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Smoothing and denoising ECG signals are challenging in biomedical signal processing 

applications. This paper proposes a new smoothing and denoising ECG signal method 

based on a proposed modified smoothing spline (MSS) method and mean discrete wavelet 

(MDW). The traditional smoothing spline (TSS) method uses a certain smoothing 

parameter value for overall samples of the noisy signal with moderate performance. On 

the other hand, the proposed modified version of the smoothing spline method is based on 

utilizing a range of smoothing parameter values for each sample instead of a single value. 

The smoothing parameter values are selected according to the MDW value to improve the 

method's smoothing and denoising performance. The method is evaluated using the MIT-

BIH-arrhythmia (MBA) database, and the obtained results illustrate a high smoothing and 

denoising performance without losing signal information. The signal-to-noise ratio (SNR), 

the Mean Square Error (MSE), and the Percent Root Mean Square Difference (PRD) are 

the parameters used to evaluate the method's performance. Based on white Gaussian noise 

at 10 dB input SNR, the results are 8.14 dB improved SNR, 0.0015 MSE, and 12.68 PRD. 

The evaluation results for the proposed method show a high performance compared with 

the TSS and the existing methods. 
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1. INTRODUCTION

The Electrocardiogram (ECG) is the process of graphical 

representation of the heart's electrical signal [1]. The ECG 

signal helps the cardiologist to diagnose heart diseases, which 

cause the most common deaths worldwide [2-4]. The ECG 

signal suffers from different types of noise, such as baseline, 

electromyography (EMG), (50 or 60) Hz AC power, and 

electrode motion, which affect its smoothness [5, 6]. So, the 

noisy signal results in inaccurate heart disease diagnostics by 

the cardiologists and the software applications. On the other 

hand, a smooth and denoised ECG signal improves the 

diagnosis of heart diseases and saves more lives. For the noisy 

ECG signals, the smoothing and denoising process, which is 

represented as a filter in the pre-processing signal operation, 

enhances the ECG signal quality for the next operations [7, 8]. 

Several smoothing and denoising filters are applied to the 

signal based on the type of noise. The baseline noise 

fr%uencies range between 0.1-0.5 Hz, the EMG noise 

frequencies range between 100-500 Hz, and the noise 

frequencies of the AC power is (50 or 60) Hz [9]. In digital 

signal processing, digital filters are the most essential 

operations to reduce different noises of the signal for software 

applications [10, 11]. An accurate signal estimation from the 

noisy signal is a significant subject in signal processing for 

many researchers. Therefore, various smoothing and 

denoising techniques have been proposed, such as bandpass, 

low pass, wavelet, and Savitzky Golay [2, 12].  

In studies [13-16], methods based on wavelet 

transformation combined with different techniques are 

proposed to improve the smoothing performance. In the study 

[13], a new method that used empirical mode decomposition 

(EMD) and discrete wavelet transform (DWT) domains is 

presented. A window empirical mode decomposition domain 

decreases initial intrinsic mode function noise. In the study 

[14], a wavelet function (WF) as an optimal method for the 

DWT decomposition is proposed for ECG noisy signals. The 

method selects the best threshold to improve the wavelet 

performance. Three types of noise are applied in this method: 

electromyography, baseline drift, and power line. In the study 

[15], a combined DWT and Savitzky Golay filter (DWT-SG) 

is presented. The performance evaluation for each method 

alone is done before combining them. The combined method 

gets a better filtering performance than each of the DWT or 

Savitzky Golay methods. The parameters for the evaluation of 

the method are SNR and PRD. In the study [16], a method 

based on a Genetic Algorithm (GA) and Wavelet Transform 

(GA-WT) is proposed. The GA conducts systematic research 

to determine optimal WT levels of decomposition to reduce 

the noise. The MIT-BIH-arrhythmia (MBA) database is used 
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for performance evaluation using the SNR and PRD 

parameters. 

Another empirical mode decomposition was presented in 

the study [17] with an adaptive switching mean filter technique 

instead of DWT presented in the study [13]. A combined 

empirical mode decomposition and adaptive switching mean 

filter technique is presented. It removes the noise with low 

distortion, and the adaptive switching mean filter improves the 

ECH signal quality. White Gaussian noise, electromyogram, 

and power line interference are used to test the technique's 

performance based on signal-to-noise ratio (SNR).  

A Majorization-Minorization denoising method based on 

the optimized overall ECG signal variance is proposed in the 

study [2]. After that, the output denoising signal is divided into 

segments using the bottom-up method. The method evaluation 

showed that the proposed method is a significant 

improvement. In the study [18], a new method is proposed 

using cooperative filtering denoising based on two stages by 

dividing the ECG signal into an equal segment. After that, an 

array from the similarly divided segments is filtered using 

Savitzky-Golay and polynomial fitting. The method 

evaluation was compared using cooperative filtering and 

without cooperative filtering, showing that the proposed 

method is effective. In the study [7], A new approach is 

presented based on two-stage filters. The first filter is a low-

pass Butterworth filter, and the second stage is a zero-phase 

shift filter. The results show a high signal-to-noise ratio and 

low mean square error.  

The abovementioned methods aim to smooth and denoise 

the ECG signals with high performance using different 

techniques. These methods operate with non-adjustable 

parameters for all ECG signal samples, which affect their 

performance. The traditional smoothing spline method is not 

efficient because the method performance is relative to the 

ECG signal and the single smoothing parameter value selected 

for all ECG signal samples. On the other hand, it has a high 

smoothing performance for a certain signal part according to 

the single smoothing parameter value. The smoothing 

parameter value affects the smoothing operation as a trade-off 

between eliminating the noise and losing some signal 

information or reducing some noise and maintaining the signal 

information. Conversely, the smoothing parameter for the 

proposed modified smoothing spline is selected based on the 

mean discrete wavelet (MDW) value of each sample for the 

ECG signal to improve the performance of the proposed 

smoothing and denoising method. The method performance is 

evaluated using MATLAB based on the MBA database. It is 

compared with the traditional methods to demonstrate the 

performance superiority of the proposed method. The SNR, 

MSE, and PRD assess the method's performance. 

 

 

2. TRADITIONAL SMOOTHING SPLINE METHOD 

 

The traditional smoothing spline (TSS) method minimizes 

Eq. (1), which consists of two parts: the first part is the error 

measure, and the second is the roughness measure [19]. 

 

𝑝 ∑(𝑦𝑖 − 𝑠(𝑥𝑖))
2
+ (1 − 𝑝)∫(

𝑑2𝑠

𝑑𝑥2
)  𝑑𝑥

𝑖

 (1) 

 

where, 

p: the smoothing parameter 

s: the smoothing spline 

s(x): the smoothing spline for the given x 

x, y: the input data 

The smoothing parameter (p) value changes the method 

smoothing operation between the highest value p=1 and the 

lowest value p=0. In the case of p=0, the smoothing operation 

is the best smoothed, and the spline will be as a line. However, 

the case of p=1 is the lowest smoothing operation, and the 

spline function will intersect all data points for the ECG signal. 

In other words, the range of p is from 0 to 1, where 0 produces 

the least square straight line, and 1 produces a cubic spline [19, 

20]. 

 

 
 

Figure 1. Smoothing a sampled ECG signal based on the 

TSS method using p = 0.001 

 

 
 

Figure 2. Smoothing a sampled ECG signal based on the 

TSS method using p = 0.951 

 

Using the TSS method, two p-values are applied to a sample 

of ECG signal from the MBA database, as shown in Figure 1 

and Figure 2. Selecting a low smoothing parameter value 

(p=0.001) produces a smooth signal and loses the signal 

information, as shown in Figure 1. This figure shows a high 

smoothness for the overall ECG signal. In contrast, the QRS 

level and shape are affected, which causes the signal 

information to be lost for this part of the signal. In contrast, 

selecting a high smoothing parameter value p=0.951 produces 

a low smoothing signal without losing signal information, as 

shown in Figure 2. This figure illustrates a noisy signal and 

low smoothing operation for the ECG signal without losing the 
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QRS level and shape that maintains the signal information. 

Selecting any p-value between the previous numbers is a trade-

off between the performance of the smoothing operation and 

losing the signal information.  

Therefore, a modified smoothing spline is proposed in this 

paper based on variable 𝑝-values to improve the smoothing 

and denoising performance without losing signal information. 

 

 

3. PROPOSED SMOOTHING AND DENOISING 

METHOD 

 

The proposed smoothing and denoising ECG signal method 

is illustrated in the block diagram shown in Figure 3 and is 

based on three stages. The first stage is the moving median 

filter, the second stage is the mean wavelet, and the third is a 

proposed modified smoothing spline method. The raw ECG 

signal e[(n)] is the input for the proposed method, and after the 

three stages, the result is the smoothed and denoised ECG 

signal s[(n)]. These stages are described in the following 

paragraphs.  

 

 
 

Figure 3. Proposed method block diagram 

 

First, a moving median filter eliminates the baseline wander 

noise from the raw ECG signal. The database sampling rate is 

360 samples per second, and the median filter window of 120 

samples was chosen based on the database sampling rate. So, 

the window of the moving median is 1/3 of the database 

sampling rate. The raw ECG signal e[(n)] is subtracted from 

the moving median output of each sample (n), using N number 

of samples for the filter window, as shown in Eq. (2) for the 

selected even N number of samples. 

 

𝑥[𝑛] = 𝑒[𝑛] −

[
 
 
 
 (𝑒 [

𝑁
2
]
𝑡ℎ

 𝑠𝑣 + (𝑒 [
𝑁
2
] + 1)

𝑡ℎ

𝑠𝑣)

2

]
 
 
 
 

 (2) 

 

where, sv is the sorted value for the sampled in the filter 

window. Second, the general DWT (W) for the input signal 

x[n] and the mother wavelet ∅[𝑛] are illustrated in Eq. (3) and 

Eq. (4), respectively [21, 22]: 

 

𝑊[𝑡𝑝, 𝑑𝑝] = ∑ 𝑥[𝑛] ∅𝑡𝑝,𝑑𝑝[𝑛]

∞

𝑛=−∞

 (3) 

 

∅𝑡𝑝,𝑑𝑝[𝑛] = (
1

𝑡𝑝1 2⁄
) × ∅ [

𝑛 − 𝑑𝑝

𝑡𝑝
] (4) 

 

where, tp is a translation parameter, and dp is a dilation 

parameter. The ECG signal x[n] is decomposing based on Eq. 

(5) and Eq. (6) to determine the approximation coefficients 

Ac[k] and the detail coefficients Dc[k], respectively [23]. 

 

𝐴𝑐[𝑘] = ∑𝑥[𝑛] ∙ ℎ[2𝑘 − 𝑛]

𝑛

 (5) 

 

𝐷𝑐[𝑘] = ∑𝑥[𝑛] ∙ 𝑔[2𝑘 − 𝑛]

𝑛

 (6) 

 

where, 2k is the downsampling of the signal by 2. The h and g 

are the low and high pass convolutional filters. The mean 

wavelet (mw[n]) for the DWT can be calculated by Eq. (7), 

representing the output to the next stage for Nw=30. 

 

𝑚𝑤[𝑛] =
1

𝑁𝑤

∑|𝐴𝑐𝑙 [𝑘 −
𝑁𝑤

2
+ 𝑖]|

𝑁𝑤

𝑖=1

 (7) 

 

where, Nw is the number of samples for the moving mean 

window. 

Third, the traditional smoothing spline equation is modified 

by the range of pj values based on the mean wavelet of the 

signal to apply the suitable p-value for each sample of the 

noisy ECG signal, as shown in Eq. (8). The proposed equation 

smooths and denoises the signal with high performance 

without losing any signal information. The modified method 

is called modified smoothing spline (MSS). 

 

𝑝𝑗 ∑(𝑦𝑖 − 𝑠(𝑥𝑖))
2
+ (1 − 𝑝𝑗) ∫(

𝑑2𝑠

𝑑𝑥2
)  𝑑𝑥

𝑖

 (8) 

 

The range of pj can be chosen depending on the performance 

improvement needed for smoothing and denoising operation. 

Increasing the pj range values improves the smoothing and 

denoising operation without losing signal information. On the 

other hand, it will add complexity to the smoothing and 

denoising process. The low range of pj remains several noises 

with the original signal; moreover, the signal loses 

information.  

The mean discrete wavelet is divided into a range of levels 

(lv) based on the minimum and maximum values. These levels 

select the pj value for the proposed MSS method. So, the 

values of pj=p1, p2, …, plv. The level number is computed by 

incrementing the level number to reach the best performance. 

In this paper, using the MBA database, the best performance 

is achieved at twenty levels (lv = 20) without adding more 

complexity. The overall proposed method flowchart is 

described in Figure 4, which can be illustrated as follows: 

(1) Reading the raw ECG signal from the MBA database. 

(2) Adding noise with SNR=0-20 dB, noise power=0-20 

dB, or power line 50Hz noise for each time. 

(3) Applying the median filter with a window removes the 

baseline wandering, as shown in Figure 5. 

(4) Applying MDW with Sym3, level 3, and mean window 

30 samples for the ECG signal, as shown in Figure 5, 

after testing different types of wavelets and different 

levels for the best wavelet transformation performance 

based on the ECG signals. 

(5) Dividing the mw[n] by levels based on a selected range 

(lv levels). 

(6) According to the lv levels number, the pj values are 

calculated between pj > 0 and pj < 1 based on Eq. (9) 

with α as a very small number close to zero (less than 

0.05) as the initial pj value. 

 

𝑝𝑗 = 𝛼 +
(𝑗 − 1)

𝑙𝑣
 (9) 

 

(7) Applying the smoothing spline with a suitable pj value 

Median 
Filter 

Mean 
Wavelet

The Proposed Modified 
Smoothing Spline

x[n]

mw[n]

x[n]e[n] s[n]
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for the sample based on the mw[n] level.  

(8) Measuring SNR, MSE, and percent root mean square 

difference to evaluate the method's performance. 

 

 
 

Figure 4. The proposed method flowchart 
 

 
 

Figure 5. The median filter and MDW for a sample ECG 

signal 

4. RESULTS AND DISCUSSIONS 

 

The MBA database consists of 48 records with two signals 

that are 30 minutes long [24]. In this paper, the MBA database 

is used for the method evaluation after selecting a 10-second 

from the first ECG signal. These ECG signals are processed 

using the traditional smoothing spline and the proposed 

method.  

A computer with Windows 10, core i7 processor, 32 GB 

RAM, and MATLAB R2023b performs the methods results. 

The performance evaluation is based on the performance 

parameters: the signal-to-noise ratio, mean square error, and 

percent root mean square difference, as shown in Eqs. (10)-

(14), respectively. 

 

𝑆𝑁𝑅𝑖𝑛 = 10log (
∑ (𝑆1(𝑖))

2𝑛𝑡
𝑖=1

∑ (𝑆2(𝑖) − 𝑆1(𝑖))
2𝑛𝑡

𝑖=1

) (10) 

 

 

𝑆𝑁𝑅𝑖𝑚𝑝 = 10log (
∑ (𝑆2(𝑖) − 𝑆1(𝑖))

2𝑛𝑡
𝑖=1

∑ (𝑆3(𝑖) − 𝑆1(𝑖))
2𝑛𝑡

𝑖=1

) (11) 

 

𝑆𝑁𝑅𝑜𝑢𝑡 = 10log (
∑ (𝑆3(𝑖))

2𝑛𝑡
𝑖=1

∑ (𝑆3(𝑖) − 𝑆1(𝑖))
2𝑛𝑡

𝑖=1

) (12) 

 

𝑀𝑆𝐸 = (
∑ (𝑆1(𝑖) − 𝑆3(𝑖))

2𝑛𝑡
𝑖=1

𝑛𝑡
) (13) 

 

𝑃𝑅𝐷 = (√
∑ (𝑆1(𝑖) − 𝑆3(𝑖))

2𝑛𝑡
𝑖=1

∑ (𝑆1(𝑖))
2𝑛𝑡

𝑖=1

) × 100 (14) 

 

where, 

S1: The input ECG signal. 

S2: The ECG signal after adding noise. 

S3: The filtered ECG signal. 

SNRin: The input SNR after adding noise. 

SNRimp: The improved SNR. 

SNRout: The output SNR after smoothing. 

MSE: Mean square error. 

PRD: Percent root mean square difference. 

nt: Total no. of samples. 

The mean value of the performance parameters for all 48 

sample records is calculated. This value is a better evaluation 

of the methods' performance. Therefore, all parameters for 

performance evaluation of the methods presented in this 

section are the mean values.  

The evaluation for TSS and proposed methods depends on 

three types of adding noise: white Gaussian noise with a 

signal-to-noise ratio (WGN-SNR) value from 0 to 20 dB for 

the input signal, white Gaussian noise with a power value 

noise (WGN-P) from 0 to 20 dB, and power-line noise with 50 

Hz. The smoothing methods TSS and the proposed MSS 

method are applied to the signal after adding one of these 

noises each time to evaluate the performance parameters. 

Based on the original ECG signals from the MBA database 

(record No. 100), for testing the TSS method, two smoothing 

parameter values are applied to the raw ECG signal after 

adding white Gaussian noise with SNR=10 dB. The TSS 

method results for p=0.001 and p=0.951 were presented in 

Start

Input raw 
ECG signal

Adding Noise

Median Filter 

Mean discrete 
Wavelet =mw

Measuring SNR, 
MSE, and PRD

End

Divide the mw for lv levels 
(L1, L2,      Llv)

Select level

p=p1

p=p2

p=plv

Smoothing spline using p 
(smoothing parameter)

 L1 

 Llv  

 L2 
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Figure 1 and Figure 2, respectively. As discussed previously, 

a low p-value smooths the signal from any ripple. Still, it 

negatively affects the QRS in amplitude and shape, so the 

signal loses some of the information. A high p-value maintains 

the signal information but has a low smoothing of the noisy 

signal. 

For testing the proposed MSS method, applying a range of 

pj values based on the MDW of the ECG signal smooths and 

denoises the noisy signal without losing signal information. As 

shown in Figure 6, the output signal is smoother than the raw 

ECG signal before adding the noise. 

 

 
 

Figure 6. Smoothing and denoising a sampled ECG signal 

based on the proposed MSS method 

 

The P and QRS waves are extracted for the ECG signal to 

evaluate the smoothing and denoising operation for the TSS 

and the proposed MSS methods. The P and QRS waves 

extracted from Figure 1 and Figure 2 for the TSS method with 

two smoothing parameters (p=0.001 and p=0.951) are shown 

in Figure 7. With a low p-value for the smoothing parameter, 

the TSS method smooths the P wave with the best performance 

while losing the QRS. For the TSS method based on a high p-

value, the TSS method smooths the QRS with the best 

performance, but the P wave has a noise and a low smoothing 

performance. The proposed MSS method using a range of 

p=0.001 to p=0.951 with step 0.0475 (based on lv=20 levels 

and α=0.001) is shown in Figure 8, which is extracted from 

Figure 6. By evaluating the TSS method for the record No. 100 

samples, the SNRimp values are between 0.664 to 2.385 dB 

based on the lowest to highest p-values. Moreover, the MSE 

values are between 0.0024 to 0.0016. On the other hand, the 

proposed method evaluation values for this record are 

SNRimp = 8.20 dB and MSE = 0.000428. Therefore, it can be 

concluded that the proposed method has a higher smoothing 

and denoising performance than the TSS method according to 

the SNRimp and MSE values. 

After testing the TSS and MSS methods, for evaluation of 

the methods' performance, three types of adding noise are 

presented as follows:  

First, a WGN-SNR from 0 to 20 dB is added to the input 

signals (raw ECG) to calculate the performance parameters 

(SNRimp, SNRout, MSE, and PRD). In a case study, the raw 

ECG signal, the noisy ECG signal by adding a white Gaussian 

noise with signal-to-noise ratio WGN-SNR=10 dB to the raw 

ECG signal, and the filtered noisy ECG signal based on the 

TSS method with p=0.951 are presented in Figure 9. On the 

other hand, the ECG raw signal, the noisy ECG signal by 

adding the same noise to the raw ECG signal, and the filtered 

noisy ECG signal based on the proposed MSS method are 

presented in Figure 10. 

 

 
(a) using p = 0.001 

 
(b) using p = 0.951 

 

Figure 7. Smoothing P and QRS waves based on the TSS 

method 

 

 
 

Figure 8. Smoothing and denoising P and QRS waves using 

a range of p-values based on the MSS method 
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Figure 9. The raw, noisy, and filtered ECG signals using the TSS method with p = 0.951 

 

 
 

Figure 10. The raw, noisy, and filtered ECG signals using the proposed MSS method 

 

From these figures, the TSS method smooths the noisy ECG 

with low smoothing based on the high p-value. The ECG 

signal output for the proposed method is highly smooth 

compared to the TSS method and smoother than the raw ECG 

signal. 

The SNRimp is calculated for the WGN-SNR from 0 to 20 

dB using Eq. (11) for all records samples. The average 

SNRimp for the proposed MSS method compared with the 

TSS method, WF [14] (soft and hard), DWT-SG [15], and GA-

WT [16] are shown in Figure 11. The existing methods [14-

16] applied a range of WGN-SNR between 0 to 15 dB and 0 

to 20 dB, so the proposed and traditional methods can be 
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compared with these methods. It can be seen from Figure 11 

that the SNRimp for the proposed MSS method started at 1.44 

dB in the highest WGN-SNR at 20 dB, and the improvement 

reached 10.45 dB for the zero dB WGN-SNR. On the other 

hand, the TSS method has the lowest SNR improvement, 

around 3 dB, in the WGN-SNR range. Meanwhile, the existing 

methods [14-16] have reached the highest improvement of 8.6 

and 4.6 dB for SNRin of 0 and 20 dB, respectively. It can be 

concluded that the proposed method surpasses the existing 

methods by varying the SNR inputs from 0 to 20 dB. The 

superiority of the proposed method has been achieved due to 

the use of the variable soothing parameter (p) for each ECG 

signal sample based on the mean wavelet value. So, the 

smoothing parameter is low for the P and the T waves and high 

for the QRS wave. The proposed method reduces the noise and 

produces a smoother ECG signal than the original ECG signal 

before adding noise.  

 

 
 

Figure 11. Comparison of methods performance for SNRimp 

based on SNRin 

 

 
 

Figure 12. Comparison of methods performance for SNRout 

based on SNRin 

 

However, compared to the TSS method, the proposed 

method has the highest performance for all ranges of the 

SNRin except the high SNRin value (at 20 dB). On the other 

hand, the TSS performance for all SNRin ranges is low except 

for 20 dB. In addition, the average SNRout for the MSS, TSS, 

and existing methods presented in Figure 12 also demonstrates 

the superiority of the proposed method over other methods.  

The MSE for all sampling records is calculated using Eq. 

(13) for the proposed MSS method compared with the TSS 

method and WF [14] method, and the averages of MSE values 

are shown in Figure 13. From the MSE values, it can be 

concluded that the proposed MSS method has the lowest MSE 

values compared with the TSS and WF methods, particularly 

at the low SNRin based on the range of WGN-SNR starting 

from 0dB to 20dB for the noisy ECG signal. 

 

 
 

Figure 13. Comparison of methods performance for MSE 

based on SNRin 

 

 
 

Figure 14. Comparison of methods performance for PRD 

using SNRin 

 

Figure 14 shows the PRD values calculated using Eq. (14) 

for the proposed MSS method compared with the TSS, DWT-

SG [15], and GA-WT [16] methods. It can be seen from Figure 

14 that the PRD values for the proposed method are lower than 

the other methods' PRD values. The PRD difference between 

MSS and TSS methods reached more than 30% for the lowest 

WGN-SNR, while the difference between MSS and existing 

methods reached more than 25%.  

In the second type, noise is added to the raw ECG signals 

using the WGN with a power (WGN-P) from 0 to 20 dB. The 

average SNRimp, SNRout, MSE, and PRD for all sample 

records are calculated using Eqs. (11)-(14) after smoothing the 

noisy ECG signals based on the proposed MSS and TSS 

methods. The results are presented in Figure 15. 

From these results, the values of SNRimp, SNRout, MSE, 

and PRD at SNRin=10 dB obtained from the proposed method 

are 8.14 dB, 18.13 dB, 0.0015, and 12.68%, while these values 

are 3.29 dB, 13.5 dB, 0.005, and 21.65% for the case of TSS 

method.  

Third, the power-line noise with 50 Hz is added to the 

samples of the raw ECG signals at 3dB input SNR. The MSS 

and TSS methods are applied to the noisy signal, and the 

average SNRimp, SNRout, MSE, and PRD are determined 

using Eqs. (11)-(14). The results are presented in Table 1. 

These results show that using the proposed MSS instead of 

other methods improves the performance parameters, so the 

smoothing and denoising performance will be improved. 
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(a) SNRimp 

 
(b) SNRout 

 
(c) MSE 

 
(d) PRD 

 

Figure 15. Comparison of MSS and TSS methods 

performance using WGN-P 

 

From the overall results, the proposed MSS method 

demonstrates a significant improvement compared with the 

TSS and the existing methods. 

 

 

Table 1. Comparison of methods performance parameters 

using the power line noise 

 
 Proposed MSS TSS WF [14] 

SNRimp 11.99 0.533 - 

SNRout 15.40 5.35 13 

MSE 0.0008 0.011 0.001 

PRD 17.13 63.96 - 

 

 

5. CONCLUSIONS 

 

The traditional smoothing spline method filters the ECG 

signal based on the smoothing parameter value. The TSS 

smoothing parameter values affect the filtered signal between 

a high smoothing signal with low information or low 

smoothing without losing signal information. This paper 

proposes a new ECG signal smoothing and denoising ECG 

signal method based on the proposed modified smoothing 

spline method and mean discrete wavelet. The proposed 

modified smoothing spline method uses variable smoothing 

parameter values for smoothing and denoising the noisy ECG 

signal. Selecting the smoothing parameter value for each 

sample of the ECG signal is based on the MDW value to 

improve the smoothing and denoising process. Based on the 

performance evaluation, the proposed MSS method smooths 

and denoises the ECG signal with high performance without 

losing the signal information. The proposed and traditional 

methods are evaluated using average values of the 

performance parameters (SNRimp, SNRout, MSE, and PRD) 

for all records samples. The results showed the superiority of 

the proposed method compared to traditional and existing 

methods. 
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