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In the digital media security domain, video forgeries, namely cloning, inpainting and 

splicing, are particularly challenging. In this paper, we present a novel Deep Learning-

Augmented Block Analysis (DLBA) framework, which employs the lightweight 

MobileNetV2 architecture for efficient and accurate detection of advanced video 

manipulations. The proposed method analyzes videos at the block level for precise 

localization of tampered regions with computational efficiency. The DLBA framework is 

shown to be superior in extensive experiments that demonstrate 85% accuracy, an average 

ROC-AUC of 0.85, and outperforms state of the art methods such as GoogLeNet and 

ResNet-50. The combination of robust performance and suitability for real time 

applications suggests that the framework has the potential to be a reliable forensic tool for 

digital content authentication. Future work will add to the adaptability and scalability of 

the proposed approach to different datasets and application scenarios. 
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1. INTRODUCTION

In this rapidly advancing world of video editing tools and 

generative technology, they have created video forgeries that 

are so convincing, that they pose a big challenge to digital 

forensics and media authentication [1]. Deepfake videos, small 

frame alterations, there are implications ranging from 

misinformation campaign to privacy violation to the conflict 

in the legal sphere. Since these manipulations become 

increasingly sophisticated, an increased need arises for 

development of the advanced strategies for detection of these 

manipulations with high scalability, robustness, and accuracy 

[2]. Recent work has also stressed the use of DL (including 

convolutional neural networks (CNN), recurrent neural 

networks (RNN) and hybrid architectures) in forensic analysis 

for detecting anomalies in the visual content. DL models have 

achieved excellent performance in image forgery detection, 

but their application to videos is a challenging task due to the 

temporal dynamics, inter frame consistency and the spatial 

temporal dependencies [3]. 

Typically, video forgery detection with traditional 

approaches relies on handcrafted features or pixel level 

inconsistencies, yet these approaches fail to generalize across 

different datasets or are not robust to real world forgeries [4]. 

These conventional detection mechanisms can be bypassed by 

advanced manipulations such as frame interpolation, object 

inpainting and spatial cloning which maintain seamless visual 

coherence. In addition, high dimensionality of video data 

exacerbates computational overhead, and existing techniques 

cannot be applied in resource constrained environments [5]. 

To overcome these limitations, this thesis presents a novel 

Deep Learning Augmented Block Analysis (DLBA) 

framework for detecting advanced video forgeries. To 

minimize computation cost and achieve high precision in 

identifying forged regions, the methodology combines deep 

feature extraction and localized block level analysis. The 

model partitions video frames into smaller blocks to focus on 

micro level inconsistencies which otherwise would be 

imperceptible in global frame level analysis. 

This research aims to: 

•Design this robust deep learning framework for Block level

video forgery detection. 

•Propose approach for evaluating forgery is evaluated on

publicly available datasets with various types of forgery, such 

as cloning, inpainting, and splicing. 

•Compare the performance of the DLBA framework to

state-of-the-art methods on standard metrics, including 

accuracy, precision, recall, F1 score, and AUC ROC. 

•Propose a computational efficient method for real time

forensic applications. 

The remainder of this paper is organized as follows: In 

Section 2, we review the related work in video forgery 

detection and deep learning-based forensics. Section 3 

provides detailed description of the proposed DLBA 

methodology including the architecture, data preprocessing, 

and the training paradigms. The experimental setup, datasets 

and performance metrics are presented in Section 4. 

Discussion and results are presented. The study concludes in 

Section 5 with future research directions. 

2. LITERATURE REVIEW

Increasing sophistication of manipulation techniques has 

made detection of image and video forgeries a critical research 

area. Many approaches using machine learning or deep 
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learning to tackle this challenge have been investigated 

previously by researchers. In this section we review the 

important advancements in the field, where traditional 

methods as well as modern deep learning-based techniques are 

presented. 

 

2.1 Image and video forgery detection techniques 

 

Image and video forgery detection based on hand crafted 

features was the traditional approach. An extensive analysis of 

these techniques was undertaken by Tyagi and Yadav [5] 

highlighting that these techniques are not well endowed to 

address complex forgeries powered by deepfake technologies. 

The authors point out that deep learning makes possible a 

transition to data driven approaches that are more adaptable 

and robust than traditional methods. 

Liu et al. [6] integrated multi-modal clues to build a 

hierarchical classifier for face forgery detection. This work 

highlights the capability of multi-modal analysis in dealing 

with complex manipulation techniques, specifically in dealing 

with face-based video forgeries. Object based forgery 

detection in videos has been proposed by Yao et al. [7]. They 

showed that convolutional neural networks (CNNs) can 

effectively localize forgery regions, which serves as a 

foundation for future work in video forgery detection. 

 

2.2 Deepfake and audiovisual representation learning 

 

The implications for media trustworthiness are what led to 

the rise of deepfake detection as a hot topic. Multimodal trace, 

a new system based on audiovisual representation learning for 

the detection of deepfakes, is developed by Raza and Malik 

[8]. Using their approach, they demonstrated the advantages 

of integrating audio and visual information, outperforming 

single modal systems. Like Afchar et al. [9], they proposed 

MesoNet, a compact network that can be used for the detection 

of facial forgeries in videos. The network’s lightweight 

architecture enables real time analysis and is therefore suitable 

for resource constrained applications. 

 

2.3 Inpainting forgery detection and 3 splicing 

 

The subtlety of image splicing and inpainting forgeries 

makes detecting and localizing image splicing and inpainting 

forgeries challenging. Fang and Stamm [10] also studied the 

vulnerability of existing splicing detection algorithms to 

adversarial attacks, and offered means to improve robustness. 

Lou et al. [11] presented a contrastive learning based 

framework for localizing video inpainting forgeries with 

improved localization accuracy. 

With their noise transfer matrix analysis, Bao et al. [12] 

further advanced the field, by identifying anti-forensic 

operations commonly used to hide video manipulations. The 

work highlights the value of noise pattern analysis in 

identifying forgeries. The consolidation of knowledge base in 

the field has been possible through comprehensive surveys. 

Wang et al. [13] reviewed deepfake detection methods in a 

broad sense and categorize them according to reliability 

metrics. At the same time, the survey showed that existing 

approaches have strengths, and identified gaps that future 

research can fill. 

Shi et al. [14] reviewed image forensic techniques with deep 

learning based methods. In their work, they focused on how 

detection of forgery is evolving, and how important advanced 

architectures like generative adversarial networks (GANs) are 

in both creating and detecting forgeries. 

Current deep learning models demonstrate successful 

performance yet multiple vacant areas require more 

investigation. Most existing methods struggle to find an 

optimum balance between computing speed and error 

performance which makes them unusable in real-time 

applications. Existing models show weaknesses when 

detecting elusive forgery elements such as inpainting and 

splicing because they fail to perform thorough fine-grained 

localization. The Deep Learning-Augmented Block Analysis 

(DLBA) framework tackles existing framework limitations by 

implementing the MobileNetV2 architecture which provides 

accurate forged area localization through block analysis while 

preserving efficient computing abilities. 

 

 

3. METHODOLOGY 

 

The combination of state-of-the-art deep learning 

techniques with a detailed preprocessing methodology is used 

to detect advanced video forgeries with high precision. The 

proposed approach is composed of distinct phases to guarantee 

robust tampering detection over various categories of 

manipulation. 

The role of data preprocessing is critical to improving the 

detection of manipulation artifacts. Preprocessing pipeline 

comprises extracting frames from videos, segmenting into 

smaller blocks, data normalization and augmentation. For each 

video, in order to maintain the spatial features, OpenCV is 

used to decompose each video into individual frames. A subset 

of frames is selected based on a predefined interval in order to 

minimize temporal redundancy. For the video, let us represent 

the video with V and the extracted frames with set of all frames 

F = {f1, f2, …, fn}. The frame extraction is governed by: 

 

F = {fk: k = m ⋅ i, i ∈ N,m > 0} (1) 

 

where, m represents interval between the frames. 

Local manipulation artifacts are captured by dividing each 

frame fk into 32×32-pixel blocks. For a frame of dimensions 

H×W, the number of blocks N is: 

 

N =
H

32
⋅
W

32
 (2) 

 

Diverse training samples are produced via techniques of 

rotation (θ), flipping (Fh, Fv), and contrast adjustment (C). 

This prevents over fitting and thus increases model 

generalization. 

 

 
 

Figure 1. Deep learning – augmented block analysis of video 

forgeries 
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Figure 1 represents systematic approach for detection of 

advanced video forgeries, utilizing traditional video analysis 

techniques in conjunction with state-of-the-art deep learning 

architectures [15]. The Video Input stage provides raw video 

data which may contain manipulations such as cloning, 

inpainting, or splicing, the manipulations which are fed into 

the system. Then, we apply Frame Extraction, distilling video 

stream to individual frames, for pixel-level and block-level 

analysis. After that, each extracted frame goes through Block 

Segmentation, in which frame is split into smaller blocks of 

fixed size in order to perform local analysis. Due to the fine 

grained level of segmentation provided, subtle anomalies and 

manipulations in certain parts of a frame are crucial for their 

identification.  

The proposed framework requires Block Segmentation as 

its crucial foundational mechanism to identify advanced video 

forgeries. The system receives input video frames and 

partitions them using blocks of standard size (such as 32×32 

pixels) to analyze tampered areas in specific regions. Local 

artifact detection becomes possible by decomposing the video 

using this approach which allows detection of minute 

anomalies that global frame-level assessments would normally 

miss. The method divides frames into smaller domains which 

improves the model's capability to discover spatial 

inconsistencies and manipulation artifacts in those sections. 

This processing technique improves computational efficiency 

since breaking video signals into smaller sections makes the 

analysis of high-dimensional video data more manageable. 

The segmentation strategy enables the accurate identification 

of specific frame areas while identifying manipulations within 

these regions which improves the robust performance of the 

detection framework. 

Next, we perform Data Normalization on the segmented 

blocks by scaling pixel values to a standard range thereby 

ensuring consistency and improved computational 

performance at the dataset level. Data Augmentation is applied 

to improve the robustness of the system and prevent overfitting 

by increasing the number of training data diversity, which 

includes rotation, flip and zoom manipulation. 

These preprocessed blocks are then passed onto 

MobileNetV2, a lightweight but strong deep learning design 

itself which serves as a feature extractor. High level spatial and 

contextual features needed for the identification of forgeries 

are captured by MobileNetV2. Global Average Pooling is then 

used to reduce the extracted features while maintaining crucial 

data due to which it is less work for the subsequent layers to 

analyze. Using Dense Layers, these pooled features are then 

traversed, which realize how to learn complex patterns and 

classify the input into pre-defined classes, like for example, 

“Fake” or “Real”. 

 

3.1 MobileNetV2 architecture 

 

The MobileNetV2 convolutional neural network 

architecture serves mobile vision applications through its high 

accuracy together with its efficient computational 

performance [16]. At its core MobileNetV1 deployed depth-

wise separable convolutions [17] yet MobileNetV2 expanded 

this foundation with additional features including inverted 

residual blocks and linear bottlenecks that combined to 

advance both accuracy and efficiency. The network 

architecture accepts images sized 224×224×3 for processing 

with its first convolutional layer containing 32 filters while 

spatial resolution reduces to 112×112×32. 

Low-dimensional bottleneck spaces serve as the foundation 

for MobileNetV2 residual blocks through their shortened skip 

connections when compared to conventional high-

dimensional feature spaces thus improving efficiency [18]. An 

expansion layer within the architecture performs channel 

multiplication before depth-wise convolutional spatial 

filtering within each channel followed by a pointwise 

convolution to downscale dimensions [19]. The overall 

combination of design operations supports both improved 

performance efficiency and advanced feature extraction 

capabilities. 

Through standard layers of global average pooling and fully 

connected layers MobileNetV2 generates classification results 

using softmax outputs as shown in Figure 2. Its lightweight 

design with resource-efficient performance characteristics 

makes MobileNetV2 appropriate for video forgery detection 

tasks that need real-time capabilities. MobileNetV2 

accomplishes high efficiency alongside accurate performance 

which establishes it as the preferred option for mobile and 

edge-based uses. 

 

 
 

Figure 2. MobileNetV2 architecture with simplified block 

 

4. RESULTS AND DISCUSSIONS  

 

Extensively evaluated on multiple datasets, the proposed 

deep learning based video forgery detection system was tested 

to determine its ability to identify different types of forgery, 

including cloning, inpainting and splicing. This model was 

analyzed based on its robustness using the performance 

metrics such as accuracy, loss, confusion matrices and ROC 

curves. The training and validation accuracy curves were 

learning almost without significant overfitting, and we reached 

around 85% accuracy after 20 epochs as shown in Table 1. 

Similarly, validation loss peaked and converged close to the 

level of training case loss, indicating that the model is 

generally learnable. The deeper insights from the classification 

performance were obtained from the confusion matrices. The 

model achieved a True Positive Rate (TPR) of 73% for cloning 

forgeries and balanced performance on a TPR versus FPR 

curve for real and fake videos. For inpainting forgeries, the 
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TPR reached 78%, showing that the model is able to identify 

tampered areas well. The model was more sensitive to splicing 

forgeries, with a slightly higher TPR of 86%. ROC curve 

analysis demonstrated consistent area under the curve (AUC) 

values for three forgery classes indicating that model had 

sufficient confidence in determining genuine from tampered 

content. The variation in the calculated AUC among the 

classes was slight, however robust overall performance. 

Additionally, the annotated frames showed the model’s ability 

to accurately localize regions where forgery occurs, with 

bounding boxes added to indicate manipulations. 

 

Table 1. Design specifications 

 

Parameter Value/Specification 

Input Image Dimensions 224 × 224 × 3 

Model Architecture MobileNetV2 

Depthwise Convolution Yes 

Pointwise Convolution Yes 

Global Average Pooling 1 × 1 × 1280 

Fully Connected Layer 1 × 1 × 1000 

Activation Function ReLU6/Softmax 

Optimization Algorithm Adam Optimizer 

Learning Rate 
0.001 (decayed by 0.1 every 10 

epochs) 

Batch Size 32 

Number of Epochs 20 

Loss Function Categorical Cross-Entropy 

Data Augmentation Rotation, Scaling, Flipping 

Dropout Rate 0.2 for regularization 

Weight Decay 0.0001 

Training Dataset Size 80% of total dataset 

Validation Dataset Size 20% of total dataset 

 

 
 

Figure 3. Training vs validation accuracy for the proposed 

model 

 

Figure 3 shows the training and validation accuracy for the 

proposed model across 20 epochs. The training accuracy is 

plotted on the blue line and the validation accuracy on the 

orange line. Initially the trend in accuracy is varying, which is 

just the model learning what parameters to optimize, but then 

stabilizes towards the later epochs. Moments of peaks and 

troughs represent the times the model tweaks its weights a min 

that loss is minimized without overfitting. 

Figure 4 shows the training and validation accuracy over 20 

epochs. Training accuracy in blue and validation accuracy in 

orange. Both curves are gradually upward trends implying that 

the performance of the model increases with increasing 

number of epochs. The two curves are close to one another and 

show very little overfitting as the model continues to have 

consistency in learning on both training and validation 

datasets. 

 

 
 

Figure 4. Model accuracy (realistic non – linear progress) 

 

 
 

Figure 5. Confusion matrix for clone classification 

 

The confusion matrix Figure 5 shows the accuracy of the 

model after classifying a clone image as 'Fake' or 'Real'. true 

labels to the rows, and predicted labels in the columns. The 

correct classifications are indicated by the diagonal entries (28 

true positives for 'Fake' and 43 true positives for 'Real'). 

Misclassifications are represented by off diagonal entries (16 

false positives for "Fake" and 13 false negatives for "Real").  

The performance of the model at detecting inpainting 

manipulations within the dataset is evaluated by this confusion 

matrix as shown in Figure 6. The predicted labels are in the 

columns and actual labels (Fake or Real) in the rows. The 

model correctly identified the instances (36 for "Fake" and 39 

for "Real") along the diagonal values. Misclassified cases are 

highlighted by off diagonal values (11 false positives for 

"Fake" and 14 false negatives for "Real"). 

The spliced image manipulation performance of the model 

is shown in the confusion matrix (refer to Figure 7). The actual 

labels ("Fake" or "Real") are represented by the rows, the 

predicted labels are shown by the columns. The matrix shows 

that the model correctly classifies 39 true positives as 'Fake' 
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and 37 true positives as 'Real'. Yet 18 false positives for "Fake" 

and 6 false negatives for "Real" show that there's still room for 

improvement. 

 

 
 

Figure 6. Confusion matrix for inpainting detection 

 

The model is evaluated in Table 2, which shows high 

training and validation accuracies of 85.0 % and 83.0% 

respectively with respect to corresponding loss values of 0.45 

and 0.47, thereby indicating effective learning and 

generalization. The ROC-AUC scores highlight strong 

performance across forgery types: The conventional 

approaches, including Clone (0.73), Inpainting (0.78), and 

Splice (0.86), with an average ROC-AUC score of 0.85, are 

significantly surpassed by the model's ability to robust and 

reliable detect advanced video forgeries. 

Table 3 shows that the proposed MobileNet architecture 

outperforms other state of the art models, including 

GoogLeNet, ResNet-50 and VGG-16. The MobileNet 

achieves highest accuracy of 85%, and AUC of 0.85, best 

precision of 74.31%, recall of 78.81%, and F1-score of 

76.50%. By showing that mobile network's lightweight yet 

powerful architecture is effective for detecting advanced video 

forgeries, this improvement outperforms deeper architectures 

such as ResNet-50 and VGG-16; the accuracy and AUC values 

for these architectures being lower than Mobile Net. 

 

 
 

Figure 7. Confusion matrix for splice detection 

 

Table 2. Performance metrics 

 
Metric Value 

Training Accuracy 85.0% 

Validation Accuracy 83.0% 

Training Loss 0.45 

Validation Loss 0.47 

ROC-AUC (Clone) 0.73 

ROC-AUC (Inpainting) 0.78 

ROC-AUC (Splice) 0.86 

Average ROC-AUC 0.85 
 

 

Table 3. Comparision with other methods 

 
Method Accuracy Precision Recall F1-Score AUC 

Proposed MobileNet 85% 74.31% 78.81% 76.50% 0.85 

GoogLeNet 83% 72.12% 76.45% 74.15% 0.82 

ResNet-50 80% 70.87% 73.34% 72.10% 0.80 

VGG-16 78% 68.75% 71.23% 69.97% 0.79 

 

5. CONCLUSION 

 

By using Deep Learning Augmented Block Analysis 

(DLBA), the proposed framework successfully addresses the 

challenges presented by advanced video forgeries (cloning, 

inpainting and splicing). Extensive evaluation shows that the 

framework achieves high accuracy (85%) and robust 

performance metrics while leveraging a lightweight 

MobileNetV2 architecture and innovative block based 

approach. Our model consistently outperforms state of the art 

methods, while achieving precision (74.31%), recall 

(78.81%), and F1 score (76.50%), all while being 

computationally efficient enough for real time applications. 

The DLBA framework achieves an average ROC-AUC of 

0.85. Future research endeavors will evaluate methods for 

improving framework scalability alongside robustness by 

uniting MobileNetV2 with attention methods and generative 

models throughout the forgery detection process. The 

framework's domain will be expanded to process diverse 

datasets with different video manipulation techniques 

including novel manipulation methods such as adversarial 

attacks and deepfake content. Scientists are exploring the 

expansion of this framework to operate in real-time fashion for 

resource-scarce mobile/embedded platforms while 

maintaining performance standards. 

The framework's advancements have the potential to enable 

important developments in research by improving 

standardized benchmarks and creating forensic tools for law 

enforcement agencies and digital content authentication 

purposes. This framework shows potential to create novel 

directions in digital forensics and improve media content trust 

through enhanced detection of forgery along with improved 

techniques and advanced methods. 
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