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Malware detection and classification are critical for ensuring system security in real-time 

applications. Conventional approaches may not be optimized to combine precise results 

with low time consumption and become a problem when it comes to processing large 

volumes of different malware samples in a real-time setting. The general framework for 

this paper is to introduce a new detection and classification method that uses deep learning 

(DL) models to detect and classify malware. We developed and tested two models: the

static convolutional neural network-long short-term memory (CNN-LSTM) model and

the dynamic CNN 1D-LSTM model in this work. The models achieved an accurate rate

of 99%. Static-CNN-LSTM was able to classify the malware based on static analysis. At

the same time, the proposed dynamic (1D-CNN-LSTM) model got the best results, with

a 100% success rate, by gathering behavioral data. This means that it can accurately

classify even new and complicated dynamic malicious program variants. Therefore, this

study's results show that using a hybrid approach raises the rate of detection while also

meeting the real-time processing needs of systems with a lot at stake that need to perform

well. Our approach represents a substantial improvement in malware detection, delivering

a more efficient and versatile response to contemporary cyber threats.
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1. INTRODUCTION

This rapid growth of the interconnected systems and devices 

in contemporary society means that malware and other cyber 

threats move fast across the domains of individuals and 

enterprises as well as state-critical facilities [1, 2]. Malware, 

viruses, worms, ransomware, and trojans are programs 

designed to cause harm, steal information, and give 

unauthorized access to data [3, 4]. 

Therefore, as these threats evolve, the landscape of 

antimalware defense becomes increasingly complex [5]. The 

previous techniques of threat detection are constantly failing 

to cope with the modern malicious programs leveraging 

methods such as polymorphism, obfuscation, and dispersing 

mechanisms to avoid identification [6-8]. 

That's why the limitations of traditional approaches to 

combating malware have led to the emergence of new 

methodologies [9, 10]. 

Essentially, signature-based techniques are highly efficient 

in identifying viruses, but they become ineffective when new 

or modified viruses are present [11]. 

Heuristic approaches try to solve this problem by 

concentrating on the behavior indicators but many of them 

produce numerous false alarms and the extensive time 

demands when real-time monitoring and control are needs 

across a large network. Automated recognition of malware 

patterns and behavior by incorporating Machine learning (ML) 

into the existing methods has advanced the method’s ability to 

identify malware [12, 13]. 

Nevertheless, it has become apparent that highly 

sophisticated malware and the constant requirement for 

immediate responses necessitate the application of deep 

learning (DL) approaches for pattern identification concerning 

extraordinary patterns and variability to other categories, 

which could not previously be applied [14-16]. 

CNN and long-short-term memory (LSTM) networks are 

commonly used DL models that appear to possess high levels 

of efficiency in the detection of malware. CNNs excel at 

extracting spatial features, making them more suitable for 

analyzing static malware features like binary file patterns or 

opcode sequences. LSTMs concentrate on sequential data, 

offering a temporal perspective on the dynamic behavior of 

malware over time [17, 18]. 

But building a system that entails only one type of DL 

model may not fully provide an overall view of the nature and 

behaviors of the malware-especially in real-life detection since 

the rate of accuracy and speed are both of essence [19, 20]. 

Therefore, malware detection has been one of the main 

areas in cybersecurity studies for a long time already, because 

traditional approaches like signature-based detection and 
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heuristic methods are not able to respond to the emerging 

challenges of modern malware effectively [21]. 

Given that modern threats are complex and can avoid fresh 

detection, scholars conduct ML and DL to enhance the 

accuracy and flexibility of approaches [22]. In this section we 

will present a critical discussion of the previous research with 

a focus on recent developments in the paradigm of ML and DL, 

hybrid models, as well as their application in real-time 

malware detection. 

 

1.1 Machine learning for malware detection 

 

The initial attempt at employing ML for malware detection 

was categorized by the use of supervised learning algorithms 

such as decision trees (DT), support vector machines (SVMs), 

and k-nearest neighbors (KNN). These methods attempted to 

classify malware according to traits derived from its source, 

binary form, or execution profile [23, 24]. 

But while used often with success for detection of known 

threats, they were far less effective at detecting polymorphic 

malware and displayed high false positive rates. 

Wadkar et al. [25] investigated the evolution of malware 

families by employing feature ranking with linear SVMs 

weights to analyze the change in malware features over 

different time points. Though this method of classification is 

very efficient, it involves mostly feature selection, and it tends 

to overcomplicate data because of linear SVMs [26]. 

Furthermore, Wong et al. [27] implemented transfer 

learning on Shuffle Net and DenseNet-201, incorporating 

features from all layers and freezing the network to minimize 

overfitting. The last layer for classification is an optimal error 

correction output coding (ECOC) SVMs ensemble where 

three different configurations can be used, such as: one-

against-one. 

The One vs. One (OVO) and All (OVA) configurations aim 

to address issues related to computational complexity and data 

separation with non-linear margins. As for parameter 

searching, the grid search method with discrete values is 

introduced. The performance of the proposed model is 

evaluated on various datasets (Malimg, MaleVis, 

VirusMNIST, Dumpware (10). However, the use of SVM for 

the final classification can occasionally increase the 

complexity of the model and incur computational overhead 

when turning the SVM parameters. 

Moreover, Babbar et al. [28] proposed a ML framework for 

Android malware detecting IoT device attacks. Therefore, the 

aforementioned framework utilizes static analysis techniques 

to identify disguised Android malicious apps and suggests 

restricting them due to their potential threat to users' privacy 

and system integrity. Training and testing are performed over 

more than ten thousand mobile Android applications using ML 

algorithms like KNN models, Naive Bayes, decision trees, and 

support vector machines. 

The given KNN model results in a prediction accuracy of 

93% with a precision 95% recall 90% and an F1 score of 92%. 

However, it could be relatively slightly effective against 

thorough malwares that use a number of small tricks, like 

obfuscating their code, since it makes the model not wholly 

tough.” 

On the other hand, proposes ML algorithms for Malware 

detection particularly, KNN enhanced with Firefly 

Optimization Algorithm (FOA) [29]. In this study, the author 

uses the developed MalMem-2022 dataset to investigate 

effects of parameter tuning and feature selection on 

classification. The results show the significance of the 

proposed technique, which enhances the accuracy, the recall, 

the precision, and the F1-score with up to 3.59% value in KNN 

with FOA. 

The results presented in this study stress the necessity of the 

choice of the KNN parameters and use of FOA for the 

improved feature selection., Nevertheless, the approach may 

prove to experience difficulties with more intricate malware 

types, which may hinder its application in general. 

Qasem et al. [30] described a detection system for 

distinguishing PDF files that are harmless from those that are 

malicious, in the current security threat by hidden malware in 

PDF files. From a precise AdaBoost decision tree system 

trained with best hyperparameters, the performance of the 

system is tested on the Evasive-PDFMal2022 dataset. The 

findings illustrate higher levels of model prediction accuracy 

of about 98.84%. 

However, the approach of the certain dataset’s usage may 

be inadequate in terms of stimulating diversification or 

uncertainty of new threats in malware. 

Mat et al. [31] explained that the proliferation of mobile 

malware is a growing concern, prompting this work to advance 

an Android malware detection system that utilizes permission 

features under the Bayesian classification framework. The 

permission features are extracted using static code analysis 

from a pool of 10,000 samples from the AndroZoo and Drebin 

databases. Possible choices of feature selection depending on 

different algorithms are excluded, though information gain 

and chi-square are used to improve detection rates. 

For malware detection using permission features, the 

proposed system reaches the maximum detection rate of 

91.1%. However, the described approach has potential 

drawbacks, especially because the system can rely only on 

static analysis, so more advanced malware that tends to bypass 

permission checks may become a significant issue. 

Additionally, the existing static ML based model faced 

difficulties in identifying new versions of malware that had 

some ability to transform themselves into other forms in an 

effort to avoid being identified, and the dynamic ML models 

were often large and time-consuming in terms of performance. 

Since the ability of models to calculate static and dynamic 

parameters was imperative but with comparatively fewer false 

positives, the researchers turned to DL mechanisms proficient 

in feature extraction and generalization. 

 

1.2 Deep learning approaches 

 

The adoption of DL models, specifically Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs) such as LSTM, VGG16, and Gated Recurrent Unit 

(GRU) networks, marked a new phase in malware detection 

research [32, 33]. CNNs have proven effective for static 

malware analysis due to their strength in identifying patterns 

within structured data, such as binary files or opcode 

sequences. 

Bakhshinejad et al. [34] described a malware detection 

system, where they use a parallel CNN model that performs 

feature extraction, and thus does not require a complex feature 

selection process. Due to the work with raw bytes of 

executables, the proposed model demonstrates high accuracy 

in recognizing malware and exemplifies the superiority of a 

DL approach over the ML one. 

However, it uses raw byte data which, although offers 

flexibility and simplicity, may reduce the ability to analyze 
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intermediated patterns and adapt to changing malware patterns. 

On other side, Yeboah et al. [35] proposed an automatic 

nature feature extraction by using the 1D CNN-the approach 

is applied to Android malware detection. The model operates 

on n-grams of static opcode sequences which is semantically 

embedded and aimed to detect the existing malware in to- from 

binary files. 

It applies several feature sets of n-gram opcode sequences 

and their predictions are obtained through weighted voting. the 

model can with a 98% positive predictive value and 97% 

sensitivity. Although the 1D CNN has low complexity, 

detection performance relies on the dataset’s similarity; it 

might not generalize to a diverse set of malwares. 

Furthermore, Jha et al. [36] introduced an effective RNN 

model that uses network temporal sequences to classify 

malware. This work evaluates the effectiveness of various 

hyperparameters by determining which step sizes have a 

greater impact on the classification of the RNN-based malware 

detector than their input sizes. 

Three feature vectors are considered, of which one is hot 

encoding, the second one is random, and the third one is 

word2Vec. The performance metrics used are AUC and 

variance. The presented results show that the proposed 

algorithm with Word2Vec in the form of the feature vector 

based on the Skip-gram model of context words has the 

maximum AUC and optimal stability and is therefore the most 

effective. However, using specific feature vectors can be 

problematic when applying the model across various datasets 

of malware. 

Moreover, Zhou et al. [37] introduced a more advanced 

GRU model known as SIMGRU targeting Android malware 

detection based on static analysis. They suggest three versions: 

InputSimGRU, HiddenSimGRU, and InputHiddenSimGRU 

based on the clustering similarity. Experimental outcome 

indicates that all three models outperform the basic GRU 

model and other detection techniques, proving that similarity 

in static analysis is useful. However, this approach can be 

unfavorable for complicated and evolutive malware that 

should modify functionalities in the course of their execution. 

Deepa et al. [38] presented a method for the identification 

and categorization of malware utilizing DL and image-based 

characteristics. Traditional signature-based techniques can’t 

handle new types; therefore, the authors use the Malimg 

dataset, which contains images of malware. The authors first 

convert malware samples into byteplot grayscale images, after 

which they extract features using a VGG16 pre-trained model. 

These features shape classifiers such as SVM, 

XGBoost, DNN, and Random Forest to detect malware 

families. The results prove the high accuracy of the work; they 

used samples from 25 families and analyzed 9,339 samples in 

total. However, the use of image-based representations may 

not be efficient in handling non-confirming malware or 

obfuscation techniques. 

 

1.3 Hybrid deep learning models 

 

As it was mentioned, only one type of model may not be 

sufficient enough to cover all the features of malware; 

therefore, many recent works introduced a combination of 

CNNs and LSTMs for both static and dynamic analyses. They 

both enhance both the accuracy and the robustness of the 

detection mechanisms, and a combination of the two-a ‘hybrid’ 

approach-allows for doing a thorough analysis of file structure 

combined with behavioral data [39]. 

For example, Jeon et al. [40] presented HyMalD, a hybrid 

IoT malware detection framework that combines Bi-LSTM 

and SPP-Net, using both static and dynamic analysis to target 

obfuscated malware. HyMalD gathers static features from 

opcode sequences and dynamic aspects from Application 

programming interface (API) calls, achieving a detection 

accuracy of 92.5% and a false-negative rate of 7.67% when 

compared to solely static approaches. Yet, its dual-analysis 

approach raises the computational load, which can be 

problematic in constrained Internet of Things (IoT) equipment. 

On the other hand, the general approach to ransomware 

detection that Manavi and Hamzeh [41] introduced includes 

the consideration of executable file headers through the LSTM 

network with PE headers. Analyzing byte sequences within 

headers, the model is able to clearly separate ransomware from 

benign files with 93.25% accuracy, which would allow for the 

program’s rapid detection without the need to execute files. 

However, ransomware variants that contaminate header data 

may pose a threat to this approach. 

Surendran et al. [42] presented an effective approach of a 

Dual/Two-Layered Android Malware Detection System. To 

overcome the interrelationships between static features, such 

as API calls and permissions, and dynamic features like 

system calls, they present a Tree Augmented Naive Bayes 

(TAN) model, and the detection accuracy is 97%. 

Nevertheless, the fact that the method targets specific features 

may also provide lower coverage against the new generation 

of malware utilizing other obfuscation techniques. 

Moreover, Taher et al. [43] proposed a novel method of 

analyzing the Android programs for the identification and 

categorization of destructive programs, which overcomes the 

restrictions of past methods against highly intelligent 

obfuscation methods. Their framework includes three phases: 

normalization and rough preprocessing for feature extraction 

of static and dynamic data; feature selection using two 

methods; and a proposed model based on a neural network and 

improved Harris Hawk Optimization (HHO) algorithm. 

The experiments reveal the effectiveness of the concept 

over isolated static and dynamic analysis. However, the 

method digitalizes the search process, which heavily relies on 

the quality of feature extraction and selection, and may 

encounter issues due to the rapid development of malware 

strategies. 

Last but not least Dabas et al. [44] proposed a new effective 

malware detection for Windows based on API calls, features, 

and ML to curb new malware attacks. API call details are 

gathered in three features: use, frequency, and calls as 

sequences, resulting in multiple feature sets for the data set 

preprocessed using the TF-IDF method. Algorithms, despite 

researching and testing this integrated feature set, report better 

than 99.6% precision. 

The study downsizes the feature set by 9% and bounds the 

accuracy from the upper and lower sides as 99.6% to 99.9%. 

However, use of feature selection may reduce the capability of 

detecting the malware because of these techniques that are 

employed by the malware. 

In our research, the idea is to use the DL identification 

approach that integrates both the static and dynamic features 

of the malware while striving to retain the ability to work in 

real time. The model framework includes two complementary 

components: They tested two models that we have named a 

Static-CNN-LSTM model and a Dynamic-CNN 1D-LSTM 

model. 

The four primary static models extract characteristics 

143



 

captured from the binary structure and code pattern of the 

malware, where the CNN and LSTM layers are sensitive and 

prove to give high accuracy in studying the static attributes. 

The Static-CNN-LSTM model that has been built in this paper 

was able to achieve an accuracy rate of 99%, which is 

indicative of high reliability in the identification of known and 

structured malware types. 

On the other hand, the proposed Dynamic-CNN 1D-LSTM 

model targets runtime behavioral analysis, representing 

sequences of actions or events that are initiated by malware at 

runtime within a controlled environment. This model responds 

to the problem of accurately identifying and targeting 

insidious and sneaky malware that may adapt its actions in 

order not to be caught by certain detecting parts. Using CNN 

and 1D-LSTM layers together, the suggested dynamic model 

for telling malware apart based on how it acts is 100% accurate. 

These models are complementary; that is, static analysis 

identifies known viruses, while dynamic analysis is able to 

catch new ones, especially those that are intended to avoid 

static analysis. The proposed hybrid model approach has 

several important benefits for the purpose of real-time 

malware detection. First, it enables pure and fast handling of 

the static and dynamic characteristics of the object. This will 

help the system to identify and classify threats in a highly 

loaded mode. 

Second, the proposed system integrates CNN and LSTM; it 

allows the system to consider both spatial and temporal 

characteristics and is less sensitive to noise. Last but not least, 

the proposed approach's high level of detection accuracy 

reduces the dangers associated with false positives and false 

negatives, which are highly sensitive in fields like 

cybersecurity, where unnoticed threats can have disastrous 

consequences. The research endeavours to achieve the 

following objectives and contributions: 

1) We created two new datasets, each containing 8513 

malware samples, and 1000 non-malware or benign 

samples categorized into 30 different types. The first 

dataset comprises 64 by 64 grayscale images, which 

were converted, while the second dataset is in the 

format of a CSV file, which contains the sequences 

of API calls for each sample. 

2) The detection of malware occurs in real time through 

two distinct methodologies: first, through the 1D- 

CNN, used for analyzing the malware images; second, 

let use long short term memory (LSTM) networks for 

analyzing the API call sequences that was extracted 

by forming the signature using the Python Pefile 

module for every sample. 

3) Since we have 50 samples of each malicious and 

benign program, we only got results from the samples 

that the Python Pefile module analyzed as valid. We 

omitted samples that returned "none," indicating no 

extractable data, to accelerate the detection regime. 

4) Importantly, most of the samples of malware in these 

two sets were obtained in the year 2024, which means 

that many samples will represent the most relevant 

threats in the modern world of malware. 

 

 

2. METHODOLOGY 

 

2.1 Data collection 

 

in this paper, a dataset of 8,513 malicious Portable 

Executable (PE) files was acquired from VirusShare, a source 

commonly utilized by cybersecurity researchers for malware 

samples. 

The virus was classified into 29 families utilizing 

classification labels supplied by Microsoft virus Protection. 

Furthermore, 1,000 benign executable (EXE) files were 

obtained from the studies [45-47], resulting in a balanced 

dataset including 30 categories, as seen in Table 1. 

This study employed two separate datasets. In the first 

dataset, each PE file was transformed into a grayscale picture 

utilizing the methodology proposed by Nataraj et al. [48]. 

The conversion entailed converting binary malware data 

into an 8-bit vector, subsequently transferred to pixel values 

ranging from 0 to 255, with 0 denoting black, 255 denoting 

white, and intermediate values indicating various shades of 

gray. This grayscale depiction facilitated the visual 

examination of discrete binary structures inside the virus, as 

seen in Figure 1. 

 

Table 1. Types of malware families 

 
No. Family Type Samples 

1 Benign Benign 1000 

2 Ako Ransomware 260 

3 Autorun.NE Virus 249 

4 Banker.LY TrojanSpy 260 

5 Delf.DU Backdoor 260 

6 Drolnux.B Worm 259 

7 Eggnog.A Worm 300 

8 GandCrab.AE Ransomware 220 

9 Ganelp.E Worm 260 

10 Linkury.RS!MTB Adware 244 

11 Neconyd.A Trojan 259 

12 Nemucod TrojanDownloader 260 

13 Neojit.A TrojanDownloader 300 

14 OpenInstaller PUA 260 

15 Playtech PUA 260 

16 QQPass.GP PWS 260 

17 Qukart TrojanSpy 260 

18 Resur.A!epo Virus 258 

19 Shodi.A Virus 220 

20 Simda.D PWS 159 

21 Sivis.A Virus 260 

22 Small.M TrojanSpy 260 

23 Soltern!rfn Worm 260 

24 Trickbot.GML! MTB Trojan 300 

25 Unruy.F TrojanDownloader 260 

26 Upatre.A TrojanDownloader 300 

27 Urelas.AA Trojan 260 

28 Wabot.A Backdoor 260 

29 Yoof.E Worm 289 

30 Zombie!rfn Trojan 256 

 

 
 

Figure 1. Process for transforming malware into image 

representations 

 

For the second dataset, the first 50 API call sequences were 

removed from each file to reduce complexity and accelerate 

identification. The extraction procedure utilized the Pefile 

module, a Python program designed for handling PE files. To 

optimize the data, all "none" API requests were omitted. Every 
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distinct API call in all samples was allocated a particular index, 

substituting the API call names with their respective index 

numbers. 

The processed sequences were stored in CSV format, 

maintaining the critical structure for pattern detection and 

analysis while considerably decreasing the data's 

dimensionality. 

 

2.2 Proposed methodology 

 

The suggested malware detection technique utilizes two DL 

models, each specifically designed for distinct data types 

inside the malware detection framework, as seen in Figure 2. 

A CNN was developed in the initial model to examine 

pictures produced from a dataset comprising both malicious 

and benign software samples. We converted the samples into 

the Portable Executable (PE) format, which encompasses 30 

different malware categories. We standardized each image to 

150×150 pixels and normalized it to ensure uniformity in 

feature scaling, preparing the picture data for CNN processing. 

 

 
 

Figure 2. Two-model CNN-LSTM framework for improved 

detection 

 

We divided the dataset into three subsets: 80% for training, 

10% for testing, and 10% for validation, and further shuffled 

it to enhance the accuracy of the model. First, an embedding 

layer (is a way to convert high-dimensional input sequences 

into lower-dimensional vector representations) turns high-

dimensional API sequences into 50-dimensional vector 

representations. Next, a SpatialDropout1D layer (is a dropout 

layer that randomly drops input features to prevent overfitting) 

with a 0.1 dropout rate stops the process from fitting too well. 

We employ a Conv1D layer with 32 filters and a kernel size of 

2 to capture local patterns in the API sequence, using ReLU 

activation and'same' padding. MaxPooling1D, with a pool size 

of 5, succeeds in this by reducing the sequence length while 

maintaining essential characteristics. 

An LSTM layer with 32 units further processes the sequence 

to capture long-term dependencies in the API call patterns. We 

employ a dense layer with a SoftMax activation function to 

categorize the sequence into one of 30 malware classifications. 

We configure the model using the Adam optimizer, categorical 

cross-entropy loss, and accuracy as the performance 

evaluation metric. 

In second model employed LSTM networks on API call 

sequences extracted from the second dataset. We divided the 

dataset into 70% for training, 15% for testing, and 15% for 

validation. The second model employs a Time Distributed 

CNN-LSTM architecture to examine grayscale photos of 

malware specimens. 

The architecture begins with a TimeDistributed (is a layer 

that applies operations across each time step in a sequence 

independently, preserving temporal relationships) Conv2D 

layer, equipped with 64 filters and a (2,2) kernel. This is 

followed by two TimeDistributed MaxPooling2D layers, 

which are designed to extract spatial information and reduce 

dimensionality. We deploy a further Conv2D layer with 128 

filters and additional MaxPooling2D layers to enable deeper 

feature abstraction. 

A TimeDistributed Flatten layer flattens the outputs of these 

layers, allowing an LSTM layer with 100 units to sequentially 

analyze and identify patterns across various regions of the 

malware picture. A concluding dense layer employing a 

SoftMax activation mechanism categorizes the malware 

picture into one of thirty classifications. 

The model uses the Adam optimizer, sparse categorical 

cross-entropy loss, and accuracy as its main metrics to 

accurately group malware into different groups based on 

image data. Figure 3 explains the 1D-2D CNN-LSTM 

Architecture for Dual-Model Integration. 

 

 
 

Figure 3. 1D-2D CNN-LSTM Model: A two-stage 

architecture 
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Additionally, the suggested method uses two separate 

datasets for the two models. One dataset is for grayscale 

images of malware, for which a model was created for static 

analysis, and the other is for the sequences of API calls for 

dynamic analysis. We split the datasets into training, testing, 

and validation sets separately to assess the stability of both 

models. Table 2 displays the summary of the sampling split for 

both models. 

 

Table 2. Dataset splits for static and dynamic analysis 

models 

 
Dataset 

Type 

Total 

Samples 

Training 

Split 

Validation 

Split 

Testing 

Split 

Grayscale 

Images (PE) 
8,513 

80% 6,810 

samples 

10% 852 

samples 

10% 851 

samples 

API Call 

Sequences 
8,513 

70% 5,959 

samples 

15% 1,277 

samples 

15% 1,277 

samples 

 

The Rationale Behind of Dataset Splits for Grayscale 

Images (Static Analysis) and API Call Sequences (Dynamic 

Analysis), where within it the data was divided into 80% for 

training, 10% for testing, and 10% for validation. This split 

also keeps enough samples to test how well the model works 

while giving the CNN enough data to learn features from 

binary structures without overfitting. The 10% set aside for 

testing and validation ensures the model performs well on 

similar data most of the time. 

So, for the API call sequence dataset, a 70:15:15 data split 

was used. This is because more evaluation, testing, and 

validation data should be used to test this model's real-world 

performance. The higher percentage of spending on testing 

and validation is also important for the dynamic model 

because API sequences change, and it is expected that more 

similarities and differences between types of malicious code 

will be found. 

 

2.2.1 Rationale behind the chosen preprocessing methods 

As mentioned before, the chosen preprocessing techniques 

that include converting PE images to grayscale and extracting 

API call sequences are intended to harmonize with each other 

and reflect both the static and dynamic attributes of malware. 

Converting images to grayscale and using static analysis 

After the PE files are made, they are resampled to 150×150 

grayscale images. This makes the feature space less 

complicated without getting rid of the structural information 

in the malware binaries. Since the images are grayscale, the 

model captures spatial features of malware organization that 

set the malicious samples apart from the benign ones. For 

instance, Deepa et al. [38] have explored the use of grayscale 

image representation in malware detection. This method gets 

rid of dependencies on preprocessing and a number of raw data 

features while keeping the most important ones so that VGG16 

can learn from patterns that make sense. 

 

2.2.2 API call sequence extraction for dynamic analysis 

API call sequences capture the dynamic nature of malware 

and can reveal different activities of malware, such as file 

operations, network interactions, and resource misuse. The 

rationale behind selecting API calls stems from the research 

conducted by Zhou et al. [37] and Surendran et al. [42], which 

demonstrated the importance of API-based dynamic features 

in identifying obfuscated malware samples. Furthermore, 

considering the temporal characteristics of networks, the 

dependencies in the API sequences are captured in the long 

term, giving them the ability to identify new tactics used by 

malware. 

 

2.2.3 Complementary roles of preprocessing techniques 

Using both structural and behavioral properties in the 

preprocessing stage makes sure that data from both is taken 

into account. Static features, such as binary patterns, give 

information about known malware types, whereas dynamic 

features, for example, API sequences, identify new and 

constantly evolving malware types. This method uses both 

CNNs and LSTMs to make the best features of both even 

better, making it more reliable, accurate, and adaptable for 

real-time use. Thus, by incorporating these preprocessing 

methods, the given framework enables multi-featured 

malware analysis with consideration of various 

comprehensive characteristics in a relatively short time. 

 

 

3. RESULTS AND DISCUSSION 

 

All the experiments were conducted in the Python language 

and in an environment of the Jupyter Notebook, which allowed 

for the analysis and visualization of results and training of 

models in real-time. The first model trained was the dynamic 

1D CNN-LSTM model, which was trained with health, 

malware, and benign image datasets. 

 

 

 
 

Figure 4. The accuracy and loss curves for the Dynamic-1D-

CNN-LSTM malware detection model 
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We trained this model with a broad dataset, which involved 

converting image files from exe files. The CNN layers learned 

spatial properties, while the LSTM layer learned the 

dependency among sequences of API calls. We trained the 

model for a total of 70 epochs with a batch size of 32, 

achieving an accuracy of 100%. This result confirms that the 

chosen model can correctly classify all samples in the training 

and validation datasets and indicates the sample's quality and 

representativeness. 

The model's ability to achieve the highest possible score 

may indicate its ability to distinguish between malicious and 

non-malicious software, but further experiments on larger 

datasets are necessary to confirm the model's stability. 

Figure 4 displays the aforementioned diagrams, illustrating 

the model's accuracy and training curve during the training 

process. The model's accuracy looks very good, gradually 

increasing with each epoch to ensure effective learning and 

convergence. 

 

 

 
 

Figure 5. The accuracy and loss curves for the Static-2D-

CNN-LSTM malware detection model 

 

The second model used was a Static CNN-LSTM model, 

which like the previous model was trained with batch size of 

32 but training was done only for 40 epochs. This model has 

shown 99% accuracy, thus outcompeting other malware 

detection models reported in the literature. 

The high accuracy achieved by this model is evident to 

show its capability of identifying trends in the static features 

derived from the API call sequence. Evidently, Figure 5 shows 

that the accuracy of this model is fairly stable and reliable 

throughout the different epochs performed in the training 

process. 

After training, both models saved to use in restoration of 

future samples that were not included in training set but 

belonged to four families of malware. This was important in 

determining the extent to which the models could be 

generalized. Given the results of the previous sections, the 

real-time testing indeed revealed that these models would be 

capable of classifying these unseen samples into either the 

benign or specific malware family. 

The external test samples also prove how just fine the 

models are and that the proposed algorithms can be employed 

with actual cases where they would be useful in early 

identification of new and constantly arising malware threats. 

Furthermore, the suggested method is very accurate-up to 

100% with the dynamic CNN 1D-LSTM model-but there are 

some assumptions and limits that need to be thought about at 

the same time: 

• Potential Overfitting: Because the dynamic CNN 1D-

LSTM model is so accurate, it's possible that it's too 

effective at fitting the dataset used in this study. 

Overfitting refers to the model's inability to develop 

with high generality. The division of training, testing, 

and validation sets in this case results in a certain 

degree of cross-validation. However, the issue of data 

overfitting emerges when working with small, well-

defined datasets. To reduce such a risk, regularization 

approaches like dropout and proper selection of the 

learning rate were used, but outside validation is 

needed. 

• Impact of Dataset Size and Diversity: The datasets 

that were used in this study contain modern threats 

but have 8,513 samples and 30 categories of malware. 

The samples may be confined to a relatively small 

range of malware types, and their differentiation 

might not properly reflect a broad spectrum of 

possibilities that meet user experiences in practice. 

The study's strength lies in its extensive use of 

samples from various malware families, each with 

varying levels of obfuscation, across various contexts 

and regions. But a bigger set of data with a lot of 

different malware families, different obfuscation 

heuristics, and different settings or situations would 

have been a much better test for the model. 

Furthermore, data from which sample sequences 

were derived were collected in controlled settings 

only, and their performance in usual, uncontrolled, 

real-time conditions has not been tested yet. 

• As well as the Assumptions Made During Model 

Development The preprocessing steps of casting PE 

files into grayscale images and using API call 

sequences rely on the premise that the image and 

sequence representations are rich enough to encode 

the features that set malware apart. As prior research 

backs these techniques, other possible preprocessing 

strategies may further boost the detection outcomes. 

• Future Work: To address the limitations identified 

above, the following directions are proposed for 

future work: 
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- Testing on Larger and More Diverse Datasets: 

Adding an openly available or competitively 

sourced more extensive malware type dataset in 

conjunction with more generic malware type 

and/or obfuscation types to improve model 

robustness testing. 

- Evaluating Generalization in Real-World 

Scenarios: The training of the models in actual 

scenarios to determine their performance when 

detecting approaches and methods deployed by 

adversaries. 

- Exploring Lightweight Architectures: 

Identifying more efficient hybrid models’ 

settings with low computational demand that 

will not lessen detection efficacy. 

3.1 Comparative analysis with state-of-the-Art models 

 

We conducted a comparison with other malware detection 

studies to contextualize the effectiveness of the proposed 

models. We compared the proposed models using 

performance metrics that include precision, recall, and F1-

scores with other studies to provide a more comprehensive 

view of their performance. The results are shown in Table 3. 

In terms of accuracy as well as F1-score, precision, and 

recall, the proposed hybrid approach outperforms the other 

recent models with remarkable differences. Consequently, 

through static and dynamic analysis, the models are capable of 

identifying traditional and continuously evolving malware 

with high accuracy and stability. 

 

Table 3. Comparison our model of different models 

 
Study Models Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

[49] CNN 97.48 98.71 96.22 97.45 

[50] LSTM 98.38 98.9 98.8 98.9 

[51] TextCNN and LSTM 99 99 98 99 

[52] CVAE-GAN 97.30 92.34 97.44 94.82 

[53]  DNN  94.38 94.82 94.82 94.82 

[54] TL-GNN 98.87 99.55 97.30 99.42 

Our Study 
Static-CNN-LSTM 99 99 99 99 

Dynamic-CNN-1D LSTM 100 100 100 100 
 

 

4. CONCLUSIONS 

 

This paper introduces two novel datasets derived from the 

same samples but analyzed through different methodologies: 

one dataset consists of malware and benign images for static 

analysis classification, while the other encompasses API call 

sequences for dynamic malware classification. To facilitate 

the multi-classification of these samples, we employed two 

distinct DL models. 

The first model, a dynamic 1D CNN-LSTM, utilized the 

dataset of malware and benign images, achieving an 

impressive accuracy of 100%. The second model, which 

implemented a static CNN-LSTM, leveraged the API call 

sequences from the second dataset and attained a high 

accuracy of 99%. 

We retained both models after the training phases and used 

them for real-time malware detection and classification. The 

study's results show that the static CNN-LSTM model is more 

accurate than the other two. This is similar to how well the 

model works when using API call sequences to find malware. 

Furthermore, our results show the benefits of using two 

models instead of one, which might be better than the other 

one. This ensures that if one model fails to identify malware, 

such as those using encryption or advanced masks, another 

model will complement it, thereby enhancing the overall 

detection capability. 

Also, the comparison of malware images and the sequences 

of API calls obtained during the experiment also showed some 

correlation, which can be directly linked to the specific types 

of malwares and will help to systematize the knowledge of 

malware behaviors and to suggest improvements in the 

classification algorithms used in further studies. 
 
 

REFERENCES 

 

[1] Aslan, Ö.A., Samet, R. (2020). A comprehensive review 

on malware detection approaches. IEEE Access, 8: 6249-

6271. https://doi.org/10.1109/ACCESS.2019.2963724 

[2] SL, S.D., Jaidhar, C.D. (2019). Windows malware 

detector using convolutional neural network based on 

visualization images. IEEE Transactions on Emerging 

Topics in Computing, 9(2): 1057-1069. 

https://doi.org/10.1109/TETC.2019.2910086 

[3] Chakkaravarthy, S.S., Sangeetha, D., Vaidehi, V. (2019). 

A survey on malware analysis and mitigation techniques. 

Computer Science Review, 32: 1-23. 

https://doi.org/10.1016/j.cosrev.2019.01.002 

[4] Alsumaıdaee, Y.A. (2019). Automatic malware 

detection using data mining techniques based on power 

spectral density (PSD). Master's Thesis, Altınbaş 

Üniversitesi. 

[5] Botacin, M., Ceschin, F., Sun, R., Oliveira, D., Grégio, 

A. (2021). Challenges and pitfalls in malware research. 

Computers & Security, 106: 102287. 

https://doi.org/10.1016/j.cose.2021.102287 

[6] Akhtar, M.S., Feng, T. (2022). Malware analysis and 

detection using machine learning algorithms. Symmetry, 

14(11): 2304. https://doi.org/10.3390/sym14112304 

[7] Ngo, F.T., Agarwal, A., Govindu, R., MacDonald, C. 

(2020). Malicious software threats. The Palgrave 

Handbook of International Cybercrime and 

Cyberdeviance, Palgrave Macmillan, Cham, pp. 793-813. 

https://doi.org/10.1007/978-3-319-78440-3_35 

[8] Kurnaz, S., Ahmed, Y. (2019). Automatic malware 

detection using data mining techniques based on Power 

Spectral Density (PSD). International Journal of 

Computer Science and Mobile Computing, 8(3): 27-30. 

[9] Shaukat, K., Luo, S., Varadharajan, V. (2023). A novel 

deep learning-based approach for malware detection. 

Engineering Applications of Artificial Intelligence, 122: 

106030. https://doi.org/10.1016/j.engappai.2023.106030 

[10] Al-Tahee, M., Easa, H.K., Jabbar, K.A., Hussein, L., 

148



 

Alatba, S.R., Mohammed, M.A. (2024). Artificial 

intelligence assisted cyber-Physical systems with 

intelligent cyber security using deep learning. In 2024 

International Conference on Smart Systems for 

Electrical, Electronics, Communication and Computer 

Engineering (ICSSEECC), Coimbatore, India, pp. 689-

694. 

https://doi.org/10.1109/ICSSEECC61126.2024.106494

28 

[11] Aurangzeb, S., Aleem, M. (2023). Evaluation and 

classification of obfuscated Android malware through 

deep learning using ensemble voting mechanism. 

Scientific Reports, 13(1): 3093. 

https://doi.org/10.1038/s41598-023-30028-w 

[12] Ahmed, S.R., Mohamed, S.J., Aljanabi, M.S., Algburi, 

S., Majeed, D.A., Kurdi, N.A., Al-Sarem, M., Tawfeq, 

J.F. (2024). A novel approach to malware detection using 

machine learning and image processing. In Proceedings 

of the Cognitive Models and Artificial Intelligence 

Conference, pp. 298-302. 

https://doi.org/10.1145/3660853.3660931 

[13] Alsmadi, T., Alqudah, N. (2021). A survey on malware 

detection techniques. In 2021 International Conference 

on Information Technology (ICIT), Amman, Jordan, 

IEEE, pp. 371-376. 

https://doi.org/10.1109/ICIT52682.2021.9491765 

[14] Gopinath, M., Sethuraman, S.C. (2023). A 

comprehensive survey on deep learning based malware 

detection techniques. Computer Science Review, 47: 

100529. https://doi.org/10.1016/j.cosrev.2022.100529 

[15] Faruk, M.J.H., Shahriar, H., Valero, M., Barsha, F.L., 

Sobhan, S., Khan, M.A., Whitman, M., Cuzzocrea, A., 

Lo, D., Rahman, A., Wu, F. (2021). Malware detection 

and prevention using artificial intelligence techniques. In 

2021 IEEE International Conference on Big Data (Big 

Data), Orlando, FL, USA, pp. 5369-537. 

https://doi.org/10.1109/BigData52589.2021.9671434 

[16] Naseer, M., Rusdi, J.F., Shanono, N.M., Salam, S., 

Muslim, Z.B., Abu, N.A., Abadi, I. (2021). Malware 

detection: Issues and challenges. Journal of Physics: 

Conference Series, 1807(1): 012011. 

https://doi.org/10.1088/1742-6596/1807/1/012011 

[17] Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., 

Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A., 

Al-Amidie, M., Farhan, L. (2021). Review of deep 

learning: concepts, CNN architectures, challenges, 

applications, future directions. Journal of Big Data, 8: 1-

74. https://doi.org/10.1186/s40537-021-00444-8 

[18] Thakur, P., Kansal, V., Rishiwal, V. (2024). Hybrid deep 

learning approach based on LSTM and CNN for malware 

detection. Wireless Personal Communications, 136(3): 

1879-1901. https://doi.org/10.1007/s11277-024-11366-

y 

[19] Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., 

Pandya, S., Modi, K., Ghayvat, H. (2021). CNN variants 

for computer vision: History, architecture, application, 

challenges and future scope. Electronics, 10(20): 2470. 

https://doi.org/10.3390/electronics10202470 

[20] Karat, G., Kannimoola, J.M., Nair, N., Vazhayil, A., 

Sujadevi, V.G., Poornachandran, P. (2024). CNN-LSTM 

hybrid model for enhanced malware analysis and 

detection. Procedia Computer Science, 233: 492-503. 

https://doi.org/10.1016/j.procs.2024.03.239 

[21] Aboaoja, F.A., Zainal, A., Ghaleb, F.A., Al-Rimy, 

B.A.S., Eisa, T.A.E., Elnour, A.A.H. (2022). Malware 

detection issues, challenges, and future directions: A 

survey. Applied Sciences, 12(17): 8482. 

https://doi.org/10.3390/app12178482 

[22] Ngo, Q.D., Nguyen, H.T., Le, V.H., Nguyen, D.H. 

(2020). A survey of IoT malware and detection methods 

based on static features. ICT Express, 6(4): 280-286. 

https://doi.org/10.1016/j.icte.2020.04.005 

[23] Shhadat, I., Hayajneh, A., Al-Sharif, Z.A. (2020). The 

use of machine learning techniques to advance the 

detection and classification of unknown malware. 

Procedia Computer Science, 170: 917-922. 

https://doi.org/10.1016/j.procs.2020.03.110 

[24] Al-Janabi, M., Altamimi, A.M. (2020). A comparative 

analysis of machine learning techniques for 

classification and detection of malware. In 2020 21st 

International Arab Conference on Information 

Technology (ACIT), Giza, Egypt, pp. 1-9. 

https://doi.org/10.1109/ACIT50332.2020.9300081 

[25] Wadkar, M., Di Troia, F., Stamp, M. (2020). Detecting 

malware evolution using support vector machines. 

Expert Systems with Applications, 143: 113022. 

https://doi.org/10.1016/j.eswa.2019.113022 

[26] Easa, H.K., Saber, A.A., Hamid, N.K., Saber, H.A. 

(2023). Machine learning based approach for detection 

of fake banknotes using support vector machine. 

Indonesian Journal of Electrical Engineering and 

Computer Science, 31(2): 1016-1022. 

https://doi.org/10.11591/ijeecs.v31.i2.pp1016-1022 

[27] Wong, W.K., Juwono, F.H., Apriono, C. (2021). Vision-

Based malware detection: A transfer learning approach 

using optimal ECOC-SVM configuration. IEEE Access, 

9: 159262-159270. 

https://doi.org/10.1109/ACCESS.2021.3131713 

[28] Babbar, H., Rani, S., Sah, D.K., AlQahtani, S.A., Kashif 

Bashir, A. (2023). Detection of android malware in the 

internet of things through the K-nearest neighbor 

algorithm. Sensors, 23(16): 7256. 

https://doi.org/10.3390/s23167256 

[29] Al Saaidah, A., Abualhaj, M.M., Shambour, Q.Y., Abu-

Shareha, A.A., Abualigah, L., Al-Khatib, S.N., 

Alraba’nah, Y.H. (2024). Enhancing malware detection 

performance: Leveraging K-Nearest neighbors with 

firefly optimization algorithm. Multimedia Tools and 

Applications, 1-24. https://doi.org/10.1007/s11042-024-

18914-5 

[30] Abu Al-Haija, Q., Odeh, A., Qattous, H. (2022). PDF 

malware detection based on optimizable decision trees. 

Electronics, 11(19): 3142. 

https://doi.org/10.3390/electronics11193142 

[31] Mat, S.R.T., Ab Razak, M.F., Kahar, M.N.M., Arif, J.M., 

Firdaus, A. (2022). A Bayesian probability model for 

Android malware detection. ICT Express, 8(3): 424-431. 

https://doi.org/10.1016/j.icte.2021.09.003 

[32] Yerima, S.Y., Alzaylaee, M.K., Shajan, A.P.V. (2021). 

Deep learning techniques for android botnet detection. 

Electronics, 10(4): 519. 

https://doi.org/10.3390/electronics10040519 

[33] Amin, M., Tanveer, T.A., Tehseen, M., Khan, M., Khan, 

F.A., Anwar, S. (2020). Static malware detection and 

attribution in android byte-code through an end-to-end 

deep system. Future Generation Computer Systems, 102: 

112-126. https://doi.org/10.1016/j.future.2019.07.070 

[34] Bakhshinejad, N., Hamzeh, A. (2020). Parallel‐CNN 

149



 

network for malware detection. IET Information 

Security, 14(2): 210-219. https://doi.org/10.1049/iet-

ifs.2019.0159 

[35] Yeboah, P.N., Baz Musah, H.B. (2022). NLP technique 

for malware detection using 1D CNN fusion model. 

Security and Communication Networks, 2022(1): 

2957203. https://doi.org/10.1155/2022/2957203 

[36] Jha, S., Prashar, D., Long, H.V., Taniar, D. (2020). 

Recurrent neural network for detecting malware. 

Computers & Security, 99: 102037. 

https://doi.org/10.1016/j.cose.2020.102037 

[37] Zhou, H., Yang, X., Pan, H., Guo, W. (2020). An android 

malware detection approach based on SIMGRU. IEEE 

Access, 8: 148404-148410. 

https://doi.org/10.1109/ACCESS.2020.3007571 

[38] Deepa, K., Adithyakumar, K.S., Vinod, P. (2022). 

Malware image classification using vgg16. In 2022 

International Conference on Computing, 

Communication, Security and Intelligent Systems 

(IC3SIS), Kochi, India, pp. 1-6. 

https://doi.org/10.1109/IC3SIS54991.2022.9885587 

[39] Salih, A., Zeebaree, S.T., Ameen, S., Alkhyyat, A., 

Shukur, H.M. (2021). A survey on the role of artificial 

intelligence, machine learning and deep learning for 

cybersecurity attack detection. In 2021 7th International 

Engineering Conference “Research & Innovation amid 

Global Pandemic"(IEC), Erbil, Iraq, pp. 61-66. 

https://doi.org/10.1109/IEC52205.2021.9476132 

[40] Jeon, J., Jeong, B., Baek, S., Jeong, Y.S. (2021). Hybrid 

malware detection based on Bi-LSTM and SPP-Net for 

smart IoT. IEEE Transactions on Industrial Informatics, 

18(7): 4830-4837. 

https://doi.org/10.1109/TII.2021.3119778 

[41] Manavi, F., Hamzeh, A. (2021). Static detection of 

ransomware using LSTM network and PE header. In 

2021 26th International Computer Conference, 

Computer Society of Iran (CSICC), Tehran, Iran, pp. 1-

5. https://doi.org/10.1109/CSICC52343.2021.9420580 

[42] Surendran, R., Thomas, T., Emmanuel, S. (2020). A 

TAN based hybrid model for android malware detection. 

Journal of Information Security and Applications, 54: 

102483. https://doi.org/10.1016/j.jisa.2020.102483 

[43] Taher, F., AlFandi, O., Al-kfairy, M., Al Hamadi, H., 

Alrabaee, S. (2023). DroidDetectMW: A hybrid 

intelligent model for android malware detection. Applied 

Sciences, 13(13): 7720. 

https://doi.org/10.3390/app13137720 

[44] Dabas, N., Ahlawat, P., Sharma, P. (2023). An effective 

malware detection method using hybrid feature selection 

and machine learning algorithms. Arabian Journal for 

Science and Engineering, 48(8): 9749-9767. 

https://doi.org/10.1007/s13369-022-07309-z 

[45] Al-Musawi, H.S.H. (2022). Hybrid malware detection 

and classification in real-time by deep learning 

techniques. Doctoral Dissertation. 

[46] Bruzzese, R. (2024). Building visual malware dataset 

using virusshare data and comparing machine learning 

baseline model to CoAtNet for malware classification. In 

Proceedings of the 2024 16th International Conference 

on Machine Learning and Computing, pp. 185-193. 

https://doi.org/10.1145/3651671.3651735 

[47] Yang, L., Ciptadi, A., Laziuk, I., Ahmadzadeh, A., Wang, 

G. (2021). BODMAS: An open dataset for learning 

based temporal analysis of PE malware. In 2021 IEEE 

Security and Privacy Workshops (SPW), San Francisco, 

CA, USA, pp. 78-84. 

https://doi.org/10.1109/SPW53761.2021.00020 

[48] Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S. 

(2011). Malware images: Visualization and automatic 

classification. In Proceedings of the 8th International 

Symposium on Visualization for Cyber Security, pp. 1-

7. https://doi.org/10.1145/2016904.2016908 

[49] Zhang, S., Hu, C., Wang, L., Mihaljevic, M.J., Xu, S., 

Lan, T. (2023). A malware detection approach based on 

deep learning and memory forensics. Symmetry, 15(3): 

758. https://doi.org/10.3390/sym15030758 

[50] Alomari, E.S., Nuiaa, R.R., Alyasseri, Z.A.A., 

Mohammed, H.J., Sani, N.S., Esa, M.I., Musawi, B.A. 

(2023). Malware detection using deep learning and 

correlation-based feature selection. Symmetry, 15(1): 

123. https://doi.org/10.3390/sym15010123 

[51] Zhang, S., Gao, M., Wang, L., Xu, S., Shao, W., Kuang, 

R. (2025). A malware-Detection method using deep 

learning to fully extract API sequence features. 

Electronics, 14(1): 167. 

https://doi.org/10.3390/electronics14010167 

[52] Huang, Y., Liu, J., Xiang, X., Wen, P., Wen, S., Chen, 

Y., Chen, L., Zhang, Y. (2024). Malware identification 

method in industrial control systems based on 

Opcode2vec and CVAE-GAN. Sensors, 24(17): 5518. 

https://doi.org/10.3390/s24175518 

[53] Li, H., Xu, G., Wang, L., Xiao, X., Luo, X., Xu, G., 

Wang, H. (2024). MalCertain: Enhancing deep neural 

network based android malware detection by tackling 

prediction uncertainty. In Proceedings of the IEEE/ACM 

46th International Conference on Software Engineering, 

pp. 1-13. https://doi.org/10.1145/3597503.3639122 

[54] Raza, A., Qaisar, Z.H., Aslam, N., Faheem, M., Ashraf, 

M.W., Chaudhry, M.N. (2024). TL‐GNN: Android 

malware detection using transfer learning. Applied AI 

Letters, 5(3): e94. https://doi.org/10.1002/ail2.94 

 

150




