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Spectrum constraints are a significant problem in the field of communication networks. 

A cutting-edge wireless communication technology called cognitive radio allows devices 

to maximize spectrum consumption and adjust to their surroundings dynamically. Despite 

its promise, cognitive radio technology has several security vulnerabilities that endanger 

the network. Cognitive radio security is crucial to accomplish dynamic spectrum access. 

We can ensure that cognitive radio technology is deployed and operated securely by being 

aware of and responding to these security concerns. In cognitive radio, artificial 

intelligence is crucial in identifying malevolent users. This work employs an ensemble of 

long-term, and short-term, GRU approach to distinguish fraudulent users from authorized 

users. The suggested method for detection was implemented on data sets containing 

several parameters, including SNR and modulation scheme energy. The proposed 

algorithm shows compelling evidence of outperforming the state-of-the-art algorithms in 

detection. 
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1. INTRODUCTION

The swift development of 5G technology is driving 

extraordinary innovations in the telecommunication industry, 

resulting in remarkable enhancements to data speed, network 

capacities, and connectivity options. By enabling unlicensed 

users, cognitive radio has the potential to be a transformative 

technology that solves problems related to spectrum shortages. 

Dynamic spectrum access and spectrum awareness are crucial 

features of cognitive radio networks (CRN) [1]. Cognitive 

Radio devices provide real-time sensing and detection 

capabilities for available spectrum bands and can intelligently 

transition between various spectrum bands to enhance 

communication. Spectrum efficiency can be improved by 

maximizing capacity, decreasing congestion, and optimizing 

spectrum consumption. 

The cognitive radio system, although offering several 

benefits, is not immune to malicious attacks, which can 

compromise its functionality and security. Critical malicious 

attacks are [2]: 

Spectrum sensing and data falsification: malevolent nodes 

can alter spectrum sensing data, resulting in inaccurate 

choices. This is one of the leading security concerns with 

cognitive radio. 

Primary user emulation attack: malicious nodes can 

impersonate primary users, leading cognitive radio devices to 

unnecessarily exit the channel. This technique is known as the 

"primary user emulation attack." 

Interference and jamming: malevolent nodes can impede 

intelligent radio transmission. 

Eves dropping and privacy: CR devices can intercept 

private data. 

To address the complexities of identifying malicious users, 

this study leverages robust artificial intelligence methods [3]. 

Specifically, it presents a deep learning approach for detecting 

illegitimate users in cognitive radio networks (CRNs). Deep 

learning, a subset of machine learning, utilizes artificial neural 

networks to analyze and interpret complex data. By mimicking 

the human brain's structure and function, deep learning 

algorithms can refine their performance independently. 

This research focuses on Recurrent Neural Networks 

(RNNs), particularly suitable for sequential data, to investigate 

security concerns in CRNs. The expanding use of 5G cognitive 

radio networks has increased their vulnerability to novel 

security threats, rendering traditional protection measures 

ineffective. The intricate technologies underlying these 

networks present significant challenges in detecting and 

mitigating malicious activities. 

Conventional detection methods are inadequate against 

rapidly evolving and complex threats. Therefore, 5G cognitive 

radio networks require advanced, real-time detection 

mechanisms. This research proposes a pioneering, ensemble-

based framework for identifying malicious users in 5G 

cognitive radio networks. By integrating multiple deep 

learning algorithms, the framework aims to enhance detection 

accuracy, robustness, and adaptability. 

A novel ensemble model, combining Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) 

techniques, is proposed to identify and classify malicious users 

in cognitive radio networks. The model's performance is 

evaluated through an extensive simulation study, utilizing a 

proprietary database, to assess its effectiveness in detecting 

malicious activities. 
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2. RELATED WORK 

 

In reference [4], GRU -SVM-based threat detection system 

for CRNs. This approach combines the strength of GRU 

(Gated recurrent units) and SVM (support vector machine) to 

effectively notice the threats in CRNs. The GRU-SVM-based 

system has demonstrated improved detection accuracy and 

reduced false alarms compared to traditional threat detection 

approaches. The system effectively detected various types of 

security threats in CRNs, including primary user emulation 

attacks as well as spectrum sensing and data falsification 

attacks. In CRN, the GRU-SVM model has an 82.45 percent 

testing accuracy and an 80.99 percent training accuracy in 

identifying hostile users. 

Benazzouza et al. [5] propose a novel prediction model that 

combines stacking and DL techniques for malicious user 

detection and spectrum sensing. The authors use a dataset of 

CRN simulations to evaluate the proposed model. The data set 

includes features like signal-to-noise ratio, signal strength, and 

modulation type. The outcomes determine that the suggested 

model achieves a higher detection accuracy of 95.6 percent 

and a low false alarm rate (2.1) for malicious user detection. 

This proposed model provides an effective solution for 

malicious user detection and spectrum sensing in CRNs. The 

combination of stacking and DL techniques improves the 

detection accuracy and reduces false alarms. 

CRN [6] are vulnerable to SSDF (spectrum sensing and data 

falsification) attacks, which can compromise the security and 

reliability of the network. For SSDF attack detection in CRNs, 

the authors suggest a unique hierarchical ensemble extreme 

learning machine (HCME-ELM) based on cats and mice. 

Three steps make up the suggested approach: extreme learning 

machine, hierarchical ensemble, and data pre-processing. The 

authors evaluate the proposed HCME-ELM method using a 

simulated CRN network. The result shows that the proposed 

method achieves high detection accuracy (97.5) and low false 

alarm rate (2.1) for SSDF attack detection. The HCME-ELM 

method provides an effective solution for SSDF attack 

detection in CRNs. The detection accuracy is increased and the 

false alarm rate is decreased by using the hierarchical 

ensemble technique using ELM as the basic classifier. 

The IoT (Internet of things) and 5th generation networks are 

vulnerable [7] to various types of intrusions including 

malware, ransomware, and denial of service (Dos) attacks. 

These assaults are not detectable by conventional security 

measures like intrusion detection systems and firewalls. To 

identify breaches in IOT and 5G networks, the authors suggest 

a cognitive security framework that makes use of the DL 

approach. The authors evaluate the proposed framework using 

a dataset of network traffic data from IoT and 5G networks. 

The findings demonstrate that the suggested framework 

detects intrusions with a low false positive rate of 2.1% and a 

high accuracy of 95.6%. 

Reference [8] presents a novel framework, Optimal Deep 

Learning Empowered Malicious User Detection for Spectrum 

Sensing (ODL-MUDSS), designed to automatically identify 

and classify malicious users (MUs) in Cognitive Radio 

Networks (CRNs). The ODL-MUDSS model leverages deep 

belief networks (DBNs) to detect MUs with high accuracy. To 

further enhance the recognition performance of DBNs, the 

model incorporates the sand cat swarm optimization (SCSO) 

algorithm, leading to improved detection results. The 

performance of the ODL-MUDSS technique is extensively 

validated through various experiments. The comprehensive 

evaluation results demonstrate the superiority of the ODL-

MUDSS model over existing approaches, achieving 

exceptional performance metrics, including: Accuracy: 

97.75%, Precision: 97.75%, Recall: 97.75%, F-score: 97.75%. 

 

 

3. SYSTEM MODEL 

 

The application of DL approaches has led to notable 

progress in the fields of sequential data modeling and natural 

language processing (NLP). Complex patterns and 

correlations in sequential data can be captured with 

remarkable performance by GRU (Gated Recurrent Unit) and 

LSTM (Long Short-Term Memory) architectures. However, 

individual LSTM and GRU models are not immune to 

limitations. LSTMs often suffer from high computational costs 

and vanishing gradients, whereas GRUs face challenges in 

capturing long-term dependencies. This study suggests a novel 

ensemble model that combines the advantages of GRU and 

LSTM architectures in a synergistic manner to overcome these 

constraints. In this case, we employ the ensemble model of the 

LSTM model as well as the GRU model to detect malicious 

users (Figure 1). Such algorithms are RNN types that are ideal 

for analyzing sequential data, such as user signals in a CRN. 

 

 
 

Figure 1. System model 

 

LSTM is a widely utilized architecture [9] of RNN in DL. 

Using its long-term dependencies, this method is perfect for 

producing sequence predictions. Long-term memory, short-

term memory, and recent past event data are used to make 

decisions. By permitting the gradient to pass through the cell 

state and maintaining a constant error flow that prevents the 

gradient from vanishing, LSTM can manage long-term 

dependencies. As shown in Fig. 1, the LSTM-GRU Ensemble 
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Model's workflow involves a three-stage process, consisting 

of data preprocessing, classification, and identification of 

malicious users. The experiments are conducted with the help 

of own dataset generated in the lab [10]. The different stages 

included in the classification process are data collection and 

pre-processing. Data preparation involves dividing it into 

training, testing sets, and validation sets. 

The third stage of LSTM&GRU model creation provides for 

the selection of several layers and activation functions of the 

network. Further steps are training, classification, and 

evaluation. During the training process, data is input into the 

LSTM model, as well as the GRU model learns patterns and 

relationships in the data and monitors the performance metrics 

[11]. The classification stages model uses the trained LSTM 

model to classify new unseen sequences and select the class 

including the higher possibility as the predicted class.  

 

3.1 LSTM and GRU architecture  

 

LSTM cells constitute the essential parts of LSTM networks 

shown in Figure 2. Each cell possesses an output gate, an input 

gate, as well as a forget gate [12]. An LSTM layer is created 

when a single LSTM cell gets input from the layer above and 

outputs to the layer below. The LSTM architecture is made up 

of at least one LSTM layer. Prediction or else categorization is 

done using the output of the last LSTM layer. The cell state of 

the LSTM layer keeps the data over an extended period, and 

for a brief interval of time, the information is stored in a hidden 

state. The sigmoid [13] function and tanh layers are the 

activation functions. Three gates are there in each LSTM cell: 

output gate, input gate, as well as forget gate. 

 

 
 

Figure 2. LSTM architecture 

 

 
 

Figure 3. GRU architecture 

 

A particular kind of RNN architecture called GRU is shown 

in Figure 3 made to process sequential data, including time 

series data, natural language processing, and speech 

recognition. The GRU (gated Recurrent Unit) architecture 

comprises four primary components: input gate, output gate, 

cell state, reset gate, along with hidden state, which work 

together to facilitate efficient and effective sequential data 

processing. The input gate regulates the influx of fresh 

information into the cell state. The present input and the prior 

hidden state are utilized as inputs to produce a number ranging 

from 0 to 1, indicating the quantity of new information to be 

incorporated into the cell state. 

To regulate the information flow from prior hidden state to 

the present hidden state, the reset gate is essential. It calculates 

how much historical data should be eliminated by producing a 

value among 0 and 1 depending on the current input and the 

earlier hidden state. The cell state, on the other hand, serves as 

the GRU's internal memory, which is updated by integrating 

the previous cell state, input gate, and reset gate. In the GRU 

architecture, the hidden state constitutes output generated at 

each time step, resulting from the interaction between the 

output gate and cell state. Additionally, the output gate 

controls the information that flows from the hidden state to the 

output by using the input and prior hidden state to calculate a 

value between 0 and 1, which shows the magnitude of the 

output information. 

 

The entry of fresh data into the cell is controlled by the input 

gate. 

 

𝐼𝐺 = 𝜎[𝑤𝐼(𝐹𝑡 , 𝑌𝑡−1) + 𝐶𝐼] (1) 

 

Output gate Manages the cell's output. 

 

𝑂𝐺 = 𝜎[𝑤𝑂(𝐹𝑡 , 𝑌𝑡−1) + 𝑐𝑜] (2) 

 

The forget gate controls the data that should be discarded 

from the prior cell state. 

 

𝐹𝐺 = 𝜎[𝑤𝐹(𝐹𝑡 , 𝑌𝑡−1) + 𝑐𝐹] (3) 

 

Memory cell that is given by 

 

𝑀𝑡 = tan𝐻[𝑤𝑀(𝐹𝑡 , 𝑌𝑡−1) + 𝑐𝑀] (4) 

 

 

4. RESULT AND DISCUSSION 

 

The proposed ensemble model harnesses the synergistic 

strengths of LSTMs and GRUs to enhance the precision and 

resilience of sequential data modeling. By integrating the long-

term memory capabilities of LSTMs with the efficient gating 

mechanism of GRUs, the ensemble model can more 

effectively capture intricate patterns and relationships in 

sequential data. This section examines the LSTM&GRU 

ensemble approach's MU identification results. We employed 

our unique datasets, which were specifically designed and 

compiled for the experiments. The information about the 

dataset is outlined in Table 1. We prepared datasets of 10,000 

samples. We conducted several thorough simulations to assess 

how well the suggested approach performed [14]. Thirty 

percent of the dataset is put aside for testing throughout the 

training phase, while the rest of the 70 percent is utilized for 

training. The model is trained utilizing 7000 data samples, and 

3000 data samples are chosen for model testing. Table 1 

demonstrates the sample dataset of characteristics, including 

modulation scheme, power level, frequency band, 
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transmission time, entropy, SNR, and energy of the signal. The 

data set is labeled as malicious and primary users according to 

the set parameters. The frequency band used for this study is 

2.4GHz. 

The proposed model's performance in detecting MUs is 

evaluated using confusion matrices, as illustrated in Figures 4 

and 5. These matrices facilitate a comprehensive evaluation of 

the model's accuracy, pinpointing its strengths and 

weaknesses. In the context of binary classification, the 

confusion matrix results comprise four essential variables, 

with true positives and true negatives being vital indicators of 

performance [15]. 

The following measures are used to assess the model's 

performance: 

True Positive (TP): Actual positive occurrences are 

appropriately predicted by the model as positive. Malicious 

users are effectively identified as such in this suggested 

strategy. 

True Negative (TN): The actual negative instance is 

properly predicted by the model to be negative. Primary users 

are successfully identified as primary users in this model. 

False Negative (FN): Primary users are mistakenly thought 

to be malicious. 

False Positive (FP): The Malicious users are incorrectly 

identified as the primary users. 

 

Table 1. Data set model 

 
Modulation Power Level (dBm) Frequency Band Transmission Time Entropy SNR (dB) Energy Class 

QPSK -53.463 2.5GHz Regular 6.324234 8.750942 18.11682 Malicious 

QAM -71.2432 2.4GHz Irregular 0.773697 7.748341 7.094953 Malicious 

BPSK -86.4234 2.5GHz Regular 3.879428 14.78016 26.41114 Malicious 

BPSK -88.3579 2.1GHz Irregular 2.733452 16.89098 28.00546 Malicious 

QPSK -68.231 1.8GHz Regular 1.263381 8.302331 17.57211 PU 

QPSK -60.8332 1.8GHz Regular 3.89735 9.362323 19.51454 PU 

QPSK -85.9626 2.4GHz Regular 0.394418 12.63905 23.13752 Malicious 

 

  
  

Figure 4. Confusion matrix of testing Figure 5. Confusion matrix of training 

 

The goal of this DL models is to identify complex patterns 

as well as relationships within training data, enabling accurate 

predictions and classification decisions. Evaluating precision, 

accuracy, recall, as well as F-score is essential to ensure 

optimal model performance, as these metrics offer a 

comprehensive understanding of model strengths, 

weaknesses, and opportunities for refinement. 

Accuracy: The percentage of correctly categorized nodes 

relative to the total number of nodes evaluated is known as 

accuracy. Its definition is as follows: 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

 

Precision is a quality metric when assessing a machine-

learning model. When making positive predictions, it gauges 

how accurate the model is. It may be explained as: 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

An ML model can be assessed as a quantity metric. It 

computes the overall number of successful positive 

predictions made out of all possible positive predictions. It is 

characterized as Recall. 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

 

The balance between precision as well as recall is evaluated 

by the F score, that is the harmonic mean of both precision and 

recall. The ideal value of the Fscore is 1. 

 

𝐹𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (8) 

 

MCC measures the correlation between predicted and actual 

classes. 

 

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (9) 

 

Table 2 demonstrates the performance matrices of the 

recommended model. Comparing the models using a curve-

based method, such as the PR (Precision-Recall) curve, is 

another way to explore the various models' classifier 

performance. Figures 6 and 7 illustrate the suggested model's 
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P-R curve. The precision-recall curves focus on the trade-off 

between precision & recall. The PR curve uses the x-axis to 

show the recall value and the y-axis to show the precision 

value. A higher recall indicates fewer false negatives, whereas 

a higher accuracy value indicates fewer false positives. 

 

Table 2. Performance calculations of training data 

 

Performance Metrics 
Training Testing 

PU Malicious Overall PU Malicious Overall 

Accuracy .8135 0.986 0.9088 0.8475 0.9857 0.9166 

Precision 0.8852 0.9782 0.9317 0.8838 0.9805 0.9322 

Recall 0.8315 0.986 0.9088 0.8475 0.9857 0.9166 

F-Score 0.8575 0.9821 0.9198 0.8653 0.9831 0.9242 

MCC 0.8401 0.8401 0.8401 0.8486 0.8486 0.8486 

 

  
  

Figure 6. P-R Curve of testing model Figure 7. PR Curve of training model 

  

  
  

Figure 8. ROC curve of the testing model Figure 9. ROC curve of training model 

  

  
  

Figure 10. Training & validation accuracy Figure 11. Training & validation loss 
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Table 3. Training & validation accuracy and loss 

 

Epochs Training Accuracy Validation Accuracy Training Loss Validation Loss 

1 0.5891 0.885 0.6771 0.6094 

5 0.9357 0.9313 0.4449 0.4312 

10 0.9551 0.953 0.301 0.2939 

15 0.9616 0.9617 0.2058 0.2033 

20 0.9653 0.967 0.1467 0.1467 

25 0.9691 0.97 0.1111 0.1124 

 

A steep precision-recall curve indicates a high-performance 

classifier. The average precision (AP) is the summary metric 

that measures the classifier's performance across all recall 

values. A higher AP indicates a better classifier. In the 

proposed model, the AP value of the primary user is 0.93, and 

for malicious users, AP=0.99 A high-quality classifier will 

always have an AP value greater than 0.5 or equal to 1. 

Therefore, the suggested model provides a superior 

classification. 

The performance of a classifier is visually represented by 

the ROC curve, that contrasts the true positive rate and false 

positive rate across distinct thresholds [16]. This plot provides 

another way to visualise the performance of a classifier [17]. 

The percentage of real positive cases that the classifier 

accurately recognizes is evaluated by the true positive rate. A 

good classifier, requires a high TPR preferably greater than 

0.9. The proposed model classifier shows a good TPR for 

testing and training models. 

The classifier's efficacy is evaluated using the AUC metric, 

demonstrating a strong link between scores (0.5-1) and 

accuracy. Figures 8 and 9 illustrate the proposed LSTM-GRU 

model's exceptional performance, achieving AUC values of 

0.992 (training) and 0.9907 (testing) with an 80:20 train-test 

split, outperforming other models. Moreover, training 

accuracy and validation accuracy are crucial parameters, 

indicating the model's reliability. The training and validation 

accuracy plots in Figures 10 and 11 provide insight into the 

model's performance. A well-performing model should 

achieve high accuracy in both training and validation phases, 

indicating good generalization and robustness [18]. By 

dividing the total number of training samples by the number 

of correct predictions, the training accuracy has been 

determined. To calculate validation accuracy, divide the 

number of correct predictions by the total number of validation 

samples [19]. Separate datasets are used for validation 

accuracy, which are not used during training. Validation 

accuracy is a better indicator of the model performance on 

real-world data. The accuracy of the training and validation 

sets is summarized in Table 3. As the model undergoes more 

training epochs, its validation accuracy consistently improves, 

outperforming other models and showcasing its enhanced 

capabilities. 

Overfitting is the reason why training accuracy is usually 

higher than validation accuracy. For a model to perform well, 

both validation and training accuracy should be high, and the 

margin between the two should be minimal. A low training 

loss suggests that the model is fitting in the training data 

effectively. Loss of training is a measure of the proposed 

model's error. Usually, validation loss exceeds training loss 

[20]. The average loss over the validation samples on a 

separate validation data set is used to calculate validation loss. 

Table 3 demonstrates the accuracy as well as training loss 

along with validation data for different epochs. A comparison 

of the LSTM-GRU model with existing methods is presented 

in Figure 12. The simulation results reveal that the GRU-SVM 

model underperforms, whereas the GRU-LSTM model 

achieves enhanced performance in detecting malicious users 

in cognitive radio networks (CRN). 

 

 
 

Figure 12. Comparison of different models 

 

 

5. CONCLUSIONS 

 

This study highlights the importance of artificial 

intelligence, particularly the LSTM-GRU ensemble model, in 

identifying malicious users in Cognitive Radio Networks 

(CRNs). The proposed model offers a triple advantage: 

superior accuracy, enhanced robustness, and improved 

efficiency. By combining the strengths of LSTMs and GRUs, 

the ensemble model achieves higher accuracy and 

demonstrates improved resilience to noisy or missing data. 

Additionally, the incorporation of GRU reduces 

computational costs, making the model more suitable for 

large-scale sequential data modeling tasks. 

The results show that the LSTM-GRU model accurately 

detects malicious users with a peak accuracy of 98%. To 

further improve the model's performance, future studies 

should focus on developing more diverse and extensive 

datasets. This study validates the effectiveness and reliability 

of the LSTM-GRU model in detecting fraudulent users within 

CRNs. 

Future research can explore the development of a hybrid 

approach that combines metaheuristic optimization techniques 

with multimodal fusion methods to enhance the accuracy and 

effectiveness of malicious user detection in CRNs. 
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