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ABSTRACT 

The present study aims to investigate the condition of existence of resonance and the 

stability of oblate infinitesimal body around the triangular equilibrium points in the 

elliptical restricted three body problem, when both the primaries are source of radiation 

and oblate spheroid. We have adopted the method due to Markeev, in which the 

Hamiltonian function pertaining to the problem is made independent of time using several 

canonical transformations. The existence of resonance and their stability of infinitesimal 

near the resonance frequency around the triangular equilibrium points of the perturbed 

system has been analyzed analytically and numerically. The region of stability and 

instability has been discussed by adopting simulation technique in circular and elliptic 

cases separately. 
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1. INTRODUCTION

The present study aims to investigate the condition of 

existence of resonance and to study the linear stability of 

oblate infinitesimal body around the triangular equilibrium 

points in the model of elliptical restricted three body problem, 

when both the primaries are the source of radiation as well as 

oblate spheroid in elliptical as well as circular case. It is well 

known that resonance plays an important role in the long term 

evolution of dynamical system. Many types of resonances are 

associated with periodic motion. The method of averaging is a 

widely used technique in celestial mechanics and stellar 

dynamics for the study of resonant motion because at and near 

resonance cannonical transformations can be applied. The 

method given by Markeev [1] is used in which the 

Hamiltonian function pertaining to the problem is made 

independent of time by using several cannonical 

transformations. The existence of resonance and the stability 

of oblate infinitesimal near the resonance frequency 𝜔2 = 1/2
have been analyzed using the simulation techniques by 

drawing the region of stability in circular as well as elliptical 

case. The results are of immediate importance in stellar 

dynamics around the binary system as well as for the solar 

system. 

The stability of motion around the triangular equilibrium 

points in the elliptical restricted three body problem have been 

described in considerable details by Danby [2] and the 

problem was also studied by Bennett [3] and many others. The 

stability of infinitesimal around the equilibrium points of the 

elliptical restricted three body have been studied considering 

the various perturbation forces [3-8]. The authors have 

investigated the different aspects of the elliptic problem. The 

existence of the liberation points and their stability in the 

radiational elliptical restricted three body problem has been 

investigated [9-10]. The stability of the motion of infinitesimal 

around the triangular equilibrium points are depending upon 𝜇 

and e. The different aspects of the same problem in details 

have been investigated [11-14]. The existence of libration 

points and their stability in the photo gravitational elliptical 

restricted three body problem have been studied [15]. The 

analytical investigation concerning the structure of asymptotic 

perturbative approximation for small amplitude motions of the 

third point mass in the neighborhood of a Lagrangian 

equilateral libration positions in the planar, elliptical restricted 

three bodies have been investigated [16-17]. After a sequence 

of canonical transformations, they formulated the Hamiltonian 

governing the motion of the negligible mass body using the 

eccentric anomaly of the primaries elliptical Keplerian orbits 

as the independent variable. They studied the liberalized 

system of differential equations of motion obtained from 

expanding the Hamiltonian around a Lagrangian solution. The 

approximated integration of the elliptical restricted three body 

problem by means of perturbation technique based on lie series 

development, which led to an approximated solution of the 

differential system of canonical equation of motion derived 

from the chosen Hamiltonian function have been discussed 

[18]. 

The stability of the triangular equilibrium points in the 

circular restricted three body problem considering both the 

primaries as oblate spheroid and the source of radiation in 

linear case, has been studied [19]. The values of critical mass 

ratio have been obtained for the various values of the 

oblateness and radiation parameter. 

The present study describes the effects of the oblateness of 

all the three bodies and radiation pressure of both the primaries 

on the existence of resonance and the stability of the triangular 

equilibrium points of the planar elliptical restricted three body 

problem in particular case, when e=0 and e<1.  

The paper is organized in six sections. Section 1 presents 

the introduction to the problem, section 2 describes the 

equation of motion of the problem. Section 3 and 4 deals with 

the stability of the triangular equilibrium points in circular and 

Modelling, Measurement and Control B 
Vol. 88, No. 1, March, 2019, pp. 8-16 

Journal homepage: http://iieta.org/journals/mmc_b 

8



 

elliptical case respectively. Section 5 presents the conclusion 

of the problem. Section 6 and 7 gives the acknowledgement 

and bibliography of the paper. 

 

 

2. EQUATION OF MOTION  
 

The equation of motion of the planar elliptical restricted 

three body problem under the photo gravitational and 

oblateness of both the primaries in barycentric, pulsating, non-

dimensional co-ordinates are represented as follows: 

 

�̅�" − 2𝘺 ̅′ =  C (e, f)   
𝜕𝑈

𝜕𝘹 ̅
 

�̅�" + 2𝘹 ̅′ =  C (e, f) 
𝜕𝑈

𝜕𝘺 ̅
                          (1) 

 

𝑈 =  (1 − 𝜇) [ 
1

2
�̅�2

1 + 
1

𝑛2 (
δ1

�̅�1
+ 

𝛿1𝐴1+𝐴3

2�̅�3
1

)  +  μ[ 
1

2
�̅�2

2 +

1

𝑛2 (
δ2

�̅�2
 +  

𝛿2𝐴2+𝐴3

2�̅�3
2

) ]             (2) 

 

r̅1
2 = (�̅� + 𝜇)2  + �̅�2 

r̅2
2  =  (�̅� + 𝜇 − 1)2 + �̅�2                    (3) 

 

C (e, f)  =  
1

1+𝑒 cos 𝑓  
                              (4) 

 

𝑛2 =
1

𝑎3 (1 +
3

2
(𝐴1 + 𝐴2 + 𝑒2))          (5) 

 

Here prime (‘) denotes the differentiation with respect to the 

true anomaly f. 𝑈𝑥 and 𝑈𝑦 denotes the partial differentiation of 

U with respect to x and y respectively. 𝐴1, 𝐴2 and 𝐴3 are the 

oblateness parameter of the primaries and infinitesimal 

respectively and 𝛿1,𝛿2 are the radiation pressure of both the 

primaries.                                   

 

 

3. STABILITY OF THE EQUILIBRIUM POINT 

 

These equilibrium points are symmetrical to each other, 

hence the nature of motion near the two triangular equilibrium 

points are the same. The system (1) described the motion of 

dynamical system with Lagrangian, which is represented as: 

 

𝐿 =
𝑥′2+�̅�′2

2
+ (�̅�′�̅� − �̅�′�̅�) +

1

1+𝑒 cos 𝑓
[(1 −  𝜇){

r1
2

2
+

1

𝑛2 (
δ1

r1
+

δ1A1+A3

2r1
3 )}+)} + μ{

r2
2

2
+  

1

n2 (
δ2

r2
+

δ2A2+A3

2r2
3 )}      (6) 

 

The system description through Hamiltonian is given by: 

 

𝒙′ =
𝜕𝐻

𝜕𝒑
  𝒑′ =

𝜕𝐻

𝜕�̅�
; 

 

where, 𝒙 = 𝑥𝑖 + 𝑦𝑗 and 𝒑 = 𝑝𝑥𝑖 + 𝑝𝑦𝑗. 

The Legendre transformation given as 

 

𝐻 = 𝒑𝑇𝒙′ − 𝐿                                   (7) 

 

where 𝑝𝑥 = 𝑥′ − 𝑦, 𝑝𝑦 = 𝑦′ + 𝑥. 

From (7) and (6), the perturbed Hamiltonian function in 

simplified form for the problem is given by 

 

𝐻 =
𝑃𝑥

2+𝑃𝑦
2

2
+ 𝑝𝑥𝑦 − 𝑝𝑦𝑥 +

𝑥2+𝑦2

2
−

1

1+𝑒 cos 𝑓
[(1 −  𝜇){

r1
2

2
+

1

𝑛2 (
δ1

r1
+

δ1A1+A3

2r1
3 )}+)} + μ{

r2
2

2
+  

1

n2 (
δ2

r2
+

δ2A2+A3

2r2
3 )}        (8) 

 

Here, 𝑝𝑥  and 𝑝𝑦  denotes the generalized components of 

momenta. Equation (8) presents the Hamiltonian of the model 

of ERTBP considering the perturbation resulting due to the 

radiation effect of the two primaries and oblateness of all the 

participating bodies.  

The triangular equilibrium points in the case of planar three 

body problem is obtained by solving the equation, 𝐻𝑥 = 𝐻𝑦 =

𝐻𝑝𝑥
= 𝐻𝑝𝑦

= 0  for 𝑥 , = 𝑦 , = 𝑥 ,, = 𝑦 ,, = 0. The triangular 

points given as ((𝑥∗, ±𝑦∗, ±𝑝𝑥∗ , ±𝑝𝑦∗ ) in linear terms of all 

the perturbing factors is given as: 

 

𝑥∗ =
1

2
− 𝜇 +

𝛽2

3
−

𝛽1

3
+

𝐴1

2
−

𝐴2

2
− 𝐴3, 

𝑦∗ =
√3

2
(1 −

2

3
𝑒2 −

5

3
𝛼 −

2𝛽2

9
−

2𝛽1

9
−

𝐴1

3
−

𝐴2

3
)    (9) 

𝑝𝑥
∗ =

√3

2
(1 −

2

3
𝑒2 −

5

3
𝛼 −

2𝛽2

9
−

2𝛽1

9
−

𝐴1

3
−

𝐴2

3
), 

𝑝𝑦
∗ =

1

2
− 𝜇 +

𝛽2

3
−

𝛽1

3
+

𝐴1

2
−

𝐴2

2
− 𝐴3. 

 

Here 𝛼 = 1 − 𝑎, 𝛽𝑖 = 1 − 𝛿𝑖 , 𝑖 = 1,2.  
In order to investigate the stability of the triangular points  

𝐿4,5, we study the motion of the infinitesimal in the vicinity of 

one of the two points, as nature of the motion shall be same 

near both the points. Shifting the origin of the system to the 

triangular point 𝐿4 and considering (𝑞𝑖 , 𝑝𝑖), 𝑖 = 1,2  to be a 

small shift in the position and momentum from the equilibrium 

point. Then, the variational equations may be written as: 

 
𝑑𝑞𝑖

𝑑𝑓
=

𝜕𝐻

𝜕𝑝𝑖
,

𝑑𝑝𝑖

𝑑𝑓
= −

𝜕𝐻

𝜕𝑞𝑖
; (𝑖 = 1,2),       (10) 

 

where, 

 

𝐻 = 𝐻0 + 𝐻1 + 𝐻2 + ⋯,              (11) 

 

𝐻0 = 𝑐𝑜𝑛𝑡, 𝐻1 = 0,                      (12) 

 

Expanding the Hamiltonian 𝐻2  about the shifted 

equilibrium point, we obtain: 

 

𝐻2 =   
𝑞1 +

2 𝑞2 
2

2
 +  𝑝1𝑞2  −  𝑝2𝑞1  +  

𝑝1 +
2 𝑝2 

2

2
 +

 
1

1+𝑒 cos 𝑓
 [− 

(𝑞1 +
2 𝑞2 

2 )

2
 +  (1 −  𝜇)(1 − 𝛽1){(

1

8
 +  

7

8
𝑒2 +

43

32
𝛼 − 

3

4
 𝐴1 +

3

4
   𝐴2  +  

 9

8
 𝐴3 + 

3

8
 𝛽1  −  

𝛽2 

2
 ) 𝑞1 

2  +

𝑞2 
2 (−

5

8
−

23

8
𝑒2 +

95

32
 𝛼 − 

9

4
 𝐴1 −

3

4
 𝐴2  +  

 9

8
 𝐴3 −

7

8
 𝛽1  +

 
𝛽2 

2
) + 𝑞1 𝑞2 (−

3√3

4
−

11√3

4
𝑒2 −

29√3

16
 𝛼 − 

7√3

2
 𝐴1 −

2√3 𝐴2 −
 9√3

4
 𝐴3 −

7√3

4
 𝛽1  +  

𝛽2 

√3
)} +  𝜇(1 −  𝜇) {𝑞1 

2 (
1

8
 −

 
7

8
𝑒2 −

97

 32
𝛼 −

9

16
 𝐴1 −

9

16
 𝐴2  −  

 3

2
 𝐴3 − 

𝛽1

2
 +

3𝛽2 

8
) +

 𝑞2 
2  (−

5

8
−

1

8
𝑒2 + 

125

32
 𝛼 − 

69

16
 𝐴1 −

3

16
𝐴2 +  

1

2
 𝛽1 −

7𝛽2 

8
) +

𝑞1 𝑞2(
3√3

4
+

9√3

4
𝑒2 +

9√3

16
 𝛼 +  

3√3

8
 𝐴1 +

13√3

8
𝐴2 + 

 3√3

2
 𝐴3 +

1

√3
 𝛽1 +

7

4√3
𝛽2 ) }                (13) 

 

For the CRTBP, when e = 0, 
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𝐻2 =   
𝑞1 +

2 𝑞2 
2

2
 +  𝑝1𝑞2  −  𝑝2𝑞1  +  

𝑝1 +
2 𝑝2 

2

2
 

+[( 
1

8
 +  A) 𝑞1 

2 − (K –  B) 𝑞1 𝑞2 –  ( 
5

8
 +  C) 𝑞2 

2 ]       (14) 

 

where,  

 

A =  
α

8
(

43

32
− 35𝜇) −  

3

4
(1 −

7

4
 𝜇)𝐴1  +

3

4
(1 −

7

4
 𝜇)𝐴2 +

 
 9

8
 𝐴3(1 −

7

4
 𝜇) +

1

4
𝛽1(1 − 3𝜇) −  

𝛽2 

4
(2 − 3𝜇)), 

K =  
3

4
 √3(1 −  2𝜇) +  

9

4
 𝐴1 (1 +

11

12
𝜇) +  

9

 4
 𝐴1 (1 +

11

12
𝜇) + 

9

4
 𝐴2 (1 −

11

12
𝜇)  +  

 33

8
 𝐴3(1 − 𝜇) +

𝛼

32
 (95 −

220𝜇) ,                     (15) 

 

B =   √3(
1

6
𝛽1(1 + 𝜇) −

𝛽2 

6
(2 − 𝜇) −  

7

2
𝐴1(1 −

59

28
𝜇) −

2𝐴2(1 −
29

16
𝜇) −

 9

4
𝐴3(1 −

5

3
𝜇) −  

  29

 16
 𝛼(1 −

38

29
𝜇)) 

C =  
1

4
𝛽1(1 − 3𝜇) −

𝛽2 

4
(2 − 3𝜇) +   

9

4
 𝐴1(1 +

11

12
𝜇)  

+ 
9

 4
 𝐴1(1 +

11

12
𝜇) + 

9

4
 𝐴2(1 −

11

12
𝜇)

+ 
 33

8
 𝐴3(1 − 𝜇)  + 

𝛼

32
 (95 − 220𝜇) 

 

For circular problem considering only the second order 

terms of Hamiltonian, equation (10) can be rewritten as: 

 

𝑝�̇� =  − 
𝜕𝐻2

𝜕𝑞𝑖
 ;   𝑞�̇� =  − 

𝜕𝐻2

𝜕𝑝𝑖
 ;        i =  1, 2;   (16) 

 

here ′. ′ denotes differentiation with respect to time t. Thus, 

canonical equations are obtained as  

 

 𝑞1̈ − 2𝑞2̇ =  𝐴∗ 𝑞1  +  𝐵∗𝑞2 

 𝑞2̈ + 2 𝑞1̇ = 𝐵∗ 𝑞1 + 𝐶∗𝑞2                       (17) 

 

where,  

 

𝐴∗ =  
3

4
 −  2A , 𝐵∗  =  K –  B , 𝐶∗  =  

9

4
 +  2C    (18) 

 

Taking, 

 

 𝑞1 =  L𝑒𝜆𝑡,  𝑞2 =  M𝑒𝜆𝑡                    (19) 

 

and substitute in equation (17), we have:  

 

(𝜆2 − 𝐴∗)L + (− 2λ −  𝐵∗) M =  0 

 (𝜆2 − 𝐶∗)M +  (2λ −  𝐵∗) L =  0                (20) 

 

Solving, the system of equations (20), we obtain the 

characteristic equation as 

 

𝜆4 − 𝑇1 𝜆2  + 𝑇2 =  0                       (21) 

 

where, 𝑇1  = 𝐴∗ + 𝐶∗ − 4 , 𝑇2 = 𝐴∗𝐶∗ − 𝐵∗2
 . 

Simplifying, we get the coefficients as follows: 

 

𝑇1  = −1 + 
𝛼

4
 (13 − 20𝜇) +  6𝐴1 +  

3𝜇

4
𝐴1 +  3𝐴2

− 
3𝜇

4
𝐴2 +  6𝐴3  −  3𝜇𝐴3

 (22) 

 

 

𝑇2 =  
27

4
𝜇(1 –  𝜇)[1 +  

2

9
𝛽1  +  

2

9
𝛽2  +

4

27
𝜇(1 +  𝜇) × 

[−
3

8
(26 −  97 𝜇 +  57𝜇2)𝛼 −  

9

 8
(8 −  33 𝜇 + 29𝜇2) 𝐴2 

  − 
9

4
(4 − 19𝜇 +  15𝜇2 ) 𝐴3]     (23) 

 

Assuming the roots of characteristic equation (21) are 𝜆1
2
 

and 𝜆2
2

, we take 𝜆1  =  i𝜔1  and 𝜆2 =  i𝜔2 . That is taking 

𝜆2 =  −𝜔2 , we get:      

 

𝜔4 − 𝑇1𝜔2 + 𝑇2   =  0            (24) 

 

Solving equation (24), we get 

 

𝜔1,2
2 =

1

2
[1 ±  {1 −  27 𝜇(1 –  𝜇)(1 +  + 

2

9
𝛽1  +  

2

9
𝛽2  +

 
94

9
𝛼 +  

119

6
 𝐴1  +  

61

6
 𝐴2  + 17𝐴3   −

1

𝜇
(

13

9
 𝛼 + 

4

3
 𝐴1  +

 
4

3
 𝐴2 + 

 4

3
 𝐴3))} ]1/2 × (1 −  

13

4
 𝛼 −  6 𝐴1  −  3𝐴26 

 4

3
 𝐴3)  

 

That is 

 

𝜔1  = ±[ 
1

2
[1 +  {1 −  27 𝜇(1 –  𝜇)(1 + 

2

9
𝛽1  +  

2

9
𝛽2  +

 
94

9
𝛼 +  

119

6
 𝐴1  +  

61

6
 𝐴2  + 17𝐴3   −  

1

𝜇
(

13

9
 𝛼 +  

4

3
 𝐴1  +

 
4

3
 𝐴2 + 

 4

3
 𝐴3))} ]

1

2 ×  (1 −  
13

4
 𝛼 −  6 𝐴1  −  3𝐴2 +

 4

3
 𝐴3)]1/2,                (25) 

 

𝜔2  = ±[ 
1

2
[1 −  {1 −  27 𝜇(1 –  𝜇)(1 +  

2

9
𝛽1  +  

2

9
𝛽2  +

 
94

9
𝛼 +  

119

6
 𝐴1  +  

61

6
 𝐴2  + 17𝐴3   −  

1

𝜇
(

13

9
 𝛼 +  

4

3
 𝐴1  +

 
4

3
 𝐴2 + 

 4

3
 𝐴3))} ]

1

2 ×  (1 −  
13

4
 𝛼 −  6 𝐴1  −  3𝐴2 +

 
 4

3
 𝐴3)]1/2.                  (26) 

 

The equilibrium points are stable, if the characteristic roots 

of equation are purely imaginary. That is if 𝜔1,2
2 is negative 

value for which discrimination is greater than or equal to zero. 

That is 

 

[𝜇2 −  𝜇 +  
1

27
 [1 −  

13

2
 𝛼 –  12𝐴1 −  6𝐴2  −  12𝐴3][1 −

 
2

9
𝛽1  −  

2

9
𝛽2  −  

94

9
𝛼 −

119

6
 𝐴1  −  

61

6
 𝐴2 − 17𝐴3] ≥ 0. 

 

Thus the value of 𝜇, for stable motion, with respect to the 

other parameters is obtained as:         

 

𝜇 =
1

2
±

1

6
√

23

13
[1 −  

4

207 
𝛽1  +  

2

9
𝛽2  +  

188

207
𝛼 +

119

69
 𝐴1 +

61

69
 𝐴2 +

34

23
𝐴3]               (27) 

 

Since, 𝜇 ≤
1

2
, taking only the negative sign, the region of 

stability in the first approximation can be written as:  

 

0 <  𝜇 ≤
1

2
−

1

6
√

23

13
[1 −  

4

207 
𝛽1  +  

2

9
𝛽2  +  

188

207
𝛼 +

119

69
 𝐴1  +

61

69
 𝐴2 +

34

23
𝐴3]                (28) 

 

Thus, the value of 𝜇  admissible for stable equilibrium 

points given by: 
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𝜇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =  0.0385209 − 0.00891747(𝛽1 + 𝛽2) −
0.419121𝛼 − 0.795884𝐴1  −  0.407974𝐴2 − 0.682187𝐴3     

(29) 

 

When perturbing force such as radiation pressure and 

oblates of the primaries are not considered and semimajor axis 

𝑎 = 1 , i.e, 𝛽1  = 𝛽2 = 𝐴1  = 𝐴2 = 𝐴3 = 𝛼 = 0 , we get the 

frequencies corresponding to the critical value as 

 

 𝜔1(𝜇𝑐) =  𝜔2(𝜇𝑐) =  
1

√2
, 𝜔1(0) = 1, 𝜔2(0) = 0.  (30) 

 

It is observed that the parametric resonance is possible in 

the neighborhood of the value of 𝜇 for which satisfy atleast 

one of the following relations: 

 

𝜔1 =
𝑁

2
, 𝜔2 =

𝑁

2
, 𝜔1 − 𝜔2 = 𝑁, 

 

N is natural number. 

To find 𝜇0 taking 𝜔2 =
1

2
 , 𝑠olving, we get: 

 

𝜇0 = 0.0285955 − 0.00654729(𝛽1 + 𝛽2) − 0.0523783𝛼 −
0.112941𝐴1 − 0.063836𝐴2 −  0.0294628𝐴3   (31) 

 

Figures 1-5, shows the correlation between the mass 

parameter 𝜇  and the frequencies ω1,2  varying the various 

perturbing parameters. 

 

 
 

Figure 1. Correlation between 𝜇 and 𝜔1,2 for 𝐴1 = 𝐴2 =

0.001, 𝛽1 = 𝛽2 = 0, 𝑎 = 1 

 

 
 

Figure 2. Correlation between 𝜇 and 𝜔1,2 for 𝐴1 = 𝐴3 =

0.001, 𝛽1 = 𝛽2 = 0.1, 𝑎 = 1 

 

 
 

Figure 3. Correlation between 𝜇 and 𝜔1,2 for 𝐴3 = 𝐴2 =
0.001, 𝛽1 = 𝛽2 = 0.1, 𝑎 = 1 

 

 
 

Figure 4. Correlation between 𝜇 and 𝜔1,2 for 𝐴1 = 𝐴2 =

𝐴2 = 0.001, 𝛽2 = 0.1, 𝑎 = 1 

 

 
 

Figure 5. Correlation between 𝜇 and 𝜔1,2 for 𝐴1 = 𝐴2 =

𝐴2 = 0.001, 𝛽1 = 0.1, 𝑎 = 1 

 

 

4. STABILITY OF TRIANGULAR EQUILIBRIUM 

POINTS OF THE PROBLEM IN ELLIPTICAL CASE 

 

We analyzed the stability of infinitesimal under the 

elliptical restricted three body problem around the Binary 

system, where both the primaries are radiating and all the 

bodies are oblate spheroid as well as the source of radiation, 

for the small eccentricity ‘’e’’ near the resonance frequency 

𝜔2 = 1/2 . We have exploited the method of [19] to 

investigate the stability of infinitesimal around the triangular 
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equilibrium points and constructed Hamiltonian function, 

describing the motion of infinitesimal mass in the 

neighborhoods function of the perturbed system is expanded 

in the power of the generalized component of momenta up to 

the second order. We have established a relation for 

determining the range of stability using simulation techniques 

by Mathematica software in 𝜇 − 𝑒  plane. The Hamiltonian 

function up to the second order of the perturbed system is 

given as: 

 

𝐻2 =  
𝑝1 +

2 𝑝2 
2

2
+ 𝑝1𝑞2 − 𝑝2𝑞1 + [𝑞1 

2 (
1

8
+ 𝐴) − (𝐾 − 𝐵)𝑞1 𝑞2 −

( 
5

8
+ C)𝑞2 

2  ] +
𝑒 cos 𝑓

1+𝑒 cos 𝑓
[(𝑞1 

2 (
3

4
− 𝐴) + (𝐾 − 𝐵)𝑞1 𝑞2 + ( 

9

8
+

C)𝑞2 
2  ]                                      (32) 

 

where, 

   

𝐴 =  
7

8
𝑒2(1 − 2 𝜇) +

α

8
(
43

32
− 35𝜇)  −

3

4
 (1 −

7

4
 𝜇)𝐴1

+  
3

4
 (1 −

7

4
 𝜇)𝐴2  +  

 9

8
 𝐴3(1 −

7

4
 𝜇)

+  
1

4
 𝛽1(1 − 3𝜇) −

𝛽2 

4
(2 − 3𝜇) 

𝐵 = −
11

4
𝑒2(1 −

20

11
𝜇) −

29

16
 𝛼(1 −

38

29
𝜇) −

7

2
𝐴1(1 −

59

28
𝜇)  −

2 𝐴2(1 −
29

16
𝜇) −

 9

4
𝐴3(1 −

5

3
𝜇) +  

  1

6
𝛽1(1 + 𝜇) −

𝛽2 

6
(2 − 𝜇)    

K =  
3

4
 √3  (1 −  2𝜇)                      (33) 

𝐶 =
1

8
𝑒2(23 − 22𝜇) + 

𝛼

32
 (95 − 220𝜇) + 

9

4
 𝐴1(1 +

11

12
𝜇)

+
9

4
 𝐴2(1 −

11

12
𝜇)   +

 33

8
 𝐴3(1 −  𝜇)

+
1

4
𝛽1(1 − 𝜇) −  

𝛽2 

4
(2 − 3𝜇)) 

 

Now considering the canonical transformation 

[𝑞1, 𝑞2, 𝑝1,𝑝2] which transform into [𝑞1
′, 𝑞2

′, 𝑝1
′, 𝑝2

′]   
 

𝑁 = |

𝑎1 −𝑎1𝑐1 𝑎1(1 − 𝜔1
2𝑏1)

𝑎2 −𝑎2𝑐2 𝑎2(1 − 𝜔2
2𝑏2)

0 𝑎1(1 − 𝑏1) 𝑎1𝑐1

|    (34) 

 

Now using the above canonical transformation, we get: 

 

𝑞1 = 𝑎1𝑞1
′ + 𝑎2𝑞2

′ ; 
𝑞2 = 𝑎1𝑐1𝑞1

′ + 𝑎2𝑐2𝑞2
′ + 𝑎1𝑏1𝑝1

′ − 𝑎2𝑏2𝑝2
′ ; 

𝑝1 = −𝑎1𝑐1𝑞1
′ − 𝑎2𝑐2𝑞2

′ + 𝑎1(1 − 𝑏1)𝑝1
′ − 𝑎2(1 − 𝑏2)𝑝2

′ ;                 
(35) 

 

𝑝1 = 𝑎1(1 − 𝑤1
2𝑏1)𝑞1

′ + 𝑎2(1 − 𝑤2
2𝑏2)𝑞2

′ + 𝑎1𝑐1𝑝1
′

− 𝑎2𝑐2𝑝2
′ ; 
 

where,       

 

𝑙𝑖 =
9

4
+ 2𝑐𝑖 + 𝜔𝑖

2 ; 𝑎𝑖 =
1

2
(

2𝑙𝑖

ǀ𝜔𝑖
2−1/2ǀ

)1/2; 𝑏𝑖 =
1

𝑙𝑖
 

 

And 

 

 𝑐𝑖 =
−(𝐾−𝐵)

𝑙𝑖
.                             (36) 

 

Now considering 𝐻2 = 𝐻2
(𝑎) + 𝐻2

(𝑏), 

𝐻2
(𝑎) = Hamiltonian independent of eccentricity.  

𝐻2
(𝑏) =  Hamiltonian containing the first order 

approximation in e. 

 

𝐻2
(𝑎)  =

1

2
(𝑝1 +

2 𝑝2 
2 ) + 𝑞1 

2 (
1

8
+ 𝐴) − (𝐾 − 𝐵)𝑞1 𝑞2 − ( 

5

8
+

c)𝑞2 
2                                        (37) 

    

Simplifying we get,   

   

𝐻2
(𝑏)  =

𝑒 cos 𝑓

1+𝑒 cos 𝑓
[(

3

8
− 𝐴)𝑎1 

2 + (𝐾 − 𝐵)𝑎1 
2 𝑐1  + ( 

9

8
+

c)𝑎1 
2 𝑐1 

2 ]𝑞′1 
2 +[(

3

8
− 𝐴)𝑎2

2 − (𝐵 − 𝐾)𝑎2
2𝑐2 + (

9

8
+

𝐶)𝑐2 
2  𝑎2

2]𝑞2′2 + [( 
9

8
+ c)𝑎1 

2 𝑏1 
2 𝑝′1 

2 + +(
9

8
+ 𝐶)𝑏2 

2  𝑎2
2] 𝑝2′2  

+[(
3

8
− 2𝐴) + (𝐾 − 𝐵)𝑐2  − (𝐾 − 𝐵)𝑐1 − ( 

9

8
+

2C)𝑐1𝑐2 ]𝑞′1 
2 𝑞′2 

2 +[𝑎1
2𝑏1(𝐵 − 𝐾) + (

9

4
+

2𝐶)𝑎1 
2  𝑐1𝑏1] 𝑞1′𝑝1′ + [(𝐵 − 𝐾)𝑎1𝑎2𝑏1 + (

9

4
+

 2𝐶) 𝑐2𝑎1𝑎2𝑏1] 𝑞2′𝑝1′  + 𝑎1𝑎2𝑏1(𝐵 − 𝐾) − (
9

4
+

2𝐶)𝑎1𝑎2 𝑐1𝑏2] 𝑞1′𝑝2′ + [(𝐵 − 𝐾)𝑎2
2𝑏2 − (

9

4
+

2𝐶)𝑎2
2𝑏2 𝑐2] 𝑞2′𝑝2′ + [𝑎2

2𝑏2(𝐵 − 𝐾) − (
9

4
+

2𝐶)𝑎2 
2  𝑐2𝑏2] 𝑞2′𝑝2′ − (

9

4
+ 2𝐶) 𝑎1𝑎2𝑏1𝑏2 𝑝2′𝑝1′ 

  +[𝑎1𝑎2𝑏2(𝐵 − 𝐾) − (
9

4
+ 2𝐶) 𝑎1𝑎2𝑐1𝑏2] 𝑞1′𝑝2′]    (39) 

 

The characteristic equation is represented as: 

 

𝜆4 − (𝐴∗ + 𝐶∗ − 4)𝜆2 + 𝐴∗𝐶∗ − 𝐵∗2 = 0      (40) 

 

Let 𝜆1 = 𝑖𝜔1 and 𝜆2 = 𝑖𝜔2. Hence, we get 

 

𝜔4 + (𝐴∗ + 𝐶∗ − 4)𝜔2 + 𝐴∗𝐶∗ − 𝐵∗2 = 0. 
 

Hence, we get:  

 

𝐻2
(𝑏)  =

𝑒 cos 𝑓

1+𝑒 cos 𝑓
[𝑎𝑞2

′2 + 𝑏𝑝2
′2 + 𝑐 𝑝2

′ 𝑞2
′ + ⋯ ]   (41) 

 

where, higher order terms in 𝑝1
′  𝑎𝑛𝑑 𝑞1

′  are neglected. 

Substituting the values of 𝐻2
(𝑎)  and 𝐻2

(𝑏) the normalized 

Hamiltonian function becomes: 

 

𝐻2 =
1

2
(𝑝1

′2 + 𝜔1
2𝑞1

′2) −
1

2
(𝑝2

′2 + 𝜔2
2𝑞2

′2) + 𝑒 cos 𝑓 [𝑎𝑞2
′2 +

𝑏𝑝2
′2 + 𝑐𝑝2

′ 𝑞2
′ + ⋯ ]           (42) 

 

where,  

 

𝑎 = (
3

8
− 𝐴)𝑎1 

2 + (𝐾 − 𝐵)𝑎1 
2 𝑐1  + ( 

9

8
+ C)𝑎1 

2 𝑐1 
2  

𝑏 = (
9

8
+ 𝐶)𝑎1 

2 𝑏1 
2  

𝑐 = {−(𝐾 − 𝐵)𝑎2 
2 𝑏2 − (

9

8
 – C)2𝑎1 

2 𝑏2𝑐2 }     (43) 

 

We introduction the transformation of the variables, which 

are given as: 

 

𝑞1
′ =

√2𝛼1

𝜔1

sin 𝜔1 (𝑓 + 𝛾1) 

𝑞2
′ =

√2𝛼2

𝜔2
sin 𝜔2 (𝑓 − 𝛾2)                       (44) 

𝑝1
′ = √2𝛼1 cos 𝜔1(𝑓 + 𝛾1) 

𝑝2
′ = √2𝛼1 cos 𝜔2 (𝑓 − 𝛾2) 
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The perturbation in Hamiltonian is represented as follows: 

 

𝐻 =
𝑒 cos 𝑓

1+𝑒 cos 𝑓
[𝑎𝑞2′2 + 𝑏𝑝2′2 + 𝑐𝑝2′𝑞2′ + ⋯ ]   (45) 

 

From the equation (44) and (45) 

 

𝐻 =
𝑒 cos 𝑓

1+𝑒 cos 𝑓
[

2𝑎𝛼2

𝜔2
2 sin2𝜔2(𝑓 − 𝛾2) + 2𝑏𝛼2cos2𝜔2(𝑓 −

𝛾2) −
𝑐𝛼2

𝑤2
sin 𝜔2 2(𝑓 − 𝛾2)]       (46) 

 

where, 

 

 𝜔2 =
1+2𝜖1

2
   (𝜖1 ≤ 1)                (47) 

 

Using equations (46), (47) and taking the average of the 

terms with finite frequencies in the range 0 to 2 𝜋 , the 

Hamiltonian 𝐻2 is reduced to the form. 

 

𝐻2 = 𝑒[𝑈 cos(2𝜖1𝑓 − 2𝜔2 𝛾2) + 𝑉 sin(2𝜖1𝑓 − 2𝜔2 𝛾2)]𝛼2;    
(48) 

 

where, 𝑈 =
(𝑏−4𝑎)

2
, 𝑉 = 𝑐 . 

 

Now introducing the canonical transformation as: 

 

𝛼1̅̅ ̅  = 𝛼1; 𝛾1̅  = 𝛾1; 𝛼2̅̅ ̅  = 𝛼2;  𝛾2̅  = 𝛾2 − 2𝜖1𝑓    (49) 

 

Also, assuming 𝐻 be the transformed form of Hamiltonian 

H in the new variables, then we have: 

 

𝑑𝐹(𝑞𝑖,𝑞�̅� 𝑡) = ∑ 𝑝�̅� 𝑑 ̅𝑞𝑖 − ∑ 𝑝𝑖 𝑑𝑞𝑖 + (𝐻 − 𝐻)𝑑𝑡 

𝑑𝐹(𝑞𝑖,𝑞�̅� 𝑉) = 𝛾1̅𝑑𝛼1̅̅ ̅  − 𝛾2̅𝑑𝛼2̅̅ ̅  − 𝛾1𝑑𝛼1 − 𝛾2𝑑𝛼2 + (𝐻  

− 𝐻)𝑑𝑓 

 

That is we get 

 

(�̅�  − 𝐻)𝑑𝑓 − 2𝜖1𝑓𝑑𝛼2 =
𝜕𝐹

𝜕𝛼1 
𝑑𝛼1 +

𝜕𝐹

𝜕𝛼2 
𝑑𝛼2 +

𝜕𝐹

𝜕𝛼1̅̅ ̅̅  
𝑑𝛼1̅̅ ̅  +

𝜕𝐹

𝜕𝛼2̅̅ ̅̅  
𝑑𝛼2̅̅ ̅  +

𝜕𝐹

𝜕𝑓 
𝑑𝑓                   (50) 

 

Equating the coefficients of the 𝑑𝛼2  and 𝑑𝑓  from both 

sided, we obtained:  

 

𝐻 – 𝐻 =
𝜕𝐹

𝜕𝑓 
 ;  −2𝜖1𝑓 =

𝜕𝐹

𝜕𝛼2 
  ; 𝐹 = 𝐹(𝛼, 𝑉);        (51) 

𝑑𝐹 =
𝜕𝐹

𝜕𝛼2 
𝑑𝛼2 +

𝜕𝐹

𝜕𝑓 
𝑑𝑓;  

𝑑𝐹

𝑑𝛼2
=

𝜕𝐹

𝜕𝛼2 
= −2𝜖1𝑓 

 

That is  

 

𝐹 = −2𝜖1𝑓𝛼2                      (52) 

 

Hence, 

 

𝐻  = 𝐻 − 2𝜖1𝛼2                   (53) 

 

From equation (48) and (53), considering the non periodic 

part of the perturbation i.e.terms independent from true 

anomaly ʋ, we have: 

 

𝐻2
̅̅̅̅  = 𝑒[𝑈 cos 2𝑤2 𝛾2̅  − V sin 2𝑤2 𝛾2̅]𝛼2̅̅ ̅  − 2𝜖1𝛼2̅̅ ̅  (54) 

 

where, 

 

𝑈 =
(𝑏−4𝑎)

2
  and 𝑉 = 𝑐             (55) 

 

The transformed Hamiltonian 𝐻2
̅̅̅̅  given by (54) is now 

independent of f. Let the integral be: 

 

𝐻2
̅̅̅̅  = ℎ1  = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡            (56) 

 

Therefore, from (54) we obtain:  

 

𝑒[𝑈 cos 2𝑤2 𝛾2̅  − V sin 2𝑤2 𝛾2̅]𝛼2̅̅ ̅  − 2𝜖1𝛼2̅̅ ̅ = ℎ1   (57) 

 

Replacing,  

 

cos 𝜃 = 𝑈/√(𝑈2 + 𝑉2),  sin 𝜃 = 𝑉/√(𝑈2 + 𝑉2)    (58) 

 

Using (57), the above expression (58) gets reduced to the 

following form:     

 

𝑒 cos(2𝑤2𝛾2̅  + 𝜃) = [ℎ +
2𝜖1

𝑒√(𝑈2+𝑉2)  
𝛼2̅̅ ̅]/ 𝛼2̅̅ ̅      (59) 

 

where, ℎ =
ℎ1

𝑒√(𝑈2+𝑉2)  
. 

Therefore, the motion with Hamiltonian 𝐻2
̅̅̅̅  is given by (55), 

(56) and (59), possessing the integral is represented as follows:  

 

𝐻2
̅̅̅̅ = 𝑒√(𝑈2 + 𝑉2)   ℎ ; 

 

where, 

 

cos(2𝜔2𝛾2̅  + 𝜃) = [ℎ +
2𝜖1

𝑒√(𝑈2+𝑉2)  
𝛼2̅̅ ̅]/ 𝛼2̅̅ ̅      (60) 

 

𝜃 is determined by the relation (58). Solving (59), we obtain; 

 

𝛼2̅̅ ̅cos(2𝜔2𝛾2̅  + 𝜃) = ℎ +
2𝜖1

𝑒√(𝑈2 + 𝑉2)  
𝛼2̅̅ ̅ 

𝛼2̅̅ ̅  = h/[cos(2𝜔2𝛾2̅  + 𝜃) −
2𝜖1

𝑒√(𝑈2 + 𝑉2)  
] 

 

The parameter 𝛼2̅̅ ̅ will be unbounded if: 

 
2𝜖1

𝑒√(𝑈2+𝑉2)  
ǀ < 1;  or ǀ𝜖1ǀ < (𝑒√(𝑈2 + 𝑉2)  )/2;   (61) 

 

The inequality (61) determines the region of the parametric 

resonance in the ( 𝜇 − 𝑒)  plane in the neighborhood of 

equilibrium points corresponding to 𝜔2 = 1/2 which is given 

as:  

 

𝜇0 = 0.0285955 − 0.00654729(𝛽1 + 𝛽2) − 0.0523783𝛼 −
0.112941𝐴1 − 0.063836𝐴2 − 0.0294628𝐴3      (62) 

 

In the neighborhood of 𝜇0, let us take;    

 

𝜇 = 𝜇0 + ℎ so that  𝜇 − 𝜇0 = ℎ. 

 

Now expanding 𝜔2(𝜇) by Taylor’s theorem, we get; 

 

𝜔2(𝜇) = 𝜔2(𝜇0 + ℎ) = 𝜔2(𝜇0) + ℎ[𝑑𝜔2(𝜇)/𝑑𝜇]𝜇=𝜇0
, 
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That is 𝜖1 = (𝜇 − 𝜇0). [𝑑𝜔2(𝜇)/𝑑𝜇]𝜇=𝜇0
 

 

Now using equation (61), the region of parametric 

resonance is expressed as: 

 

ǀ(𝜇 − 𝜇0)ǀ <
𝑒(𝑈2+𝑉2)1/2  

2
[𝑑𝑤2(𝜇)/𝑑𝜇]𝜇=𝜇0

< 𝑒𝐵1;   (63) 

 

where, 

 

𝐵1 =
√(𝑈2+𝑉2)  

2
[𝑑𝑤2(𝜇)/𝑑𝜇]𝜇=𝜇0

       (64)                                       

 

Hence, the region of existence of parametric resonance is 

determined by the following inequality: 

 

𝜇0 − 𝑒 𝐵1 < 𝜇 < 𝜇0 + 𝑒𝐵1                (65) 

                                       

we have at 𝜔2 = 1/2 

                                    ǀ𝜔2
2 −

1

2
ǀ =

1

4
.   

 

Hence,  

 

𝜇2 − 𝜇 + 
1

27
 [1 −  

2

9
𝛽1 –  

2

9
𝛽2 –  

94

9
𝛼 −

119

6
 𝐴1 –  

61

6
 𝐴2

− 17𝐴3] = 0 

 

Solving the above equation as a quadratic in 𝜇, we get 

 

𝜇 =
1

2
±

1

6
√

23

13
[1 − 

4

207 
𝛽1  +  

2

9
𝛽2  +  

188

207
𝛼 +

119

69
 𝐴1  +

61

69
 𝐴2 +

34

23
𝐴3] 

 

Taking the negative sign, we get 

 

𝜇 = 0.0285955 − 0.00654729(𝛽1 + 𝛽2) − 0.0523783𝛼
− 0.112941𝐴1 − 0.063836𝐴2

− 0.0294628𝐴3 

 

Hence from equation (64), we get 

 

𝐵1 = 0.05641678587652361  − 2.0692243397659893A1
− 0.676545253188928A2
− 1.7314172901066136A3
− 0.9425222140171992𝛼
− 0.014794126415526613𝛽1

− 0.010493306202522411𝛽2 

 

Hence the boundary of the region obtained by (64) of the 

parametric resonance about 𝜔2 = 1/2  in the first 

approximation in e is given by: 

 

𝜇 = 0.0285955 − 0.00654729(𝛽1 + 𝛽2) − 0.0523783𝛼
− 0.112941A1 − 0.063836A2
− 0.0294628A3)
± e(0.05641678587652361 
− 2.0692243397659893A1
− 0.676545253188928A2
− 1.7314172901066136A3
− 0.9425222140171992𝛼
− 0.014794126415526613𝛽1

− 0.010493306202522411𝛽2) 

 

 
 

Figure 6. Bifurcation of 𝜇 − 𝑒 plane into stable and unstable 

regions for 𝐴1 = 𝐴2 = 0.001, 𝛽1 = 𝛽2 = 0.1, 𝑎 = 1 

 

 
 

Figure 7. Bifurcation of 𝜇 − 𝑒 plane into stable and unstable 

regions for 𝐴1 = 𝐴3 = 0.001, 𝛽1 = 𝛽2 = 0.1, 𝑎 = 1 

 

 
 

Figure 8. Bifurcation of 𝜇 − 𝑒 plane into stable and unstable 

regions for 𝐴3 = 𝐴2 = 0.001, 𝛽1 = 𝛽2 = 0.1, 𝑎 = 1 

 

 
 

Figure 9. Bifurcation of 𝜇 − 𝑒 plane into stable and unstable 

regions for 𝐴1 = 𝐴2 = 𝐴3 = 0.001, 𝛽2 = 0.1, 𝑎 = 1 
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Figure 10. Bifurcation of 𝜇 − 𝑒 plane into stable and 

unstable regions for 𝐴1 = 𝐴2 = 𝐴3 = 0.001, 𝛽1 = 0.1, 𝑎 = 1 

 

Now the stability of the triangular equilibrium points is 

analyzed by using the simulation techniques with 

Mathematica software. The plots in the 𝜇 − 𝑒  plane as a 

function of the different perturbing factors are plotted and the 

bifurcation of the plane into stable and unstable region is 

shown in Figures 6-10. 

 

 

5. CONCLUSIONS 

 

The stability of infinitesimal around the triangular 

equilibrium points under the elliptical restricted three body 

problem has been discussed, when all the participating bodies 

are oblate spheroid and the primaries are the source of 

radiation. The effect of the oblateness and radiation pressure 

effect the location and resonance stability of triangular 

equilibrium points of the elliptical restricted three body 

problem in particular case when e=0 at and near the resonance 

frequency 𝜔2 =1/2, which is analyzed from the graphical 

behavior of the triangular equilibrium points. In circular case 

near the resonance frequency, we have constructed a suitable 

normalization convergent Hamiltonian function and 

investigated the stability analytically and numerically due to 

oblateness and radiation of primaries up to the second order 

terms. The region of stability in the  𝜇  - 𝜔  plane has been 

clearly marked as shown in figures 1-5. As observed from the 

figures the stable region decreases with increase in the value 

of oblateness factor as well as radiation factor. However, the 

decrease is more prominent for the change in the value of the 

oblateness factors.  

We have investigated the stability of infinitesimal mass in 

the model of elliptical restricted three body problem as well 

near the resonance frequency 𝜔2 = 1/2. The method used by 

[10] has been adopted to investigate the stability of 

infinitesimal around the triangular equilibrium points. The 

Hamiltonian function of the perturbed system is expanded in 

the power of the generalized component of moments up to the 

second order. We have established a relation in 𝜇 − 𝑒 plane for 

determining the range of stability using simulation techniques 

with the help of mathematical software Mathematica 10. The 

region of stability of the linear problem in 𝜇 − 𝑒 plane has 

been plotted and stable and unstable region has been separated 

as shown in figures 6-10. The shaded region in the graphs 

shows the region of stability. From the plots, we observe that 

the region of stability, in the elliptic case, decreases very 

slightly with the increase in the values of the parameters: 

oblateness and radiation pressure. 
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