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The exponential growth of digital networks necessitates robust intrusion detection 

systems (IDS) to counter evolving cyber threats effectively. Machine learning offers 

adaptive solutions for these challenges. This study evaluates the comparative performance 

of Incremental Learning and Batch Learning methodologies for IDS using two datasets, 

UNSW-NB15 and CI-CIDS 2017. Three machine learning algorithms—Support Vector 

Machines (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF)—were 

assessed. Results indicate that Incremental Learning outperforms Batch Learning in 

dynamic environments. For instance, on the CI-CIDS 2017 dataset, SVM with 

Incremental Learning achieved a precision of 98%, recall of 97%, and an F1-score of 

97.5%, compared to Batch Learning, which obtained 95%, 93%, and 94%, respectively. 

These findings highlight Incremental Learning's adaptability to real-time threats despite 

higher computational demands. This research offers valuable insights for optimizing IDS 

using machine learning and proposes a framework for enhancing network security. 
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1. INTRODUCTION

Cybersecurity and network security concerns have grown 

significantly with the rapid expansion of the Internet and 

communication technologies and the increasing variety of 

network applications. Network security has become a critical 

issue as attack methods have also evolved. Key challenges 

include the sheer volume of data to be analyzed and the rapid 

emergence of novel attack techniques. 

Intrusion detection systems (IDS) play a pivotal role in 

identifying and mitigating cyber threats by monitoring 

network traffic to detect anomalies and cyberattacks [1]. 

However, intrusion detection faces new challenges, such as 

scalability, adaptability, and efficiency in the age of big data 

and rapidly evolving attack strategies. Previous studies have 

proposed several approaches to improve IDS performance 

using machine learning techniques. For instance, some works 

have focused on enhancing system performance through 

multi-stage frameworks, feature selection, and 

hyperparameter optimization [2]. Others, like the previous 

study [3], integrated chi-square feature selection with support 

vector machines (SVM) to improve accuracy and reduce false 

positives. Feature reduction techniques, such as CFS, IG, and 

GR, have also been utilized to enhance classifier efficiency [4]. 

Similarly, anomaly detection models for cloud computing 

environments have employed SVM with particle swarm 

optimization (PSO) to refine feature selection and improve 

classification results [5]. Incremental learning has emerged as 

a promising methodology in IDS, addressing challenges such 

as memory and computational requirements when handling 

large datasets. For example, researchers [6] demonstrated how 

incremental techniques could reduce training time and 

classifier size while maintaining performance comparable to 

batch learning. Other work [7], developed multi-classifiers 

based on incremental learning to improve training efficiency 

on massive datasets. Furthermore, distance-weighted outlier 

detection and domain-specific anomaly detection methods  

have been explored to detect hidden anomalies in cellular 

networks [8, 9]. Deep learning approaches have also been 

employed, such as the system proposed in previous study [10] 

using deep neural networks (DNN) and optimization 

algorithms to detect network intrusions in cloud environments. 

Two-layer anomaly detection models combining Naive Bayes 

and customized KNN classifiers have achieved reasonable 

detection rates with fewer false alarms, particularly for rare 

attack types like U2R [11].  

Despite these advancements, there is a limited comparative 

analysis of incremental learning and batch learning 

methodologies in the context of IDS. While incremental 

learning offers adaptability to new threats, it may incur higher 

computational costs, whereas batch learning is 

computationally efficient but slower to adapt to dynamic 

environments [12]. This study addresses this gap by 

investigating the comparative effectiveness of incremental and 

batch-learning methodologies in network intrusion detection. 

The main contributions of this work can be summarized as 

follows: 

·Comparing batch and incremental learning methodologies 

in IDS systems based on machine learning. 

·Evaluating the performance of several machine learning 
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algorithms using two recent datasets: CI-CIDS 2017 and 

UNSW-NB15. 

The remainder of this paper is structured as follows: Section 

2 introduces key concepts of intrusion detection and machine 

learning alongside a detailed review of relevant literature. 

Section 3 describes the methodology and model design for the 

comparative framework. Section 4 presents the experimental 

results, while Section 5 discusses the findings, highlighting the 

strengths and limitations of each methodology. Finally, 

Section 6 concludes the paper. 

 

 

2. BACKGROUND 

 

2.1 Intrusion detection system 

 

IDS is software that monitors and tracks malicious activity 

(attacks) on a single or networked computer to steal, censor, 

or tamper with network protocols. Due to their reliance on 

known malware signatures or patterns, traditional intrusion 

detection systems are only sometimes successful against novel 

and emerging threats. Nevertheless, machine learning may be 

applied to create IDS systems that are more effective and 

adaptable. IDS systems using machine learning can react to 

threats and learn from fresh data. They can now identify new 

and evolving malware with more effectiveness. Machine 

learning is a promising technology for creating IDS systems 

that are more effective and adaptable [13]. IDS can be 

categorized based on how it is deployed or what detection 

techniques it uses. In Figure 1, a classification taxonomy is 

provided [14]. 

 

 
 

Figure 1. Intrusion detection taxonomy 

 

Host-Based-IDS (HIDS) monitors system activity, such as 

file modifications and memory usage. Internal monitoring 

establishes whether a system has been mainly compromised 

depending on audit trails and system logs. This method relies 

on individual hosts keeping an eye on the gadget and 

identifying inappropriate use of the sources. Well-known 

HIDS examples include Tripwire and OSSEC [15]. 

Network-based IDS (NIDS) aids in detecting network 

security vulnerabilities in businesses by system administrators. 

Specification-based NIDSs specify the permitted activities and 

mark any other activity as prohibited. Behavior recognition 

NIDSs examine activity patterns and the environment for 

additional proof of attacks [16]. Regarding the detection 

mechanism, IDS are categorized into signature-based IDS and 

anomaly-based IDS. Signature-Based Intrusion Detection 

(SIDS) aims to identify known attacks with established 

patterns or signatures. Although signature-based IDSs 

frequently perform well on tasks involving detecting known 

attacks, they cannot identify new or zero-day attacks since 

their patterns are unknown [17]. On the other hand, anomaly 

detection-based intrusion detection (AIDS) is used to identify 

unknown attacks from pre-defined regular behaviors and 

detect zero-day attacks. However, they frequently perform 

worse than signature-based IDSs regarding known attack 

detection [17]. 

 

2.2 Machine learning (ML) 

 

Artificial intelligence (AI) studies how machines think and 

act like humans [18]. Machine learning (ML) is a collection of 

methods using mathematical formulas to find, investigate, and 

extract patterns from data automatically. Meaningful data can 

be extracted and acquired to aid machine learning algorithms 

in making defensible decisions and predictions.  

Several classification approaches use supervised machine 

learning techniques [19]. Each approach uses a different 

dataset and data classification method. These are some key 

machine-learning algorithms employed in classification 

problems. 

(1) Decision Tree (DT) 

One of the fundamental supervised machine learning 

algorithms, DT, applies a set of decisions (rules) to classify 

and predict the dataset. The model is organized like a typical 

tree, with nodes, branches, and leaves. Each node is an 

attribute or a property [14]. 

(2) K-Nearest Neighbor (KNN) 

One of the most straightforward supervised machine 

learning (ML) algorithms, KNN, uses the concept of "feature 

similarity" to determine the class of a given data sample. It 

determines a sample's identity based on its neighbors by 

measuring its distance from them [14]. 

(3) Support Vector Machine (SVM)  

The max-margin separation hyperplane in n-dimensional 

feature space is the foundation for the supervised machine 

learning method SVM. It is utilized to resolve both linear and 

nonlinear issues [14]. 

(4) Random Forest (RF)  

It is a supervised learning technique that classifies data 

using a group of decision trees. RF constructs numerous 

decision trees and blends them to produce a more precise and 

reliable prediction of class membership [20]. 

(5) Naïve Bayes 

The Nave Bayes (NB) and Gaussian Nave Bayes (GNB) 

algorithms utilize the Bayes theorem, assuming that the 

dataset's features are independent [21]. 

 

2.2.1 Incremental machine learning 

A machine learning technique in which an AI model 

gradually takes in all new information while maintaining what 

it already knows. It mimics how humans learn by continuously 

gaining new knowledge while preserving and expanding upon 

what they already know. When data arrives sequentially or 

storing all the data for processing is not practical, incremental 

learning becomes essential. Also, using the incremental flow 

of data to retrain a model and incrementally build up its 

knowledge over time is known as online learning. Like 

transfer learning, the ML model and its learning parameters 

are often kept in mind between incremental training iterations. 

To improve the previously inferred information, the stored 

model is incrementally trained over new data [22]. The 

incremental learning process is shown below in Figure 2 as 

adopted from previous study [23]. 
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Figure 2. Process of incremental learning in machine 

learning 

 

2.2.2 Batch machine learning 

Batch learning is sometimes referred to as offline learning. 

Only past learning allows a running model on a server or in 

the cloud to forecast the results of fresh data. However, if the 

model needs to be retrained, we should replace the previously 

trained model and train it again using both old and new data. 

The process of batch learning is shown below in Figure 3 [23]. 

 

 
 

Figure 3. Process of batch learning in machine learning 

 

2.3 Literature review 

 

Several studies have investigated various methodologies to 

enhance the performance of intrusion detection systems (IDS) 

performance, focusing on frameworks, feature selection 

techniques, and anomaly detection models. For instance, a 

multi-stage machine learning framework was proposed [2], 

integrating data augmentation, feature selection, and 

hyperparameter optimization to enhance system performance, 

with an emphasis on precision, true positive rate (TPR), and 

false positive rate (FPR). Similarly, previous research [3] 

combined chi-square feature selection with support vector 

machines (SVM) to improve accuracy and reduce false 

positives. In another study [4], a feature reduction 

methodology compared correlation-based feature selection 

(CFS), information gain (IG), and gain ratio (GR) using Naive 

Bayes classifiers on the NSL-KDD dataset, demonstrating 

improvements in efficiency and effectiveness. 

Anomaly detection systems tailored for specific 

environments have also been explored. For example, previous 

research [5] developed an anomaly-based IDS for cloud 

computing using SVM classifiers enhanced by Particle Swarm 

Optimization (PSO) for feature selection, evaluated on the 

NSL-KDD dataset using criteria such as detection accuracy 

and TPR. Another study [10] introduced the Anomalous 

Network Intrusions Detection System (ANIDS), which 

utilized deep neural networks (DNN) and optimization 

algorithms like genetic algorithms (GA) and simulated 

annealing (SAA) to optimize parameters for improved 

detection. 

Incremental learning approaches have emerged as a 

promising solution to address challenges like high memory 

and computational requirements. In previous research [6], 

incremental techniques reduced training time and classifier 

size while maintaining performance comparable to batch 

algorithms. Similarly, previous research [7] proposed a multi-

classifier system using Proximal Support Vector Machines 

(PSVM) combined with incremental learning, improving 

training efficiency on massive datasets. 

Other works have focused on supervised and hybrid 

anomaly detection models. For instance, previous research [8] 

proposed a K-Nearest Neighbor (KNN) algorithm that 

combines profile-based and domain-based techniques to detect 

hidden errors, introducing performance improvements through 

derived formulas and metrics. Additionally, previous research 

[9] explored a distance-weighted outlier detection algorithm 

combined with enhanced classification methods using 

Victorian support machines and smart agents. Furthermore, 

previous research [11] presented a two-layer anomaly 

detection model incorporating Naive Bayes and customized 

KNN classifiers with linear skew analysis for dimensionality 

reduction, achieving high detection rates with fewer false 

alarms, particularly for U2R attack scenarios. 

Despite these advancements, the comparative analysis of 

incremental learning and batch learning methodologies in the 

context of IDS remains limited. While incremental learning 

offers adaptability to new threats by incorporating new data 

dynamically, it often incurs higher computational costs. On the 

other hand, batch learning is computationally efficient but 

slower in adapting to rapidly evolving threats. This study 

addresses this gap by systematically comparing the 

effectiveness of incremental and batch-learning 

methodologies in intrusion detection to provide insights into 

their strengths and limitations. 

 

 

3. PROPOSED METHODOLOGY  

 

This section outlines the methodology used in this study, 

including data collection, preprocessing, model design, and 

evaluation. The proposed framework evaluates supervised 

machine learning algorithms for classifying activities as 

suspicious or non-suspicious. Four machine learning 

algorithms, Random Forest, Support Vector Machine (SVM), 

Naïve Bayes, and K-Nearest Neighbor (KNN), are applied 

independently to compare their performance. Incremental and 

batch learning approaches are evaluated separately to 

understand their strengths and weaknesses. Figure 4 provides 

an overview of the framework. 

 

 
 

Figure 4. The general framework of the proposed 

methodology 
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3.1 Dataset 

 

This study uses two widely recognized datasets: 

·UNSW-NB15 Dataset: Collected by the Cyber Range Lab 

in 2015, this dataset integrates contemporary network traffic 

and various attack behaviors, including Backdoors, DoS, 

Exploits, Reconnaissance, and Worms. It consists of 2.5 

million records with 49 features, and it is balanced, containing 

equal proportions of normal and attack logs. The dataset's 

richness and balance make it suitable for training and 

evaluating intrusion detection models [23]. 

·CI-CIDS 2017 Dataset: Developed by the Canadian 

Institute for Cybersecurity (CIC), this large-scale dataset 

comprises over 80 million records, each representing a 

network flow. It features both normal and malicious traffic and 

includes annotations for 15 types of attacks. With 81 features, 

the dataset provides extensive coverage of network behaviors, 

offering a robust basis for testing intrusion detection systems 

[24]. 

The datasets were selected for their balanced representation 

of attack and normal traffic, their scale, and the diversity of 

attack types. Thus, they are ideal for evaluating the 

generalizability and effectiveness of machine learning models. 

 

3.2 Data preparation 

 

To ensure that the data is suitable for analysis, 

preprocessing was performed in several stages: 

1. Data Cleaning: Noise, incomplete, and irrelevant data 

were removed or modified. Errors were documented, and the 

effectiveness of the cleaning process was assessed against 

predefined requirements to ensure high-quality input data. 

2. Feature Selection: Selecting relevant features is crucial 

for reducing computation time and improving model accuracy. 

The Binary Particle Swarm Optimization (BPSO) algorithm 

was used to rank features, with the SVM model as the fitness 

function. Features were retained if their value was set to 1 and 

removed if set to 0. This step minimized the impact of 

redundant features, improving detection time and 

classification accuracy. 

3. Data Annotation: Data was labeled as "suspicious" or 

"non-suspicious" to facilitate supervised learning. This 

labeling ensures that models learn to differentiate between 

normal and malicious activities effectively. 

4. Data Splitting: Datasets were divided into training and 

testing sets, with at least 20% of the data reserved for testing. 

This ensures that models are evaluated on unseen data, 

providing a reliable measure of their generalizability. 

5. Data Transformation: It converts data into a more 

acceptable format for analysis. Cleaning, filtering, and 

standardizing the data may be required. The process of 

transforming data ensures that the data is clean and consistent. 

It refers to defining a restricted range of attribute values that 

might aid in improving detection results and avoiding 

numerical issues during calculations. This step is completed to 

guarantee that the detecting system can effectively process the 

data. Many traits have values that vary widely among species 

and ranges. As a result, to properly process and analyze the 

data, these numbers must be restricted to a particular range. 

Normalization methods based on min-max. Normalization of 

the average range [0, 1] (from least to most): This function 

converts attribute values to a value between 0 and 1. This is 

accomplished by subtracting the lowest value from each and 

dividing the result by the range (highest value minus lowest 

value) as in Eq. (1).  

 

𝑋 =́
𝑥 − 𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴 − 𝑚𝑖𝑛𝐴
 (1) 

 

where, x and primes boldrimes are the normalized attribute 

value and the value to be normalized, respectively, before 

normalization, the minimum and maximum allowed values for 

attribute A are MinA and MaxA [10]. 

 

3.3 Model design 

 

The machine learning models were designed with two 

primary phases: 

·Training Phase: Models were trained on labeled data to 

learn the relationship between input features and their 

corresponding outputs. Parameters were iteratively adjusted to 

minimize prediction errors. 

·Testing Phase: Models were evaluated on unseen data to 

measure their generalization ability to new situations. This 

step highlights the models' robustness, precision, and potential 

limitations, such as overfitting or underfitting. 

 

3.4 Evaluation 

 

The models were assessed using standard evaluation 

metrics derived from the confusion matrix: 

(1) Confusion Matrix Metrics is to evaluate the models' 

ability to classify activities correctly, metrics such as the true 

positive rate (TPR), false positive rate (FPR), true negative 

rate (TNR), and false negative rate (FNR) were calculated. 

a. TP represents normal conduct that is accurately expected 

and given in Eq. (2). 

 

True Positive Rate=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

 

b. FP represents normal behavior that is incorrectly 

supposed to be abnormal and given in Eq. (3). 

 

False Positive Rate=
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (3) 

 

c. TN represents normal performance that is identified as 

correct and given in Eq. (4). 

 

True Negative Rate=
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (4) 

 

d. FN represents aberrant performance that is misdiagnosed 

as normal and given in Eq. (5). 

 

False Negative Rate=
𝐹𝑁

𝐹𝑁+𝑇𝑃
 (5) 

 

(2) Accuracy is a trained model's proportion of true 

predictions. It is derived by dividing the number of forecasts 

by the number of correct guesses and given in Eq. (6). 

 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6) 

 

(3) Precision is another metric showing the percentage of 

positive anticipated values. Precision aids in visualizing the 

machine learning model's dependability and classifying the 

model as positive and given in Eq. (7). 
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Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7) 

 

(4) Recall measures the proportion of positive cases 

correctly identified by the model and given in Eq. (8). 

 

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8) 

 

 

4. IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 

 

This section describes the model's implementation and 

experimental results. First, each learning strategy is evaluated 

separately. Then, batch and Incremental Learning strategies 

are compared. Confusion matrices assess the performance of 

each method and show how they differ. Table 1 shows the 

results of the tests carried out to evaluate the performance of 

the three models in batch learning and incremental learning on 

the UNSW-NB15 Dataset, whereas Table 2 reports the results 

on the CI-CIDS 2017 Dataset. Furthermore, Figures 5 and 6 

present the confusion matrices for the proposed models on 

both datasets. 

 

4.1 Results on UNSW-NB15 dataset 

 

As Table 1 and Figure 5 show, the evaluation of the UNSW-

NB15 dataset demonstrates high performance across all 

metrics (accuracy, precision, recall, and F1 score) for both 

batch and incremental learning approaches, with minor 

differences in their results. For instance, incremental learning 

achieved perfect recall (1.0) with Random Forest (RF), 

indicating its capability to detect all positive cases. Similarly, 

the performance of K-Nearest Neighbor (KNN) was 

comparable between both approaches, with minor deviations. 

Batch learning slightly outperformed incremental learning for 

Support Vector Machine (SVM) in precision and accuracy, but 

the difference was minimal. 

These findings align with prior studies, which highlight the 

strengths of incremental learning in dynamic environments 

where data evolves. Incremental learning’s ability to adapt to 

changes in network traffic patterns is particularly valuable for 

real-time intrusion detection systems, addressing challenges 

discussed in previous research [10]. On the other hand, batch 

learning demonstrated its computational efficiency and 

reliability when processing static datasets, consistent with 

findings in previous research [25]. 

From a practical perspective, the results suggest that both 

learning approaches are suitable for intrusion detection 

depending on the application scenario. For systems requiring 

real-time adaptability, incremental learning offers a clear 

advantage. However, batch learning may be more appropriate 

for offline analysis or environments where computational 

efficiency is prioritized. 

 

4.2 Results on CI-CIDS 2017 dataset 

 

As reported in Table 2 and Figure 6, the results on CI-CIDS 

2017 dataset further highlights the effectiveness of 

incremental learning, especially for algorithms like KNN and 

RF. Incremental learning with KNN achieved 99.51% 

accuracy, outperforming batch learning, which suffered from 

reduced accuracy and recall. This emphasizes incremental 

learning’s ability to handle large-scale datasets with diverse 

attack types effectively.  

For SVM, incremental learning achieved high accuracy 

(99.67%) and precision (99.17%), outperforming batch 

learning in recall (99.77% vs. 72.36%) and F1 score (99.67% 

vs. 63.56%). These results align with previous research [8, 9], 

emphasizing the importance of feature selection and dynamic 

updates for maintaining high classification performance in 

changing environments. 

The RF algorithm demonstrated robust performance under 

both learning strategies, achieving near-perfect metrics 

(accuracy: 99.96% for incremental and 99.72% for batch). 

This consistency underscores RF’s ability to handle 

imbalanced and high-dimensional datasets [2]. 

 

Table 1. Incremental and batch learning and batch learning on UNSW-NB15 dataset 

 
  Performance Measures 

Model Name  Accuracy Precision Recall F1 Score 

KNN 
Incremental learning 99.51 99.08 99.77 99.43 

Batch learning 93.06 93.19 93.06 93.08 

SVM 
Incremental learning 99.67 99.17 99.47 99.77 

Batch learning 99.98 80.11 72.36 63.56 

RF 
Incremental learning 99.96 100.00 99.91 99.96 

Batch learning 99.72 99.72 99.72 99.72 

 

Table 2. Batch and incremental learning metrics on CI-CIDS 2017 dataset 

 
  Performance Measures 

Model Name  Accuracy Precision Recall F1 Score 

KNN 
Incremental learning 0.98 0.99 0.99 0.99 

Batch learning 0.98 0.98 0.98 0.98 

SVM 
Incremental learning 0.98 0.99 0.99 0.99 

Batch learning 0.99 0.99 0.99 0.99 

RF 
Incremental learning 0.99 0.99 1.0 0.99 

Batch learning 0.99 0.99 0.99 0.99 

 

 

 

 

UNSW-NB15 Dataset 
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Batch Learning Incremental Learning 

  

  

  
 

Figure 5. Confusion matrices for the proposed batch and incremental models on the UNSW-NB15 dataset 

 

CI-CIDS 2017 Dataset 

Batch Learning Incremental Learning 
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Figure 6. Confusion matrices for the proposed batch and incremental models on CI-CIDS 2017 dataset 

 

4.3 Implications and contributions 

 

These findings contribute to the ongoing debate about the 

comparative effectiveness of incremental and batch learning in 

intrusion detection systems. The results provide several 

practical implications: 

Incremental Learning's Adaptability: Incremental learning's 

ability to maintain high performance while adapting to new 

data makes it particularly suitable for real-time intrusion 

detection systems, where attack patterns can change rapidly. 

Batch Learning's Stability: Despite its limitations in 

handling evolving data, batch learning remains a reliable 

option for scenarios involving static datasets or offline 

processing, where computational efficiency is critical. 

Algorithm-Specific Insights: While KNN and RF 

performed well under both learning strategies, SVM 

demonstrated a stronger dependence on the learning approach 

chosen. This emphasizes the need for careful algorithm 

selection based on the application’s requirements. 

 

4.4 Comparison with existing literature 

 

This study builds upon prior works by directly comparing 

batch and incremental learning strategies using two large-scale 

datasets. While previous studies [3, 5] primarily focused on 

the standalone performance of individual algorithms, this 

work highlights how different learning methodologies impact 

algorithmic effectiveness in various contexts. 

Moreover, the findings extend the literature by showcasing 

the adaptability of incremental learning, which has often been 

underexplored in large-scale, real-world datasets like CI-CIDS 

2017. The insights from this study offer practical guidelines 

for implementing machine learning-based intrusion detection 

systems tailored to specific operational needs. 

 

4.5 Practical applications 

 

The results have several practical applications in the field 

of network security: 

Real-Time Monitoring: Incremental learning can be 

leveraged for systems requiring continuous updates, such as 

intrusion detection in dynamic and large-scale networks. 

Resource Optimization: Batch learning can be employed 

in environments with limited computational resources where 

real-time adaptability is not critical. 

Hybrid Systems: A hybrid approach combining 

incremental and batch learning could balance real-time 

adaptability with computational efficiency, particularly in 

scenarios with fluctuating workloads. 

5. DISCUSSION 

 

In the UNSW-NB15 dataset, KNN showed better 

incremental and batch learning accuracy, with a precision rate 

0.99. Batch learning achieved the highest percentage of 55,519 

TP cases, while incremental learning classified a larger 

number of 118,195 TN cases without abnormal or malicious 

activity. Regarding false positive (FP) cases, batch learning 

classified more cases than incremental learning. 

Regarding SVM, batch learning was better in accuracy at 

0.99, while incremental learning showed 0.98. Both batch and 

incremental learning performed well in classifying true 

positive (TP) cases, with batch learning achieving 54,844 TP 

cases and incremental learning achieving 56,000 TN cases. 

Regarding RF, batch learning was 1.00 better in recall, while 

incremental learning showed a 0.99 performance. Batch 

learning identified many actual network attacks (TP) and 

classified many normal activities (TN) as attacks, resulting in 

unnecessary alarms. Incremental learning significantly 

reduced the number of false alarms (FP) by classifying only 

30 normal activities as attacks, while in batch learning, 91 

normal activities were classified as attacks. 

Regarding the CI-CIDS 2017 dataset, when learning 

incrementally, KNN performed better than batch learning 

(recall 0.989187 and F1-measure 0.989210), with recall 

(0.990397) and F1-measure (0.992272). KNN classified some 

negative cases as false positives by producing more false 

positives (3,701) with incremental learning compared to batch 

learning (828). Compared with batch learning, which 

produced 196 false negatives, KNN incremental learning 

produced 4370 false negatives, indicating that some positive 

cases were incorrectly classified. For SVM, incremental 

learning outperformed batch learning across parameters (F1 

measure, precision, and recall), with incremental learning 

being 0.99 accurate compared to batch learning, which was 

0.80 less accurate. On the other hand, incremental learning 

achieved a high recall rate of 0.99, but batch learning achieved 

a weak rate of 72%. Finally, the performance of batch learning 

in F-Score was 0.63, which is considered a very weak 

performance compared to the achievement of incremental 

learning with a higher performance rate of 0.99. RF achieves 

remarkable accuracy (0.9995 and 0.9998, respectively) and 

high F1 metrics (0.999470 and 0.999874) while maintaining 

good incremental and batch learning performance. 

Batch learning was less effective than RF incremental 

learning regarding recall (1.0 vs. 0.99) or F1 scale (0.99987 vs. 

0.999470). Both incremental RF and batch learning show false 

positive counts of (1604 and 1596, respectively), indicating 

their exceptional accuracy in identifying positive situations. 
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False negatives (0) are also produced by batch learning or 

incremental learning of the RF, indicating that all positive 

cases are accurately identified. If the dataset is static and does 

not show significant changes over time, incremental learning 

may not be the most efficient or cost-effective approach. This 

is especially true for the UNSW-NB15 -NB15 dataset, where 

both incremental and batch learning showed similar 

performance results. The main benefit of incremental learning 

is its ability to adapt to evolving data patterns. This advantage 

is not fully utilized if the data set remains relatively constant. 

Incremental learning algorithms also require more 

computational resources than batch learning, especially when 

dealing with large data sets. 

On the other hand, the CICID17 dataset showed a difference 

in performance between incremental learning and batch 

learning. The performance of incremental learning was better 

and more effective than batch learning, which means there is 

a great benefit and a big difference between using them. The 

CICID dataset shows the advantages of incremental learning 

in dynamic network intrusion detection scenarios. The ability 

of incremental learning to adapt to new data and reduce false 

positives makes it a promising approach for real-world 

cybersecurity applications. 

 

 

6. CONCLUSIONS 

 

This study evaluated batch and incremental learning 

approaches for classifying and detecting suspicious activities 

in intrusion detection systems (IDS) using machine learning 

(ML). The experiments utilized the UNSW-NB15 and CI-

CIDS 2017 datasets with SVM, KNN, and RF algorithms. 

While both learning methods demonstrated comparable 

performance across several metrics, incremental learning 

offered notable advantages in specific scenarios. For example, 

KNN in incremental mode showed a slight accuracy 

improvement, and RF achieved fewer false positives. On the 

CI-CIDS dataset, incremental learning significantly 

outperformed batch methods for KNN and SVM, achieving 

higher precision, recall, and F1 scores, highlighting its 

suitability for dynamic, evolving environments. 

KNN excelled over batch learning for specific tasks, while 

SVM performed better than ensemble methods. RF 

consistently achieved high accuracy and F1 scores, proving its 

versatility across both approaches. These findings underline 

that while batch learning remains efficient for static datasets, 

incremental learning is better suited to adapt to real-time or 

dynamically changing environments. 

Employing more advanced ML algorithms or hybrid 

techniques may provide new insights in future research. In 

addition, addressing the computational cost of incremental 

learning in scenarios with frequent data changes is another 

critical avenue. Furthermore, a metric can be employed to 

detect change points in the data. This is important because 

while effective in dynamic environments, incremental 

learning can be computationally expensive. Batch learning 

offers a more cost-effective baseline but might not adapt well 

to data changes. Therefore, changing point detection allows us 

to switch to incremental learning when necessary, ensuring 

continuous learning without missing data points. 
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