various performances 
based on complexity and data nature [10]. Therefore, accurate 
and reliable water quality predictions can be attained only by 
using an appropriate model and optimizing it. Despite their 
effectiveness, these methods often face challenges when 
dealing with highly complex, high-dimensional datasets. 
Additionally, their dependency on large, labeled datasets and 
susceptibility to overfitting can limit their generalizability and 
practical utility in certain scenarios. 

This paper proposes IoT data with an optimized Quantum 
Neural Network (QNN) for real-time water quality prediction. 
The system used a network of IoT sensors that were placed in 
various water bodies to continuously collect water data such 
as pH, turbidity, dissolved oxygen and temperature. These 
sensors are used to transmit real-time cloud data to a processor 
where an advanced computational method of Quantum Neural 
Networks (QNNs) is used for prediction. The QNN can 
explore a vast solution space by identifying optimal patterns 
and correlations simultaneously. To improve performance 
further, an optimization model is used to fine-tune the QNN 
parameters to attain a reliable and optimal solution in water 
quality predictions. The novelty of the proposed system lies in 
integrating IoT-based real-time water quality monitoring with 
an optimized QCNN. It uses quantum principles to handle 
high-dimensional data and metaheuristic optimization for 
enhanced predictive accuracy and robustness. 

The paper is organised as related work in section 2 which 
carries a literature work on existing systems, section 3 
discusses the material and methods of proposed work that 
includes the proposed architecture and workflow of it, section 
4 explores the result and discussion of the proposed 
methodology with an existing work comparison and section 5 
summarise the work with a conclusion.  

2. RELATED WORKS

Existing water quality prediction methods can be broadly
categorized based on the type of model and the data source 
used. From a model perspective, traditional machine learning 
techniques have been extensively applied. It is focused to on 
optimizing parameters for improved accuracy. Shams et al. 
[11] focused on the high accuracy of water quality index
identification through various machine learning (ML) models.
It uses grid search for optimizing parameters across four
classifications and four regression models with result
demonstrations.

Xin and Mou [12] identified sulphite, pH, solids, and 
hardness as critical factors for water quality detection. It 
highlights the effectiveness of XGBoost, CAT Boost and 
LGBM models. These models were optimized through cross-
validation and hyperparameter tuning that shows robust 
performance in large-scale water quality detection. 

Wang et al. [13] developed an event-triggered fuzzy model 
to enhance prediction in complex environments. It improves 
training efficiency by 57.94% for total phosphorus prediction 
and by 48.31% for biochemical oxygen demand prediction.  

Xiang et al. [14] focused on water clarity retrieval in turbid 
waters that achieves an MAE of 21%-26% and RMSD of 0.3-
2.8 meters. The model performed robustly even in extremely 
turbid waters with MAPE of 22%-25%. Wang et al. [15] 
worked on a modified iterative soft threshold method that 
omits the soft threshold to reduce uncertainties. It trains in an 
unsupervised manner using a loss function with a smooth 
penalty. 

Rivero et al. [16] presented a real-time simulation 
framework for the effects of spray water on automotive 
LIDAR sensors that includes other adverse conditions such as 
dirt, exhaust gases, snow, rain, and fog. Musleh [17] used 
several ML methods which use a Bagging classifier, Logistic 
regression, J48, Random Forest and AdaBoost for water 
potability assessment. The Random Forest, J48 and the 
Bagging classifier showed high effectiveness. 

Regarding data sources, laboratory datasets, as 
demonstrated by Barroso et al. [18], provide detailed insights 
into water quality but lack real-time adaptability. They 
assessed the water quality with 10,000 data of the Manso River 
reservoir that contains physicochemical parameters, metals, 
microbiological indicators, biomonitoring, and land use data. 
Higher concentrations of solids and metals (Fe and Mn) were 
linked to local geochemistry and mining activities. 

Real-time monitoring data from sensors, as highlighted by 
Mohseni et al. [19], are used to estimate the Weighted 
Arithmetic Water Quality Index using various machine 
learning methods. Extreme gradient boosting (XG-Boost) 
achieves a higher accuracy in predictions with a real-time 
dataset collected from Ujjain, Madhya Pradesh, India. It 
showed superior performance with R2=0.96, RMSE=2.169, 
and MAE=2.013 respectively. Additionally, climate and 
environmental data provide a broader context for water quality 
assessment, as demonstrated in the climate-driven models of 
Aranay et al. [20]. They presented a deep active genetic 
learning method with combining deep active learning and a 
genetic model to detect harmful algal blooms in New York 
using climate data to attain a classification accuracy of 97.14%. 

3. MATERIALS AND METHODS

3.1 Materials 

The provided diagram Figure 1 presents the proposed 
system architecture for collecting IoT sensor data to predict 
water quality using an optimized QCNN model. The system is 
composed of several components that play a crucial role in the 
data collection and analysis process. 

To attain dynamic water quality, real-time water data is 
taken by using four types of sensors that are connected to the 
Arduino controller such as: 

• Temperature Sensor: Measures the temperature of the
water that can affect the chemical and biological processes
in the water.

• pH Sensor: Determines the acidity or alkalinity of the water 
which is crucial to assess the suitability of water for various
uses. The pH sensor was chosen to measure and monitor
water's suitability for various uses, such as drinking,
irrigation, and supporting aquatic life.
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• Turbidity Sensor: Measures the clarity of the water that
indicates the presence of suspended particles that might
affect water quality. The turbidity sensor was selected
because it provides valuable insights into the presence of
harmful contaminants that could degrade water quality.

• Dissolved Oxygen Sensor: Assesses the amount of oxygen
dissolved in the water which is an important parameter for
aquatic life and overall water health. The dissolved oxygen
sensor was chosen due to its importance in assessing the
ecological balance of aquatic environments.

Figure 1. Proposed hardware block 

3.2 Arduino controller  

It collects data from all the sensors processes this data and 
serves as the central hub for communication with other system 
components. It handles data input and process signals to 
execute control commands based on predefined parameters. 

3.3 IoT cloud 

The controller-processed data is sent to the IoT cloud. This 
cloud service stores the data to carry a remote monitoring and 
further analysis. The IoT cloud acts as a repository where 
historical data are collected and facilitates the training and 
evaluation of the optimised QNN model for water quality 
prediction. 

3.4 Proposed optimised QNN methods 

3.4.1 M-VAE 
A VAE is a probabilistic generative model that learns to 

encode input data into a latent space and then decode from this 
latent space to reconstruct the original input. In a Modified 
VAE, enhancements or adjustments are made to improve the 
model’s performance or adapt it to specific types of data or 
tasks. The goal of a VAE is to learn a latent space 
representation of the input data such that the reconstructed data 
closely resembles the original input. The encoder network 
maps an input x to a distribution in the latent space. This is 
typically parameterized as a Gaussian distribution with mean 
μ and standard deviation σ: 

𝑞𝑞(𝑧𝑧|𝑥𝑥) = 𝒩𝒩 ∗ (𝑧𝑧; 𝜇𝜇(𝑥𝑥),σ2(𝑥𝑥)) (1) 

where, z is the latent variable. To sample from the distribution 
𝑞𝑞(𝑧𝑧|𝑥𝑥), a reparameterization trick is used: 

𝑧𝑧 = 𝜇𝜇(𝑥𝑥) + σ(𝑥𝑥). ∊ (2) 

where, ϵ is a random noise vector sampled from a standard 
normal distribution 𝒩𝒩  (0,I).The decoder network maps the 
latent variable z back to the data space, producing a 
distribution over possible data points: 

𝑥𝑥′ = 𝑝𝑝(𝑥𝑥|𝑧𝑧) (3) 

where, 𝑥𝑥′  is the reconstructed data. The VAE is trained to 
maximize the Evidence Lower Bound (ELBO) on the log-
likelihood of the data: 

𝐿𝐿ELBO = 𝔼𝔼𝑞𝑞(𝑧𝑧|𝑥𝑥)�𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝑥𝑥|𝑧𝑧) − 𝐾𝐾𝐿𝐿[𝑞𝑞(𝑧𝑧|𝑥𝑥)}�𝑝𝑝(𝑧𝑧)] (4) 

where, KL denotes the Kullback-Leibler divergence between 
the posterior q(z∣x) and the prior p(z), often assumed to be a 
standard normal distribution N(0,I). Expanding this, the ELBO 
can be written as: 

𝐿𝐿ELBO = −𝐾𝐾𝐿𝐿[𝑞𝑞(𝑧𝑧|𝑥𝑥)||𝑝𝑝(𝑧𝑧)] + 𝔼𝔼𝑞𝑞(𝑧𝑧|𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝑥𝑥|𝑧𝑧)] (5) 

The hyperparameters of VAE include latent space 
dimensionality, the rate at which the model learns during 
training, the number of samples processed before the model’s 
parameters are updated, the number of layers, the number of 
neurons per layer, and activation functions used in both the 
encoder and decoder. In modified VAE, these parameters are 
tuned using a metaheuristic optimizer to achieve higher 
accuracy in water quality prediction.  

Unlike the traditional VAE, M-VAE uses Gaussian 
distribution in its latent space to capture more complex 
patterns in the data. The major advantage of using M-VAE for 
feature extraction is to better handle high-dimensional and 
complex water quality datasets. 

3.4.2 QCNN algorithm 
The QCNN method is applied for a data classification which 

is combined with a CNN model that is given in Figure 2. This 
method is processed in quantum computing principles to 
enhance the feature extraction to achieve an efficient 
classification. The QCNN procedures are explained in the 
following. 

Figure 2. QCNN architecture 

Preparing the quantum state 
Initially preparing the data for quantum processing is 

executed. Consider quantum systems with a limited number of 
qubits available that processed a dimensionality data reduction 
in qubits. Assume every data sample is an n-dimensional 
vector and also minimise the dimensionality of the data sample 
to m dimensions to fit within the quantum system's capacity. 
Next, the minimised data vector is normalized in range [0,1] 
as  𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑥𝑥]  and then converted into angle 

361



information suitable for quantum encoding using 𝛼𝛼𝛼𝛼 = 𝜋𝜋𝑥𝑥𝛼𝛼 
that resulted as angle vector 𝛼𝛼 = [𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑥𝑥]. By 
encoding IoT data into a quantum state, angle data (α) to 
measure angle rotation for quantum gates. Specifically, each α 
is used as the rotation angle for a Ry gate for every qubit. The 
Ry gate is a quantum gate that rotates the qubit around the y-
axis of the Bloch sphere by the specified angle. Here initial 
quantum state ∣0⟩ is transformed into a quantum state that 
represented as ∣ 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙⟩ = ⨂𝑖𝑖=1

𝑚𝑚 𝑅𝑅𝑅𝑅(𝛼𝛼𝛼𝛼) ∣ 0⟩. 
Quantum convolutional layer 
This layer applies quantum circuits to the encoded quantum 

state and acts as a quantum filter to extract features in quantum 
namely superposition and entanglement. Multiple quantum 
convolution kernels are applied to the quantum state that is 
configured with various parameters to capture different 
patterns and features within the data. The quantum 
convolutional layer in the QCNN architecture used the 
principles of quantum mechanics like superposition and 
entanglement for feature extraction. The quantum 
convolutional layer applies quantum circuits to the quantum 
state which allows the model to encode complex features in a 
more compact and efficient manner. The advantage of 
quantum convolutional layers lies in their ability to perform 
simultaneous processing of multiple states which enables them 
to extract richer and more diverse features from water quality 
data with fewer parameters than classical models.  

Quantum pooling layer 
Next, the data moves to quantum pooling which minimises 

the feature maps obtained from the quantum convolutional 
layer which summarises the extracted features to maintain 
significant data. This process manages the system’s 
complexity and prepares the data for further processing. The 
quantum pooling layer performs a dimensionality reduction 
operation similar to conventional pooling in CNNs. But, it also 
uses the concept of quantum parallelism. In this layer, the 
quantum states obtained from the quantum convolutional layer 
are processed through quantum pooling circuits. The primary 
advantage of quantum pooling is its ability to reduce the 
number of qubits needed. It is also used to hold the essential 
characteristics of the data. 

Measurement and classical processing 
Then the conversion of quantum data into classical data is 

processed. The measurement process collapses the quantum 
states into classical values and provides a new feature vector 
which is a captured data extraction of quantum layers. 

Fully connected classical layer 
Converted data is fed into a fully connected classical layer 

for a final classification task. It trains the feature vectors by 
using backpropagation methods to achieve higher efficiency 
and effectiveness in training methods. 

Training with backpropagation 
The backpropagation is used to train HCNN by using 

systems like TensorFlow Quantum that facilitate a quantum 
circuit’s numerical simulation in classic systems and 
implement a gradient descent in quantum systems. The adjoint 
differentiation model is employed to compute gradients in the 
quantum to attain an efficient quantum circuit training model.  

To enhance the accuracy of the QCNN method of prediction, 
the hyperparameter of QCNN is tuned by using a Siberian 
Tiger Optimization (STO) algorithm [21, 22]. Table 1 lists the 
parameters of the QCNN method.  

These parameters can be tuned using the Siberian Tiger 
Optimization (STO) algorithm to find the optimal 
configuration for the QCNN. 

Table 1. QCNN hyperparameters 

Parameter Range/Options 
Number of Qubits (N) 4 to 16 

Quantum Circuit 
Depth 1 to 10 layers 

Types of Quantum 
Gates 

RyR_yRy, RzR_zRz, Hadamard, 
CNOT, Controlled-Z 

Rotation Angles 0 to π\π 
Quantum Convolution 

Kernels Variable, depending on the design 

Quantum Pooling 
Strategy Fixed or adaptive strategies 

Learning Rate 0.001 to 0.1 
Batch Size 16, 32, 64, 128 

Number of Epochs 10 to 100 
Optimizer Adam, SGD, RMSprop 

Dropout Rate 0 to 0.5 

3.4.3 STO method for QCNN parameter tuning 
It is motivated using Siberian tigers’ characteristics that 

involve hunting prey and fighting brown bears. Compared to 
other metaheuristic optimization algorithms, the STO has a 
faster convergence rate and can easily escape local minima. 
The mathematical evaluation of these behaviours with an 
iterative optimization to identify an optimal result for complex 
issues. This method can effectively fine-tune the parameters of 
a QCNN to classify the data. 

Initialization 
Initially, the population of candidate solutions is initialised 

that represents a set of hyperparameters for the QCNN. 
1. Population Matrix (X): Initialize the tiger’s

positions randomly that represent a candidate
solution in each space.

2. Best Solution (X_best): identify the best solution of
an objective function value.

Phase 1: Prey Hunting 
This phase explores the hunting behaviour of tigers in 

search space extensively. It selects a prey position with a better 
objective function value and simulates an attack, resulting in 
significant changes in its position. 

1. Position Update:

𝑥𝑥i,j𝑃𝑃1𝑠𝑠1 = 𝑥𝑥i,j + 𝑟𝑟𝜙𝜙𝑟𝑟𝜙𝜙�𝑀𝑀i,j − 𝐼𝐼i,j𝑥𝑥i,j� (6) 

where, rand is a parameter that varies from zero to one, Mi,j is 
a member, j is the dimension and Ii,j are coefficient varies from 
zero to two. 

2. Final Position Update:

𝑥𝑥i,j𝑃𝑃1𝑠𝑠2 = 𝑥𝑥i,j +
𝑟𝑟𝜙𝜙𝑟𝑟𝜙𝜙� 𝑢𝑢𝑙𝑙𝑗𝑗  − 𝑙𝑙𝑙𝑙𝑗𝑗�

𝜙𝜙
(7) 

where, t is the iteration number, and ul and ll denote the lower 
and upper limits for optimization. 

Phase 2: Fighting with a Bear 
This phase simulates tigers fighting brown bears. Tigers 

select a bear position and calculate a new position based on the 
bear's position. It can be expressed as follows: 

1. Position Update:

𝑥𝑥i,j𝑃𝑃2𝑠𝑠1 = �
𝑥𝑥i,j + 𝑟𝑟𝜙𝜙𝑟𝑟𝜙𝜙�𝑥𝑥𝑘𝑘,j − 𝐼𝐼𝑥𝑥i,j�,𝐹𝐹𝑘𝑘 < 𝐹𝐹i
𝑥𝑥i,j + 𝑟𝑟𝜙𝜙𝑟𝑟𝜙𝜙�𝑥𝑥i,j − 𝑥𝑥k,j�,𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸

(8) 
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2. Final Position Update:

𝑥𝑥i,j𝑃𝑃2𝑠𝑠2 = 𝑥𝑥i,j +
𝑟𝑟𝜙𝜙𝑟𝑟𝜙𝜙� 𝑢𝑢𝑙𝑙𝑗𝑗  − 𝑙𝑙𝑙𝑙𝑗𝑗  �

𝜙𝜙
(9) 

Iterative Process 
The STO algorithm iteratively processes these stages to 

reach an optimal solution. The objective function is set as a 
function of the accuracy or error rate of the model. The 
pseudocode of the proposed optimization is given below: 

Pseudocode of optimised QCNN 
1. Sets the hyperparameters of the QCNN model based

on the provided candidate solution.
2. Train specified hyperparameters.
3. Evaluate the trained model on a validation dataset

and calculate the accuracy.
4. Represents the accuracy of the trained model on the

validation dataset.
5. Returns the validation accuracy as an objective value

to maximize during optimization.
6. Randomly initialize the population of candidate

solutions.
7. Select candidate solutions based on their fitness

scores.
8. Select a prey position for the tiger.
9. Update the tiger's position in the first stage.
10. Finalize the tiger's position update.
11. Select a bear position for the tiger.
12. Update the tiger's position in the first stage of the bear

fight.
13. Finalize the tiger's position update during the bear

fight.
14. Output the best solution and its accuracy.

By using an optimized QCNN model, the system provided 
an efficient water quality prediction with advanced quantum 
computing even in complex water quality data. It also carried 

reliable and more accurate prediction outcomes. The same 
iterative steps were followed to tune the hyperparameters of 
VAE. 

3.5 Display alert 

The predicted quality data outcomes are transmitted to the 
IoT cloud where the controller is also linked to a display alert 
system. This component provides real-time alerts and 
notifications in the system to ensure immediate awareness of 
any important changes or issues in water quality parameters. 
The alerts help in prompt decision-making and corrective 
actions. 

Therefore, overall, an integrated system continuously 
monitors the quality of water with an integration of IoT 
technology and predictive analysis using an optimised QCNN 
model. Thus, the proposed optimised QCNN model is 
effectively trained with the historical IoT data and optimized 
to accurately predict future water quality. This method helps 
to ensure water safety to provide a quality environment. 

4. RESULTS AND DISCUSSIONS

The performance of the optimized QCNN model is
evaluated and discussed in this section. It handles the IoT 
sensor data as a dataset and validates an accurate and efficient 
prediction. It analyses an intricate pattern within water quality 
datasets and converts in quantum computing principles to 
extract data from sensors. Also, evaluation of classification 
metrics like accuracy, specificity, recall, precision, F1 score, 
and confusion matrix shows its effectiveness.  

In Table 2, which compares various techniques for water 
quality prediction, the proposed "Optimised QCNN" method 
distinguishes itself by achieving notably high values across 
different classification metrics. The results are graphically 
shown in Figure 3. 

Table 2. Metrics comparison of proposed and existing methods 

Techniques Specificity (%) Precision (%) Recall (%) F1 Score (%) Accuracy (%) 
Optimised QCNN 98.76 98.15 97.32 98.52 98.55 

Graph Neural Networks (GNN) [23] 94.85 95.26 95.12 96.29 95.11 
Generative Adversarial Network [24] (GAN) 93.1 94.73 93.84 95.65 94.65 

Long short-term memory (LSTM) [25] 91.28 92.53 92.29 93.26 93.82 
Recurrent Neural Network (RNN) [26] 89.37 90.86 90.18 91.46 92.15 

CNN [27] 88.24 88.43 89.23 90.34 89.32 

Figure 3. Performance metrics for proposed and prior 
methods 

The proposed mode achieved higher values in all the 
metrics among all other works whereas a high specificity of 
98.76% is attained that correctly identifies negative instances 
with a minimal rate of false positives. Also, a precision score 
of 98.15% is achieved which recognises positive instances 
with higher reliability of water quality anomalies. The 
proposed recall of 97.32% attained effectiveness in capturing 
true positive instances to detect potential contaminants or 
water quality deviations. The impressive F1 score of 98.52% 
shows its robustness in handling various water quality 
prediction tasks. Lastly, it achieves an Accuracy of 98.55% 
which presents superiority in water prediction. The results are 
graphically shown in Figure 4. 

For the fair comparison of the Optimized QCNN model, its 
performance on individual water quality parameter prediction 
tasks, such as pH, turbidity, and dissolved oxygen (DO) are 
analyzed. This analysis demonstrates the versatility of the 
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model in handling different water quality metrics critical for 
environmental monitoring. The results are given in Table 3. 

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 4. (a) Specificity metrics, (b) precision metrics, (c) 
recall metrics, (d) F1 score metrics and (e) accuracy metrics 

The model consistently achieved high specificity and 
assures accurate identification of negative instances such as 
when water quality deviations are absent. To address the 
recommendation, an error analysis is conducted to identify 
potential prediction biases in the optimized QCNN model. The 
data quality issues like noisy or incomplete IoT sensor data 
affect the performance, especially for parameters like turbidity. 
Additionally, the model's structure struggled to capture 
dynamic temporal dependencies in rapidly fluctuating 
parameters like dissolved oxygen. The dataset imbalance also 
contributed to minor recall deviations.  

Table 3. Metrics comparison of different quality metrics 

Parameter Specificity (%) Precision (%) Recall (%) F1 Score (%) Accuracy (%) 
pH 97.85 97.42 96.98 97.20 97.36 

Turbidity 98.12 97.89 97.56 97.72 97.95 
Dissolved Oxygen (DO) 98.67 98.41 97.93 98.16 98.35 

5. CONCLUSION

In this water quality prediction, the proposed work presents
sensor data that is processed with predictive analytics from IoT 
devices. It proposed an optimized QCNN for an efficient and 
qualitative prediction to achieve its effectiveness. The IoT 
sensor data integrated with an optimized QCNN technique 
demonstrates its intricate patterns of water quality datasets. 
The experimental result of optimized QCNN proves efficiency 
with classification metrics. With specificity at 98.76%, the 

model identifies negative instances to ensure minimal false 
positives and bolster water safety protocols. Furthermore, 
precision achieves 98.15% in detecting positive instances 
which is essential for contaminants or deviations. The QCNN's 
recall score of 97.32% shows its effectiveness in capturing true 
positive instances for quality management. Meanwhile, this 
work has a higher accuracy of 98.55% and an effective 
balancing F1 score of 98.52% respectively.  Therefore, this 
optimized QCNN model holds an accurate and timely 
prediction of water quality than the prior methods.  Through 
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its integration into the IoT system, this optimized QCNN 
method provides a transformative model shift in water quality 
prediction for more efficient and proactive management of 
water systems. To enhance the applicability of the Optimized 
QCNN model, future work should focus on extending its 
implementation to different water bodies, such as lakes and 
oceans which shows varying environmental conditions and 
water quality patterns. Additionally, the model can be adapted 
to predict more complex water quality parameters including 
heavy metals and organic pollutants, which are critical for 
comprehensive water quality assessment. 
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