
Optimizing Malware Detection and Classification in Real-Time Using Hybrid Deep

Learning Approaches

Yaseen Ahmed Mohammed Alsumaidaee1* , Mustafa Mahmood Yahya2 , Abdulelah Hameed Yaseen3

1 Department of Computer Science, Al Imam Al Adham University College, Kirkuk 36015, Iraq
2 Department of Technical Engineering Mechatronics, Technical College of Engineering, Al-Kitab University, Kirkuk 36015,

Iraq
3 Department of Petroleum Engineering, Technical College of Engineering, Al-Kitab University, Kirkuk 36015, Iraq

Corresponding Author Email: eng.yassin.ahmed@imamaladham.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.150115 ABSTRACT

Received: 6 November 2024

Revised: 27 December 2024

Accepted: 18 January 2025

Available online: 31 January 2025

Malware detection and classification are critical for ensuring system security in real-time

applications. Conventional approaches may not be optimized to combine precise results

with low time consumption and become a problem when it comes to processing large

volumes of different malware samples in a real-time setting. The general framework for

this paper is to introduce a new detection and classification method that uses deep learning

(DL) models to detect and classify malware. We developed and tested two models: the

static convolutional neural network-long short-term memory (CNN-LSTM) model and

the dynamic CNN 1D-LSTM model in this work. The models achieved an accurate rate

of 99%. Static-CNN-LSTM was able to classify the malware based on static analysis. At

the same time, the proposed dynamic (1D-CNN-LSTM) model got the best results, with

a 100% success rate, by gathering behavioral data. This means that it can accurately

classify even new and complicated dynamic malicious program variants. Therefore, this

study's results show that using a hybrid approach raises the rate of detection while also

meeting the real-time processing needs of systems with a lot at stake that need to perform

well. Our approach represents a substantial improvement in malware detection, delivering

a more efficient and versatile response to contemporary cyber threats.

Keywords:

malware, 1D-CNN, 2D-CNN, LSTM, hybrid

analysis, dynamic analysis, static analysis,

deep learning

1. INTRODUCTION

This rapid growth of the interconnected systems and devices

in contemporary society means that malware and other cyber

threats move fast across the domains of individuals and

enterprises as well as state-critical facilities [1, 2]. Malware,

viruses, worms, ransomware, and trojans are programs

designed to cause harm, steal information, and give

unauthorized access to data [3, 4].

Therefore, as these threats evolve, the landscape of

antimalware defense becomes increasingly complex [5]. The

previous techniques of threat detection are constantly failing

to cope with the modern malicious programs leveraging

methods such as polymorphism, obfuscation, and dispersing

mechanisms to avoid identification [6-8].

That's why the limitations of traditional approaches to

combating malware have led to the emergence of new

methodologies [9, 10].

Essentially, signature-based techniques are highly efficient

in identifying viruses, but they become ineffective when new

or modified viruses are present [11].

Heuristic approaches try to solve this problem by

concentrating on the behavior indicators but many of them

produce numerous false alarms and the extensive time

demands when real-time monitoring and control are needs

across a large network. Automated recognition of malware

patterns and behavior by incorporating Machine learning (ML)

into the existing methods has advanced the method’s ability to

identify malware [12, 13].

Nevertheless, it has become apparent that highly

sophisticated malware and the constant requirement for

immediate responses necessitate the application of deep

learning (DL) approaches for pattern identification concerning

extraordinary patterns and variability to other categories,

which could not previously be applied [14-16].

CNN and long-short-term memory (LSTM) networks are

commonly used DL models that appear to possess high levels

of efficiency in the detection of malware. CNNs excel at

extracting spatial features, making them more suitable for

analyzing static malware features like binary file patterns or

opcode sequences. LSTMs concentrate on sequential data,

offering a temporal perspective on the dynamic behavior of

malware over time [17, 18].

But building a system that entails only one type of DL

model may not fully provide an overall view of the nature and

behaviors of the malware-especially in real-life detection since

the rate of accuracy and speed are both of essence [19, 20].

Therefore, malware detection has been one of the main

areas in cybersecurity studies for a long time already, because

traditional approaches like signature-based detection and

International Journal of Safety and Security Engineering
Vol. 15, No. 1, January, 2025, pp. 141-150

Journal homepage: http://iieta.org/journals/ijsse

141

https://orcid.org/0000-0002-0881-5496
https://orcid.org/0009-0005-0646-4097
https://orcid.org/0000-0003-0712-3807
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.150115&domain=pdf

heuristic methods are not able to respond to the emerging

challenges of modern malware effectively [21].

Given that modern threats are complex and can avoid fresh

detection, scholars conduct ML and DL to enhance the

accuracy and flexibility of approaches [22]. In this section we

will present a critical discussion of the previous research with

a focus on recent developments in the paradigm of ML and DL,

hybrid models, as well as their application in real-time

malware detection.

1.1 Machine learning for malware detection

The initial attempt at employing ML for malware detection

was categorized by the use of supervised learning algorithms

such as decision trees (DT), support vector machines (SVMs),

and k-nearest neighbors (KNN). These methods attempted to

classify malware according to traits derived from its source,

binary form, or execution profile [23, 24].

But while used often with success for detection of known

threats, they were far less effective at detecting polymorphic

malware and displayed high false positive rates.

Wadkar et al. [25] investigated the evolution of malware

families by employing feature ranking with linear SVMs

weights to analyze the change in malware features over

different time points. Though this method of classification is

very efficient, it involves mostly feature selection, and it tends

to overcomplicate data because of linear SVMs [26].

Furthermore, Wong et al. [27] implemented transfer

learning on Shuffle Net and DenseNet-201, incorporating

features from all layers and freezing the network to minimize

overfitting. The last layer for classification is an optimal error

correction output coding (ECOC) SVMs ensemble where

three different configurations can be used, such as: one-

against-one.

The One vs. One (OVO) and All (OVA) configurations aim

to address issues related to computational complexity and data

separation with non-linear margins. As for parameter

searching, the grid search method with discrete values is

introduced. The performance of the proposed model is

evaluated on various datasets (Malimg, MaleVis,

VirusMNIST, Dumpware (10). However, the use of SVM for

the final classification can occasionally increase the

complexity of the model and incur computational overhead

when turning the SVM parameters.

Moreover, Babbar et al. [28] proposed a ML framework for

Android malware detecting IoT device attacks. Therefore, the

aforementioned framework utilizes static analysis techniques

to identify disguised Android malicious apps and suggests

restricting them due to their potential threat to users' privacy

and system integrity. Training and testing are performed over

more than ten thousand mobile Android applications using ML

algorithms like KNN models, Naive Bayes, decision trees, and

support vector machines.

The given KNN model results in a prediction accuracy of

93% with a precision 95% recall 90% and an F1 score of 92%.

However, it could be relatively slightly effective against

thorough malwares that use a number of small tricks, like

obfuscating their code, since it makes the model not wholly

tough.”

On the other hand, proposes ML algorithms for Malware

detection particularly, KNN enhanced with Firefly

Optimization Algorithm (FOA) [29]. In this study, the author

uses the developed MalMem-2022 dataset to investigate

effects of parameter tuning and feature selection on

classification. The results show the significance of the

proposed technique, which enhances the accuracy, the recall,

the precision, and the F1-score with up to 3.59% value in KNN

with FOA.

The results presented in this study stress the necessity of the

choice of the KNN parameters and use of FOA for the

improved feature selection., Nevertheless, the approach may

prove to experience difficulties with more intricate malware

types, which may hinder its application in general.

Qasem et al. [30] described a detection system for

distinguishing PDF files that are harmless from those that are

malicious, in the current security threat by hidden malware in

PDF files. From a precise AdaBoost decision tree system

trained with best hyperparameters, the performance of the

system is tested on the Evasive-PDFMal2022 dataset. The

findings illustrate higher levels of model prediction accuracy

of about 98.84%.

However, the approach of the certain dataset’s usage may

be inadequate in terms of stimulating diversification or

uncertainty of new threats in malware.

Mat et al. [31] explained that the proliferation of mobile

malware is a growing concern, prompting this work to advance

an Android malware detection system that utilizes permission

features under the Bayesian classification framework. The

permission features are extracted using static code analysis

from a pool of 10,000 samples from the AndroZoo and Drebin

databases. Possible choices of feature selection depending on

different algorithms are excluded, though information gain

and chi-square are used to improve detection rates.

For malware detection using permission features, the

proposed system reaches the maximum detection rate of

91.1%. However, the described approach has potential

drawbacks, especially because the system can rely only on

static analysis, so more advanced malware that tends to bypass

permission checks may become a significant issue.

Additionally, the existing static ML based model faced

difficulties in identifying new versions of malware that had

some ability to transform themselves into other forms in an

effort to avoid being identified, and the dynamic ML models

were often large and time-consuming in terms of performance.

Since the ability of models to calculate static and dynamic

parameters was imperative but with comparatively fewer false

positives, the researchers turned to DL mechanisms proficient

in feature extraction and generalization.

1.2 Deep learning approaches

The adoption of DL models, specifically Convolutional

Neural Networks (CNNs) and Recurrent Neural Networks

(RNNs) such as LSTM, VGG16, and Gated Recurrent Unit

(GRU) networks, marked a new phase in malware detection

research [32, 33]. CNNs have proven effective for static

malware analysis due to their strength in identifying patterns

within structured data, such as binary files or opcode

sequences.

Bakhshinejad et al. [34] described a malware detection

system, where they use a parallel CNN model that performs

feature extraction, and thus does not require a complex feature

selection process. Due to the work with raw bytes of

executables, the proposed model demonstrates high accuracy

in recognizing malware and exemplifies the superiority of a

DL approach over the ML one.

However, it uses raw byte data which, although offers

flexibility and simplicity, may reduce the ability to analyze

142

intermediated patterns and adapt to changing malware patterns.

On other side, Yeboah et al. [35] proposed an automatic

nature feature extraction by using the 1D CNN-the approach

is applied to Android malware detection. The model operates

on n-grams of static opcode sequences which is semantically

embedded and aimed to detect the existing malware in to- from

binary files.

It applies several feature sets of n-gram opcode sequences

and their predictions are obtained through weighted voting. the

model can with a 98% positive predictive value and 97%

sensitivity. Although the 1D CNN has low complexity,

detection performance relies on the dataset’s similarity; it

might not generalize to a diverse set of malwares.

Furthermore, Jha et al. [36] introduced an effective RNN

model that uses network temporal sequences to classify

malware. This work evaluates the effectiveness of various

hyperparameters by determining which step sizes have a

greater impact on the classification of the RNN-based malware

detector than their input sizes.

Three feature vectors are considered, of which one is hot

encoding, the second one is random, and the third one is

word2Vec. The performance metrics used are AUC and

variance. The presented results show that the proposed

algorithm with Word2Vec in the form of the feature vector

based on the Skip-gram model of context words has the

maximum AUC and optimal stability and is therefore the most

effective. However, using specific feature vectors can be

problematic when applying the model across various datasets

of malware.

Moreover, Zhou et al. [37] introduced a more advanced

GRU model known as SIMGRU targeting Android malware

detection based on static analysis. They suggest three versions:

InputSimGRU, HiddenSimGRU, and InputHiddenSimGRU

based on the clustering similarity. Experimental outcome

indicates that all three models outperform the basic GRU

model and other detection techniques, proving that similarity

in static analysis is useful. However, this approach can be

unfavorable for complicated and evolutive malware that

should modify functionalities in the course of their execution.

Deepa et al. [38] presented a method for the identification

and categorization of malware utilizing DL and image-based

characteristics. Traditional signature-based techniques can’t

handle new types; therefore, the authors use the Malimg

dataset, which contains images of malware. The authors first

convert malware samples into byteplot grayscale images, after

which they extract features using a VGG16 pre-trained model.

These features shape classifiers such as SVM,

XGBoost, DNN, and Random Forest to detect malware

families. The results prove the high accuracy of the work; they

used samples from 25 families and analyzed 9,339 samples in

total. However, the use of image-based representations may

not be efficient in handling non-confirming malware or

obfuscation techniques.

1.3 Hybrid deep learning models

As it was mentioned, only one type of model may not be

sufficient enough to cover all the features of malware;

therefore, many recent works introduced a combination of

CNNs and LSTMs for both static and dynamic analyses. They

both enhance both the accuracy and the robustness of the

detection mechanisms, and a combination of the two-a ‘hybrid’

approach-allows for doing a thorough analysis of file structure

combined with behavioral data [39].

For example, Jeon et al. [40] presented HyMalD, a hybrid

IoT malware detection framework that combines Bi-LSTM

and SPP-Net, using both static and dynamic analysis to target

obfuscated malware. HyMalD gathers static features from

opcode sequences and dynamic aspects from Application

programming interface (API) calls, achieving a detection

accuracy of 92.5% and a false-negative rate of 7.67% when

compared to solely static approaches. Yet, its dual-analysis

approach raises the computational load, which can be

problematic in constrained Internet of Things (IoT) equipment.

On the other hand, the general approach to ransomware

detection that Manavi and Hamzeh [41] introduced includes

the consideration of executable file headers through the LSTM

network with PE headers. Analyzing byte sequences within

headers, the model is able to clearly separate ransomware from

benign files with 93.25% accuracy, which would allow for the

program’s rapid detection without the need to execute files.

However, ransomware variants that contaminate header data

may pose a threat to this approach.

Surendran et al. [42] presented an effective approach of a

Dual/Two-Layered Android Malware Detection System. To

overcome the interrelationships between static features, such

as API calls and permissions, and dynamic features like

system calls, they present a Tree Augmented Naive Bayes

(TAN) model, and the detection accuracy is 97%.

Nevertheless, the fact that the method targets specific features

may also provide lower coverage against the new generation

of malware utilizing other obfuscation techniques.

Moreover, Taher et al. [43] proposed a novel method of

analyzing the Android programs for the identification and

categorization of destructive programs, which overcomes the

restrictions of past methods against highly intelligent

obfuscation methods. Their framework includes three phases:

normalization and rough preprocessing for feature extraction

of static and dynamic data; feature selection using two

methods; and a proposed model based on a neural network and

improved Harris Hawk Optimization (HHO) algorithm.

The experiments reveal the effectiveness of the concept

over isolated static and dynamic analysis. However, the

method digitalizes the search process, which heavily relies on

the quality of feature extraction and selection, and may

encounter issues due to the rapid development of malware

strategies.

Last but not least Dabas et al. [44] proposed a new effective

malware detection for Windows based on API calls, features,

and ML to curb new malware attacks. API call details are

gathered in three features: use, frequency, and calls as

sequences, resulting in multiple feature sets for the data set

preprocessed using the TF-IDF method. Algorithms, despite

researching and testing this integrated feature set, report better

than 99.6% precision.

The study downsizes the feature set by 9% and bounds the

accuracy from the upper and lower sides as 99.6% to 99.9%.

However, use of feature selection may reduce the capability of

detecting the malware because of these techniques that are

employed by the malware.

In our research, the idea is to use the DL identification

approach that integrates both the static and dynamic features

of the malware while striving to retain the ability to work in

real time. The model framework includes two complementary

components: They tested two models that we have named a

Static-CNN-LSTM model and a Dynamic-CNN 1D-LSTM

model.

The four primary static models extract characteristics

143

captured from the binary structure and code pattern of the

malware, where the CNN and LSTM layers are sensitive and

prove to give high accuracy in studying the static attributes.

The Static-CNN-LSTM model that has been built in this paper

was able to achieve an accuracy rate of 99%, which is

indicative of high reliability in the identification of known and

structured malware types.

On the other hand, the proposed Dynamic-CNN 1D-LSTM

model targets runtime behavioral analysis, representing

sequences of actions or events that are initiated by malware at

runtime within a controlled environment. This model responds

to the problem of accurately identifying and targeting

insidious and sneaky malware that may adapt its actions in

order not to be caught by certain detecting parts. Using CNN

and 1D-LSTM layers together, the suggested dynamic model

for telling malware apart based on how it acts is 100% accurate.

These models are complementary; that is, static analysis

identifies known viruses, while dynamic analysis is able to

catch new ones, especially those that are intended to avoid

static analysis. The proposed hybrid model approach has

several important benefits for the purpose of real-time

malware detection. First, it enables pure and fast handling of

the static and dynamic characteristics of the object. This will

help the system to identify and classify threats in a highly

loaded mode.

Second, the proposed system integrates CNN and LSTM; it

allows the system to consider both spatial and temporal

characteristics and is less sensitive to noise. Last but not least,

the proposed approach's high level of detection accuracy

reduces the dangers associated with false positives and false

negatives, which are highly sensitive in fields like

cybersecurity, where unnoticed threats can have disastrous

consequences. The research endeavours to achieve the

following objectives and contributions:

1) We created two new datasets, each containing 8513

malware samples, and 1000 non-malware or benign

samples categorized into 30 different types. The first

dataset comprises 64 by 64 grayscale images, which

were converted, while the second dataset is in the

format of a CSV file, which contains the sequences

of API calls for each sample.

2) The detection of malware occurs in real time through

two distinct methodologies: first, through the 1D-

CNN, used for analyzing the malware images; second,

let use long short term memory (LSTM) networks for

analyzing the API call sequences that was extracted

by forming the signature using the Python Pefile

module for every sample.

3) Since we have 50 samples of each malicious and

benign program, we only got results from the samples

that the Python Pefile module analyzed as valid. We

omitted samples that returned "none," indicating no

extractable data, to accelerate the detection regime.

4) Importantly, most of the samples of malware in these

two sets were obtained in the year 2024, which means

that many samples will represent the most relevant

threats in the modern world of malware.

2. METHODOLOGY

2.1 Data collection

in this paper, a dataset of 8,513 malicious Portable

Executable (PE) files was acquired from VirusShare, a source

commonly utilized by cybersecurity researchers for malware

samples.

The virus was classified into 29 families utilizing

classification labels supplied by Microsoft virus Protection.

Furthermore, 1,000 benign executable (EXE) files were

obtained from the studies [45-47], resulting in a balanced

dataset including 30 categories, as seen in Table 1.

This study employed two separate datasets. In the first

dataset, each PE file was transformed into a grayscale picture

utilizing the methodology proposed by Nataraj et al. [48].

The conversion entailed converting binary malware data

into an 8-bit vector, subsequently transferred to pixel values

ranging from 0 to 255, with 0 denoting black, 255 denoting

white, and intermediate values indicating various shades of

gray. This grayscale depiction facilitated the visual

examination of discrete binary structures inside the virus, as

seen in Figure 1.

Table 1. Types of malware families

No. Family Type Samples

1 Benign Benign 1000

2 Ako Ransomware 260

3 Autorun.NE Virus 249

4 Banker.LY TrojanSpy 260

5 Delf.DU Backdoor 260

6 Drolnux.B Worm 259

7 Eggnog.A Worm 300

8 GandCrab.AE Ransomware 220

9 Ganelp.E Worm 260

10 Linkury.RS!MTB Adware 244

11 Neconyd.A Trojan 259

12 Nemucod TrojanDownloader 260

13 Neojit.A TrojanDownloader 300

14 OpenInstaller PUA 260

15 Playtech PUA 260

16 QQPass.GP PWS 260

17 Qukart TrojanSpy 260

18 Resur.A!epo Virus 258

19 Shodi.A Virus 220

20 Simda.D PWS 159

21 Sivis.A Virus 260

22 Small.M TrojanSpy 260

23 Soltern!rfn Worm 260

24 Trickbot.GML! MTB Trojan 300

25 Unruy.F TrojanDownloader 260

26 Upatre.A TrojanDownloader 300

27 Urelas.AA Trojan 260

28 Wabot.A Backdoor 260

29 Yoof.E Worm 289

30 Zombie!rfn Trojan 256

Figure 1. Process for transforming malware into image

representations

For the second dataset, the first 50 API call sequences were

removed from each file to reduce complexity and accelerate

identification. The extraction procedure utilized the Pefile

module, a Python program designed for handling PE files. To

optimize the data, all "none" API requests were omitted. Every

144

distinct API call in all samples was allocated a particular index,

substituting the API call names with their respective index

numbers.

The processed sequences were stored in CSV format,

maintaining the critical structure for pattern detection and

analysis while considerably decreasing the data's

dimensionality.

2.2 Proposed methodology

The suggested malware detection technique utilizes two DL

models, each specifically designed for distinct data types

inside the malware detection framework, as seen in Figure 2.

A CNN was developed in the initial model to examine

pictures produced from a dataset comprising both malicious

and benign software samples. We converted the samples into

the Portable Executable (PE) format, which encompasses 30

different malware categories. We standardized each image to

150×150 pixels and normalized it to ensure uniformity in

feature scaling, preparing the picture data for CNN processing.

Figure 2. Two-model CNN-LSTM framework for improved

detection

We divided the dataset into three subsets: 80% for training,

10% for testing, and 10% for validation, and further shuffled

it to enhance the accuracy of the model. First, an embedding

layer (is a way to convert high-dimensional input sequences

into lower-dimensional vector representations) turns high-

dimensional API sequences into 50-dimensional vector

representations. Next, a SpatialDropout1D layer (is a dropout

layer that randomly drops input features to prevent overfitting)

with a 0.1 dropout rate stops the process from fitting too well.

We employ a Conv1D layer with 32 filters and a kernel size of

2 to capture local patterns in the API sequence, using ReLU

activation and'same' padding. MaxPooling1D, with a pool size

of 5, succeeds in this by reducing the sequence length while

maintaining essential characteristics.

An LSTM layer with 32 units further processes the sequence

to capture long-term dependencies in the API call patterns. We

employ a dense layer with a SoftMax activation function to

categorize the sequence into one of 30 malware classifications.

We configure the model using the Adam optimizer, categorical

cross-entropy loss, and accuracy as the performance

evaluation metric.

In second model employed LSTM networks on API call

sequences extracted from the second dataset. We divided the

dataset into 70% for training, 15% for testing, and 15% for

validation. The second model employs a Time Distributed

CNN-LSTM architecture to examine grayscale photos of

malware specimens.

The architecture begins with a TimeDistributed (is a layer

that applies operations across each time step in a sequence

independently, preserving temporal relationships) Conv2D

layer, equipped with 64 filters and a (2,2) kernel. This is

followed by two TimeDistributed MaxPooling2D layers,

which are designed to extract spatial information and reduce

dimensionality. We deploy a further Conv2D layer with 128

filters and additional MaxPooling2D layers to enable deeper

feature abstraction.

A TimeDistributed Flatten layer flattens the outputs of these

layers, allowing an LSTM layer with 100 units to sequentially

analyze and identify patterns across various regions of the

malware picture. A concluding dense layer employing a

SoftMax activation mechanism categorizes the malware

picture into one of thirty classifications.

The model uses the Adam optimizer, sparse categorical

cross-entropy loss, and accuracy as its main metrics to

accurately group malware into different groups based on

image data. Figure 3 explains the 1D-2D CNN-LSTM

Architecture for Dual-Model Integration.

Figure 3. 1D-2D CNN-LSTM Model: A two-stage

architecture

145

Additionally, the suggested method uses two separate

datasets for the two models. One dataset is for grayscale

images of malware, for which a model was created for static

analysis, and the other is for the sequences of API calls for

dynamic analysis. We split the datasets into training, testing,

and validation sets separately to assess the stability of both

models. Table 2 displays the summary of the sampling split for

both models.

Table 2. Dataset splits for static and dynamic analysis

models

Dataset

Type

Total

Samples

Training

Split

Validation

Split

Testing

Split

Grayscale

Images (PE)
8,513

80% 6,810

samples

10% 852

samples

10% 851

samples

API Call

Sequences
8,513

70% 5,959

samples

15% 1,277

samples

15% 1,277

samples

The Rationale Behind of Dataset Splits for Grayscale

Images (Static Analysis) and API Call Sequences (Dynamic

Analysis), where within it the data was divided into 80% for

training, 10% for testing, and 10% for validation. This split

also keeps enough samples to test how well the model works

while giving the CNN enough data to learn features from

binary structures without overfitting. The 10% set aside for

testing and validation ensures the model performs well on

similar data most of the time.

So, for the API call sequence dataset, a 70:15:15 data split

was used. This is because more evaluation, testing, and

validation data should be used to test this model's real-world

performance. The higher percentage of spending on testing

and validation is also important for the dynamic model

because API sequences change, and it is expected that more

similarities and differences between types of malicious code

will be found.

2.2.1 Rationale behind the chosen preprocessing methods

As mentioned before, the chosen preprocessing techniques

that include converting PE images to grayscale and extracting

API call sequences are intended to harmonize with each other

and reflect both the static and dynamic attributes of malware.

Converting images to grayscale and using static analysis

After the PE files are made, they are resampled to 150×150

grayscale images. This makes the feature space less

complicated without getting rid of the structural information

in the malware binaries. Since the images are grayscale, the

model captures spatial features of malware organization that

set the malicious samples apart from the benign ones. For

instance, Deepa et al. [38] have explored the use of grayscale

image representation in malware detection. This method gets

rid of dependencies on preprocessing and a number of raw data

features while keeping the most important ones so that VGG16

can learn from patterns that make sense.

2.2.2 API call sequence extraction for dynamic analysis

API call sequences capture the dynamic nature of malware

and can reveal different activities of malware, such as file

operations, network interactions, and resource misuse. The

rationale behind selecting API calls stems from the research

conducted by Zhou et al. [37] and Surendran et al. [42], which

demonstrated the importance of API-based dynamic features

in identifying obfuscated malware samples. Furthermore,

considering the temporal characteristics of networks, the

dependencies in the API sequences are captured in the long

term, giving them the ability to identify new tactics used by

malware.

2.2.3 Complementary roles of preprocessing techniques

Using both structural and behavioral properties in the

preprocessing stage makes sure that data from both is taken

into account. Static features, such as binary patterns, give

information about known malware types, whereas dynamic

features, for example, API sequences, identify new and

constantly evolving malware types. This method uses both

CNNs and LSTMs to make the best features of both even

better, making it more reliable, accurate, and adaptable for

real-time use. Thus, by incorporating these preprocessing

methods, the given framework enables multi-featured

malware analysis with consideration of various

comprehensive characteristics in a relatively short time.

3. RESULTS AND DISCUSSION

All the experiments were conducted in the Python language

and in an environment of the Jupyter Notebook, which allowed

for the analysis and visualization of results and training of

models in real-time. The first model trained was the dynamic

1D CNN-LSTM model, which was trained with health,

malware, and benign image datasets.

Figure 4. The accuracy and loss curves for the Dynamic-1D-

CNN-LSTM malware detection model

146

We trained this model with a broad dataset, which involved

converting image files from exe files. The CNN layers learned

spatial properties, while the LSTM layer learned the

dependency among sequences of API calls. We trained the

model for a total of 70 epochs with a batch size of 32,

achieving an accuracy of 100%. This result confirms that the

chosen model can correctly classify all samples in the training

and validation datasets and indicates the sample's quality and

representativeness.

The model's ability to achieve the highest possible score

may indicate its ability to distinguish between malicious and

non-malicious software, but further experiments on larger

datasets are necessary to confirm the model's stability.

Figure 4 displays the aforementioned diagrams, illustrating

the model's accuracy and training curve during the training

process. The model's accuracy looks very good, gradually

increasing with each epoch to ensure effective learning and

convergence.

Figure 5. The accuracy and loss curves for the Static-2D-

CNN-LSTM malware detection model

The second model used was a Static CNN-LSTM model,

which like the previous model was trained with batch size of

32 but training was done only for 40 epochs. This model has

shown 99% accuracy, thus outcompeting other malware

detection models reported in the literature.

The high accuracy achieved by this model is evident to

show its capability of identifying trends in the static features

derived from the API call sequence. Evidently, Figure 5 shows

that the accuracy of this model is fairly stable and reliable

throughout the different epochs performed in the training

process.

After training, both models saved to use in restoration of

future samples that were not included in training set but

belonged to four families of malware. This was important in

determining the extent to which the models could be

generalized. Given the results of the previous sections, the

real-time testing indeed revealed that these models would be

capable of classifying these unseen samples into either the

benign or specific malware family.

The external test samples also prove how just fine the

models are and that the proposed algorithms can be employed

with actual cases where they would be useful in early

identification of new and constantly arising malware threats.

Furthermore, the suggested method is very accurate-up to

100% with the dynamic CNN 1D-LSTM model-but there are

some assumptions and limits that need to be thought about at

the same time:

• Potential Overfitting: Because the dynamic CNN 1D-

LSTM model is so accurate, it's possible that it's too

effective at fitting the dataset used in this study.

Overfitting refers to the model's inability to develop

with high generality. The division of training, testing,

and validation sets in this case results in a certain

degree of cross-validation. However, the issue of data

overfitting emerges when working with small, well-

defined datasets. To reduce such a risk, regularization

approaches like dropout and proper selection of the

learning rate were used, but outside validation is

needed.

• Impact of Dataset Size and Diversity: The datasets

that were used in this study contain modern threats

but have 8,513 samples and 30 categories of malware.

The samples may be confined to a relatively small

range of malware types, and their differentiation

might not properly reflect a broad spectrum of

possibilities that meet user experiences in practice.

The study's strength lies in its extensive use of

samples from various malware families, each with

varying levels of obfuscation, across various contexts

and regions. But a bigger set of data with a lot of

different malware families, different obfuscation

heuristics, and different settings or situations would

have been a much better test for the model.

Furthermore, data from which sample sequences

were derived were collected in controlled settings

only, and their performance in usual, uncontrolled,

real-time conditions has not been tested yet.

• As well as the Assumptions Made During Model

Development The preprocessing steps of casting PE

files into grayscale images and using API call

sequences rely on the premise that the image and

sequence representations are rich enough to encode

the features that set malware apart. As prior research

backs these techniques, other possible preprocessing

strategies may further boost the detection outcomes.

• Future Work: To address the limitations identified

above, the following directions are proposed for

future work:

147

- Testing on Larger and More Diverse Datasets:

Adding an openly available or competitively

sourced more extensive malware type dataset in

conjunction with more generic malware type

and/or obfuscation types to improve model

robustness testing.

- Evaluating Generalization in Real-World

Scenarios: The training of the models in actual

scenarios to determine their performance when

detecting approaches and methods deployed by

adversaries.

- Exploring Lightweight Architectures:

Identifying more efficient hybrid models’

settings with low computational demand that

will not lessen detection efficacy.

3.1 Comparative analysis with state-of-the-Art models

We conducted a comparison with other malware detection

studies to contextualize the effectiveness of the proposed

models. We compared the proposed models using

performance metrics that include precision, recall, and F1-

scores with other studies to provide a more comprehensive

view of their performance. The results are shown in Table 3.

In terms of accuracy as well as F1-score, precision, and

recall, the proposed hybrid approach outperforms the other

recent models with remarkable differences. Consequently,

through static and dynamic analysis, the models are capable of

identifying traditional and continuously evolving malware

with high accuracy and stability.

Table 3. Comparison our model of different models

Study Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

[49] CNN 97.48 98.71 96.22 97.45

[50] LSTM 98.38 98.9 98.8 98.9

[51] TextCNN and LSTM 99 99 98 99

[52] CVAE-GAN 97.30 92.34 97.44 94.82

[53] DNN 94.38 94.82 94.82 94.82

[54] TL-GNN 98.87 99.55 97.30 99.42

Our Study
Static-CNN-LSTM 99 99 99 99

Dynamic-CNN-1D LSTM 100 100 100 100

4. CONCLUSIONS

This paper introduces two novel datasets derived from the

same samples but analyzed through different methodologies:

one dataset consists of malware and benign images for static

analysis classification, while the other encompasses API call

sequences for dynamic malware classification. To facilitate

the multi-classification of these samples, we employed two

distinct DL models.

The first model, a dynamic 1D CNN-LSTM, utilized the

dataset of malware and benign images, achieving an

impressive accuracy of 100%. The second model, which

implemented a static CNN-LSTM, leveraged the API call

sequences from the second dataset and attained a high

accuracy of 99%.

We retained both models after the training phases and used

them for real-time malware detection and classification. The

study's results show that the static CNN-LSTM model is more

accurate than the other two. This is similar to how well the

model works when using API call sequences to find malware.

Furthermore, our results show the benefits of using two

models instead of one, which might be better than the other

one. This ensures that if one model fails to identify malware,

such as those using encryption or advanced masks, another

model will complement it, thereby enhancing the overall

detection capability.

Also, the comparison of malware images and the sequences

of API calls obtained during the experiment also showed some

correlation, which can be directly linked to the specific types

of malwares and will help to systematize the knowledge of

malware behaviors and to suggest improvements in the

classification algorithms used in further studies.

REFERENCES

[1] Aslan, Ö.A., Samet, R. (2020). A comprehensive review

on malware detection approaches. IEEE Access, 8: 6249-

6271. https://doi.org/10.1109/ACCESS.2019.2963724

[2] SL, S.D., Jaidhar, C.D. (2019). Windows malware

detector using convolutional neural network based on

visualization images. IEEE Transactions on Emerging

Topics in Computing, 9(2): 1057-1069.

https://doi.org/10.1109/TETC.2019.2910086

[3] Chakkaravarthy, S.S., Sangeetha, D., Vaidehi, V. (2019).

A survey on malware analysis and mitigation techniques.

Computer Science Review, 32: 1-23.

https://doi.org/10.1016/j.cosrev.2019.01.002

[4] Alsumaıdaee, Y.A. (2019). Automatic malware

detection using data mining techniques based on power

spectral density (PSD). Master's Thesis, Altınbaş

Üniversitesi.

[5] Botacin, M., Ceschin, F., Sun, R., Oliveira, D., Grégio,

A. (2021). Challenges and pitfalls in malware research.

Computers & Security, 106: 102287.

https://doi.org/10.1016/j.cose.2021.102287

[6] Akhtar, M.S., Feng, T. (2022). Malware analysis and

detection using machine learning algorithms. Symmetry,

14(11): 2304. https://doi.org/10.3390/sym14112304

[7] Ngo, F.T., Agarwal, A., Govindu, R., MacDonald, C.

(2020). Malicious software threats. The Palgrave

Handbook of International Cybercrime and

Cyberdeviance, Palgrave Macmillan, Cham, pp. 793-813.

https://doi.org/10.1007/978-3-319-78440-3_35

[8] Kurnaz, S., Ahmed, Y. (2019). Automatic malware

detection using data mining techniques based on Power

Spectral Density (PSD). International Journal of

Computer Science and Mobile Computing, 8(3): 27-30.

[9] Shaukat, K., Luo, S., Varadharajan, V. (2023). A novel

deep learning-based approach for malware detection.

Engineering Applications of Artificial Intelligence, 122:

106030. https://doi.org/10.1016/j.engappai.2023.106030

[10] Al-Tahee, M., Easa, H.K., Jabbar, K.A., Hussein, L.,

148

Alatba, S.R., Mohammed, M.A. (2024). Artificial

intelligence assisted cyber-Physical systems with

intelligent cyber security using deep learning. In 2024

International Conference on Smart Systems for

Electrical, Electronics, Communication and Computer

Engineering (ICSSEECC), Coimbatore, India, pp. 689-

694.

https://doi.org/10.1109/ICSSEECC61126.2024.106494

28

[11] Aurangzeb, S., Aleem, M. (2023). Evaluation and

classification of obfuscated Android malware through

deep learning using ensemble voting mechanism.

Scientific Reports, 13(1): 3093.

https://doi.org/10.1038/s41598-023-30028-w

[12] Ahmed, S.R., Mohamed, S.J., Aljanabi, M.S., Algburi,

S., Majeed, D.A., Kurdi, N.A., Al-Sarem, M., Tawfeq,

J.F. (2024). A novel approach to malware detection using

machine learning and image processing. In Proceedings

of the Cognitive Models and Artificial Intelligence

Conference, pp. 298-302.

https://doi.org/10.1145/3660853.3660931

[13] Alsmadi, T., Alqudah, N. (2021). A survey on malware

detection techniques. In 2021 International Conference

on Information Technology (ICIT), Amman, Jordan,

IEEE, pp. 371-376.

https://doi.org/10.1109/ICIT52682.2021.9491765

[14] Gopinath, M., Sethuraman, S.C. (2023). A

comprehensive survey on deep learning based malware

detection techniques. Computer Science Review, 47:

100529. https://doi.org/10.1016/j.cosrev.2022.100529

[15] Faruk, M.J.H., Shahriar, H., Valero, M., Barsha, F.L.,

Sobhan, S., Khan, M.A., Whitman, M., Cuzzocrea, A.,

Lo, D., Rahman, A., Wu, F. (2021). Malware detection

and prevention using artificial intelligence techniques. In

2021 IEEE International Conference on Big Data (Big

Data), Orlando, FL, USA, pp. 5369-537.

https://doi.org/10.1109/BigData52589.2021.9671434

[16] Naseer, M., Rusdi, J.F., Shanono, N.M., Salam, S.,

Muslim, Z.B., Abu, N.A., Abadi, I. (2021). Malware

detection: Issues and challenges. Journal of Physics:

Conference Series, 1807(1): 012011.

https://doi.org/10.1088/1742-6596/1807/1/012011

[17] Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A.,

Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A.,

Al-Amidie, M., Farhan, L. (2021). Review of deep

learning: concepts, CNN architectures, challenges,

applications, future directions. Journal of Big Data, 8: 1-

74. https://doi.org/10.1186/s40537-021-00444-8

[18] Thakur, P., Kansal, V., Rishiwal, V. (2024). Hybrid deep

learning approach based on LSTM and CNN for malware

detection. Wireless Personal Communications, 136(3):

1879-1901. https://doi.org/10.1007/s11277-024-11366-

y

[19] Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R.,

Pandya, S., Modi, K., Ghayvat, H. (2021). CNN variants

for computer vision: History, architecture, application,

challenges and future scope. Electronics, 10(20): 2470.

https://doi.org/10.3390/electronics10202470

[20] Karat, G., Kannimoola, J.M., Nair, N., Vazhayil, A.,

Sujadevi, V.G., Poornachandran, P. (2024). CNN-LSTM

hybrid model for enhanced malware analysis and

detection. Procedia Computer Science, 233: 492-503.

https://doi.org/10.1016/j.procs.2024.03.239

[21] Aboaoja, F.A., Zainal, A., Ghaleb, F.A., Al-Rimy,

B.A.S., Eisa, T.A.E., Elnour, A.A.H. (2022). Malware

detection issues, challenges, and future directions: A

survey. Applied Sciences, 12(17): 8482.

https://doi.org/10.3390/app12178482

[22] Ngo, Q.D., Nguyen, H.T., Le, V.H., Nguyen, D.H.

(2020). A survey of IoT malware and detection methods

based on static features. ICT Express, 6(4): 280-286.

https://doi.org/10.1016/j.icte.2020.04.005

[23] Shhadat, I., Hayajneh, A., Al-Sharif, Z.A. (2020). The

use of machine learning techniques to advance the

detection and classification of unknown malware.

Procedia Computer Science, 170: 917-922.

https://doi.org/10.1016/j.procs.2020.03.110

[24] Al-Janabi, M., Altamimi, A.M. (2020). A comparative

analysis of machine learning techniques for

classification and detection of malware. In 2020 21st

International Arab Conference on Information

Technology (ACIT), Giza, Egypt, pp. 1-9.

https://doi.org/10.1109/ACIT50332.2020.9300081

[25] Wadkar, M., Di Troia, F., Stamp, M. (2020). Detecting

malware evolution using support vector machines.

Expert Systems with Applications, 143: 113022.

https://doi.org/10.1016/j.eswa.2019.113022

[26] Easa, H.K., Saber, A.A., Hamid, N.K., Saber, H.A.

(2023). Machine learning based approach for detection

of fake banknotes using support vector machine.

Indonesian Journal of Electrical Engineering and

Computer Science, 31(2): 1016-1022.

https://doi.org/10.11591/ijeecs.v31.i2.pp1016-1022

[27] Wong, W.K., Juwono, F.H., Apriono, C. (2021). Vision-

Based malware detection: A transfer learning approach

using optimal ECOC-SVM configuration. IEEE Access,

9: 159262-159270.

https://doi.org/10.1109/ACCESS.2021.3131713

[28] Babbar, H., Rani, S., Sah, D.K., AlQahtani, S.A., Kashif

Bashir, A. (2023). Detection of android malware in the

internet of things through the K-nearest neighbor

algorithm. Sensors, 23(16): 7256.

https://doi.org/10.3390/s23167256

[29] Al Saaidah, A., Abualhaj, M.M., Shambour, Q.Y., Abu-

Shareha, A.A., Abualigah, L., Al-Khatib, S.N.,

Alraba’nah, Y.H. (2024). Enhancing malware detection

performance: Leveraging K-Nearest neighbors with

firefly optimization algorithm. Multimedia Tools and

Applications, 1-24. https://doi.org/10.1007/s11042-024-

18914-5

[30] Abu Al-Haija, Q., Odeh, A., Qattous, H. (2022). PDF

malware detection based on optimizable decision trees.

Electronics, 11(19): 3142.

https://doi.org/10.3390/electronics11193142

[31] Mat, S.R.T., Ab Razak, M.F., Kahar, M.N.M., Arif, J.M.,

Firdaus, A. (2022). A Bayesian probability model for

Android malware detection. ICT Express, 8(3): 424-431.

https://doi.org/10.1016/j.icte.2021.09.003

[32] Yerima, S.Y., Alzaylaee, M.K., Shajan, A.P.V. (2021).

Deep learning techniques for android botnet detection.

Electronics, 10(4): 519.

https://doi.org/10.3390/electronics10040519

[33] Amin, M., Tanveer, T.A., Tehseen, M., Khan, M., Khan,

F.A., Anwar, S. (2020). Static malware detection and

attribution in android byte-code through an end-to-end

deep system. Future Generation Computer Systems, 102:

112-126. https://doi.org/10.1016/j.future.2019.07.070

[34] Bakhshinejad, N., Hamzeh, A. (2020). Parallel‐CNN

149

network for malware detection. IET Information

Security, 14(2): 210-219. https://doi.org/10.1049/iet-

ifs.2019.0159

[35] Yeboah, P.N., Baz Musah, H.B. (2022). NLP technique

for malware detection using 1D CNN fusion model.

Security and Communication Networks, 2022(1):

2957203. https://doi.org/10.1155/2022/2957203

[36] Jha, S., Prashar, D., Long, H.V., Taniar, D. (2020).

Recurrent neural network for detecting malware.

Computers & Security, 99: 102037.

https://doi.org/10.1016/j.cose.2020.102037

[37] Zhou, H., Yang, X., Pan, H., Guo, W. (2020). An android

malware detection approach based on SIMGRU. IEEE

Access, 8: 148404-148410.

https://doi.org/10.1109/ACCESS.2020.3007571

[38] Deepa, K., Adithyakumar, K.S., Vinod, P. (2022).

Malware image classification using vgg16. In 2022

International Conference on Computing,

Communication, Security and Intelligent Systems

(IC3SIS), Kochi, India, pp. 1-6.

https://doi.org/10.1109/IC3SIS54991.2022.9885587

[39] Salih, A., Zeebaree, S.T., Ameen, S., Alkhyyat, A.,

Shukur, H.M. (2021). A survey on the role of artificial

intelligence, machine learning and deep learning for

cybersecurity attack detection. In 2021 7th International

Engineering Conference “Research & Innovation amid

Global Pandemic"(IEC), Erbil, Iraq, pp. 61-66.

https://doi.org/10.1109/IEC52205.2021.9476132

[40] Jeon, J., Jeong, B., Baek, S., Jeong, Y.S. (2021). Hybrid

malware detection based on Bi-LSTM and SPP-Net for

smart IoT. IEEE Transactions on Industrial Informatics,

18(7): 4830-4837.

https://doi.org/10.1109/TII.2021.3119778

[41] Manavi, F., Hamzeh, A. (2021). Static detection of

ransomware using LSTM network and PE header. In

2021 26th International Computer Conference,

Computer Society of Iran (CSICC), Tehran, Iran, pp. 1-

5. https://doi.org/10.1109/CSICC52343.2021.9420580

[42] Surendran, R., Thomas, T., Emmanuel, S. (2020). A

TAN based hybrid model for android malware detection.

Journal of Information Security and Applications, 54:

102483. https://doi.org/10.1016/j.jisa.2020.102483

[43] Taher, F., AlFandi, O., Al-kfairy, M., Al Hamadi, H.,

Alrabaee, S. (2023). DroidDetectMW: A hybrid

intelligent model for android malware detection. Applied

Sciences, 13(13): 7720.

https://doi.org/10.3390/app13137720

[44] Dabas, N., Ahlawat, P., Sharma, P. (2023). An effective

malware detection method using hybrid feature selection

and machine learning algorithms. Arabian Journal for

Science and Engineering, 48(8): 9749-9767.

https://doi.org/10.1007/s13369-022-07309-z

[45] Al-Musawi, H.S.H. (2022). Hybrid malware detection

and classification in real-time by deep learning

techniques. Doctoral Dissertation.

[46] Bruzzese, R. (2024). Building visual malware dataset

using virusshare data and comparing machine learning

baseline model to CoAtNet for malware classification. In

Proceedings of the 2024 16th International Conference

on Machine Learning and Computing, pp. 185-193.

https://doi.org/10.1145/3651671.3651735

[47] Yang, L., Ciptadi, A., Laziuk, I., Ahmadzadeh, A., Wang,

G. (2021). BODMAS: An open dataset for learning

based temporal analysis of PE malware. In 2021 IEEE

Security and Privacy Workshops (SPW), San Francisco,

CA, USA, pp. 78-84.

https://doi.org/10.1109/SPW53761.2021.00020

[48] Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.

(2011). Malware images: Visualization and automatic

classification. In Proceedings of the 8th International

Symposium on Visualization for Cyber Security, pp. 1-

7. https://doi.org/10.1145/2016904.2016908

[49] Zhang, S., Hu, C., Wang, L., Mihaljevic, M.J., Xu, S.,

Lan, T. (2023). A malware detection approach based on

deep learning and memory forensics. Symmetry, 15(3):

758. https://doi.org/10.3390/sym15030758

[50] Alomari, E.S., Nuiaa, R.R., Alyasseri, Z.A.A.,

Mohammed, H.J., Sani, N.S., Esa, M.I., Musawi, B.A.

(2023). Malware detection using deep learning and

correlation-based feature selection. Symmetry, 15(1):

123. https://doi.org/10.3390/sym15010123

[51] Zhang, S., Gao, M., Wang, L., Xu, S., Shao, W., Kuang,

R. (2025). A malware-Detection method using deep

learning to fully extract API sequence features.

Electronics, 14(1): 167.

https://doi.org/10.3390/electronics14010167

[52] Huang, Y., Liu, J., Xiang, X., Wen, P., Wen, S., Chen,

Y., Chen, L., Zhang, Y. (2024). Malware identification

method in industrial control systems based on

Opcode2vec and CVAE-GAN. Sensors, 24(17): 5518.

https://doi.org/10.3390/s24175518

[53] Li, H., Xu, G., Wang, L., Xiao, X., Luo, X., Xu, G.,

Wang, H. (2024). MalCertain: Enhancing deep neural

network based android malware detection by tackling

prediction uncertainty. In Proceedings of the IEEE/ACM

46th International Conference on Software Engineering,

pp. 1-13. https://doi.org/10.1145/3597503.3639122

[54] Raza, A., Qaisar, Z.H., Aslam, N., Faheem, M., Ashraf,

M.W., Chaudhry, M.N. (2024). TL‐GNN: Android

malware detection using transfer learning. Applied AI

Letters, 5(3): e94. https://doi.org/10.1002/ail2.94

150

