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In the current context of intense competition, industrial maintenance plays a crucial role 

in ensuring the performance and resilience of companies. It ensures the continuous 

availability of equipment, which is essential to avoid unplanned downtime that can lead to 

significant economic losses. Moreover, maintenance improves production quality by 

reducing failures and manufacturing defects, and by optimizing the costs associated with 

maintenance interventions. Predictive maintenance, which is a fundamental part of 

Industry 4.0, allows for anticipating failures before they occur by leveraging real-time data 

to predict malfunctions and plan the necessary actions. This not only reduces unplanned 

downtime but also lowers the overall cost of repairs and equipment replacements. 

However, data acquisition and processing present major challenges for data science project 

managers, as they require appropriate frameworks and approaches tailored to each problem 

and context. This study proposes an innovative solution with a predictive maintenance 

model developed using the industrial data analysis improvement cycle (IDAIC) approach, 

specifically designed for industrial maintenance projects. By using a deep learning 

algorithm, long short-term memory (LSTM), and techniques such as early stopping, the 

model was applied to the data of a plastic injection molding machine and achieved 

impressive results. With an R² of 96% and an MSE of 99%, it presents itself as a powerful 

decision-support tool for industrial maintenance. 
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1. INTRODUCTION

Manufacturing companies and equipment manufacturers 

are facing two major transformations that are redefining their 

activities: digital transformation and sustainable development. 

Digital transformation, often associated with the Fourth 

Industrial Revolution, known as "Industry 4.0," has introduced 

intelligent production systems capable of monitoring physical 

processes and making optimized real-time decisions through 

the interconnection of humans, machines, and sensors [1-3]. 

Currently, industrial maintenance primarily relies on 

reactive or preventive strategies, while the adoption of 

predictive approaches remains limited and is generally 

reserved for critical situations. These traditional approaches 

fail to fully leverage the vast volumes of data generated on 

production sites or emerging technologies such as the Internet 

of Things (IoT), cloud computing, or augmented reality. 

However, the paradigm is shifting, positioning maintenance as 

a critical strategic factor for improving productivity and 

optimizing the performance of industrial systems [4, 5]. 

This evolution has led to the development of new 

maintenance approaches, notably Prognostics and Health 

Management (PHM) and Condition-Based Maintenance 

(CBM), which leverage operational data to detect anomalies 

in asset behavior [6]. These approaches enable a shift from 

reactive maintenance to proactive management, reducing 

unexpected downtime and improving equipment reliability. 

With the increasing complexity of machinery and their 

growing criticality in terms of reliability and availability, it has 

become imperative to mitigate the risks and consequences of 

unexpected interruptions in an increasingly digitized 

production environment [7]. 

According to reference [8], smart maintenance is based on 

proactive and adaptive management, focusing on data 

collection, analysis, and visualization, as well as the 

continuous improvement of decision-making processes [9]. 

With the emergence of Industry 4.0, new tools and methods 

are required to meet the demands of smart factories (Figure 1) 

[10]. 

Figure 1. Components of Industry 4.0 technologies 
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In this context, this work proposes the development of a 

predictive maintenance model following the IDAIC 

methodology and based on LSTM networks, with cross-

validation to ensure the robustness and reliability of 

predictions. This model leverages advanced data analysis to 

continuously monitor systems, detect disturbances early, and 

optimize maintenance interventions. By integrating machine 

learning technologies, the model aims to provide intelligent 

decision support, facilitating interventions and enhancing 

asset management in alignment with Industry 4.0 principles. 

 

 

2. EVOLUTION OF INDUSTRIAL MAINTENANCE 

 

2.1 Predictive maintenance 

 

Industry 4.0 drives the creation of fully integrated 

manufacturing ecosystems powered by real-time data 

analytics. Within this framework, maintenance practices are 

undergoing a paradigm shift: outdated, expense-heavy 

breakdown-based interventions are being phased out in favor 

of proactive, algorithm-guided strategies. These advanced 

methods, often termed cognitive maintenance systems, 

prioritize forecasting failures before they occur. 

Throughout successive industrial revolutions as shown in 

Figure 2, maintenance approaches have gradually evolved and 

are now a continuous process [11]. Indeed, for years, decision-

makers have been shifting from corrective maintenance 

towards preventive maintenance, defined as a series of actions 

intended to prevent and reducing the risks of failures, as well 

as the duration and number of shutdowns, thus optimizing the 

overall maintenance costs [12]. 

Predictive maintenance is the most innovative form of 

maintenance. It ensures extended lifespan and high reliability 

of equipment, while providing more eco-friendly and cost-

effective solutions [13]. Proactive maintenance, which 

involves solving problems by tracing their origin, has recently 

become more popular and is a highly effective complementary 

method when combined with predictive maintenance [14]. 

Advanced calculation and Visualization tools, built on the 

latest technological innovations, have become essential 

components of digital transformation within Industry 4.0 [15].  

 

 
 

Figure 2. Evolution of maintenance 

 

2.2 Predictive maintenance tools 

 

Several preventive maintenance tools and techniques have 

been developed in the literature, aiming to provide frameworks 

for the successful implementation of this strategy. The most 

recent is the CPS (Cyber-Physical Systems) presented in five 

stages (Figure 3) [16]. 

Another framework is the one called IIoT (Industrial 

Internet of Things). It forms an interconnected framework that 

unifies all cyber-physical systems, thus facilitating the 

automatic collection and retrieval of the large volume of data 

flow. By monitoring this data in real-time and analyzing it 

through artificial intelligence or machine learning models, or 

even through statistical models, this constitutes the concept of 

Big Data [17]. 

 

2.3 Predictive maintenance models 

 

Two main preventive maintenance models are found in the 

literature. The first model is CBM (Condition-Based 

Maintenance) (Figure 4), in which maintenance decisions are 

made based on the current or future condition of the equipment 

operates through three fundamental phases: gathering data, 

processing that information, and making informed decisions 

[18]. The goal is to monitor indicators related to the condition 

of the equipment, which trigger an alarm once a deterioration 

level is reached [19]. 

 

 
 

Figure 3. CPS steps 
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Figure 4. CBM levels 

 

 
 

Figure 5. PHM steps 

 

Another common model is the Prognostics and Health 

Management (PHM), which originated in the early 1990s. The 

objective is the dynamic monitoring of a system's state, with 

the process being considered key. It evaluates future 

degradation, offering the advantage of describing the different 

maintenance scenarios, whether preventive or predictive [20]. 

Figure 5 presents the 8 stages of PHM [21]. 

PHM relies on techniques that fall into three main 

categories: data-driven methods, model-based methods, and 

hybrid methods that leverage the strengths of both approaches. 

 

 

3. PREDICTIVE MAINTENANCE WORKFLOW 

 

To successfully implement a predictive maintenance 

project, it is essential to follow key steps based on the 4U 

framework: Understanding, Utilizing, Upgrading, and 

Updating [22].  

 

 
 

Figure 6. Adapted maintenance workflow 

 

23



The process begins with a comprehensive Understanding of 

the project's needs, including the analysis of systems, the 

definition of critical parameters, and the identification of 

potential failures. Next, the strategic Utilizing of data collected 

through IoT technologies such as sensors, detectors, and 

collection systems is crucial. This includes the 

comprehension, mastery, and selection of relevant data, data 

cleaning, handling missing or outlier values, and extracting 

new features through data engineering. The newly formed 

dataset must then be optimized and improved (Upgrading) by 

structuring the data into a format suitable for modeling, 

ensuring its quality and relevance. Finally, the regular 

Updating of data and models ensures that feedback is 

integrated, enabling increasingly effective interventions 

aligned with maintenance objectives. This process (Figure 6) 

also allows for the continuous feeding of the database, thereby 

enhancing the understanding and performance of intelligent 

algorithms. 

 

 

4. EVOLUTION OF MAINTENANCE DATA ACROSS 

THE ERAS OF MAINTENANCE 

 

Data plays a crucial role in the implementation of scientific 

practices in maintenance. Its management and utilization have 

evolved in parallel with technological advancements across 

the different eras of maintenance, as described in Table 1 [23]. 

This evolution demonstrates how digitization and artificial 

intelligence are revolutionizing maintenance data 

management, enabling more precise analyses, optimized 

decision-making, and proactive maintenance in the industry 

4.0 environment. 

 

Table 1. Comparison of maintenance data in different maintenance ages 

 
Aspect Maintenance 1.0 Maintenance 2.0 Maintenance 3.0 Maintenance 4.0 

Data source Operators' experience 
Maintainers and 

machines 

Operators, maintainers, 

systems 

Operators, maintainers, systems, 

OEM 

Data collection Manual Manual Semi-automated Automated via sensors and IoT 

Data storage Operators' memory Written documents Databases Cloud services 

Data analysis Arbitrary Reliability theory Classical algorithms 
Advanced algorithms (AI, ML, 

etc.) 

Data transfer Verbal communication Written documents Digital files Digital files 

Data 

management 
N/A Human operators Information systems Cloud and artificial intelligence 

 

 

5. PROPOSED APPROACH  

 

There are different approaches to conducting a data science 

project, with the most popular being CRISP-DM (Cross-

Industry Standard Process for Data Mining) (Figure 7) [24]. 

 

 
 

Figure 7. CRISP-DM approach 

 

While it is effective for solving visible and goal-oriented 

problems, it lacks the necessary adaptations to address 

invisible problems that require exploratory approaches. The 

approach adopted in our study for developing a predictive 

maintenance model is the IDAIC (Figure 8), a framework 

developed and adapted based on the CRISP-DM methodology, 

specifically oriented towards proactive maintenance projects. 

 

 
 

Figure 8. IDAIC 

 

The IDAIC framework consists of key phases, including: 

• Domain understanding, which involves collecting 

information on information systems, people, and equipment;  

• Data contextualization, to evaluate the alignment of the 

data with project objectives;  

• Data evaluation, focusing on assessing its usability, 

completeness, and objectivity;  

• Data preparation, which involves cleaning and structuring 

the data for effective analysis.  

24



 

• Operational assessment addresses visible problems, while 

the commissioning phase aligns systems with specifications to 

prepare for the transition to predictive and proactive 

maintenance.  

• The exploration of invisible problems leverages advanced 

techniques such as exploratory data analysis and machine 

learning to uncover hidden patterns and facilitate the proactive 

planning of maintenance activities [25]. 

 

 

6. RESULTS AND DISCUSSION 

 

We applied this approach to develop a predictive 

maintenance process for an injection molding machine 

dedicated to manufacturing parts for the automotive industry. 

We will subsequently detail the various results obtained in 

relation to the IDAIC model. 

 

6.1 Data collection and preprocessing 

 

The data acquisition process for predictive maintenance is 

divided into several steps, ranging from the initial collection 

of raw data from machines to its preparation for analysis. The 

key steps in the process are described in Figure 9. 

The communication interfaces and parameters required for 

data exchange between injection molding machines and IT 

systems are defined in our case by the Euromap 63 standard. 

This standard is based on the OPC-UA (OLE for Process 

Control – Unified Architecture) communication protocol, 

which is widely used in industrial environments [26]. It 

facilitates the integration of equipment into the production 

environment, as well as process monitoring and manufacturing 

optimization, enabling injection molding machines to transmit 

real-time production data to a server or management system. 

 

 
 

Figure 9. Data collection 

 

Once the data is stored, it will be loaded into the Jupyter 

Notebook data analysis environment, where the data 

preprocessing phase will begin (Figure 10). 

 

 
 

Figure 10. Preprocessing steps 

 

In this phase, the data is profiled, cleaned, transformed, and 

enriched by removing duplicates and handling missing values 

to ensure data integrity. For example, the column 

“ActStsMach” encodes status information as strings. This 

information was split into multiple sub-columns, and a data 

mapping to numerical values was performed to ensure proper 

interpretation by machine learning algorithms. 

 

6.2 Creation of the "Failure" column 

 

The “Failure” column was created after merging two 

databases: the failure log database and the sensor data storage 

database. A 5-minute tolerance was applied to accurately 

associate failure events with sensor measurements. 

To better understand the incidents, we also visualized the 

frequency of failures and types of stoppages using bar charts 

(Figure 11). The count of values in the "Failure" variable 

indicates that a significant number of failures were recorded 

during the observed period. 
 

 

Figure 11. Counting of failures 

25



 

The visualization of failure types from the “Description” 

column (Figure 12) allowed us to identify the most frequent 

types of failures, which may indicate recurring issues. 

The correlation matrix in (Figure 13) was generated to 

evaluate the relationships between the different quantitative 

variables in our database. 

In our analysis, the correlations between parameters are 

generally weak, suggesting that there are no significant linear 

relationships between most variables in our database. 

 

 
 

Figure 12. Counting of failure types 

 

 
 

Figure 13. The correlation matrix 
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6.3 LSTM model with cross-validation for failure 

prediction 

 

As part of this study, we implemented a failure prediction 

model on industrial data using a LSTM neural network (Figure 

14). The model was evaluated in terms of recall, precision and 

F1 score for each class. The MSE and R² score were calculated 

to demonstrate the model's performance in terms of errors and 

data variance. The confusion matrix and the ROC curve will 

then be visualized to confirm the excellent performance of the 

model. The "early stopping" technique was used in our model 

to prevent overfitting. It stops the training if the validation loss 

stops decreasing after a certain number of epochs, ensuring the 

model's generalization.  

 

 
 

Figure 14. Compact form of an LSTM model 

 

To evaluate the performance of the LSTM model, a 5-fold 

stratified cross-validation was used. It is often favored in the 

context of model evaluation in machine learning, as it provides 

an optimal compromise between bias and variance. It allows 

for a robust evaluation of the model while limiting the 

computational costs associated with a higher number of folds, 

such as 10. This number of folds is supported by common 

practices and empirical recommendations in the scientific 

literature, being considered a good compromise in most 

application cases. The objective was to ensure that the model 

generalizes well to unseen data and to avoid potential bias due 

to imbalanced class distribution in the training and validation 

sets. In each fold, the model was trained and validated, and the 

average performance was calculated across all folds. 

The model demonstrated outstanding performance, 

achieving an overall accuracy of 99%. The R² score of 96% 

shows that the model effectively explains the variance in the 

data, with predictions strongly correlated to the actual labels. 

The mean squared error (MSE) is remarkably low at 0.0099, 

highlighting minimal discrepancies between the predicted and 

actual values. 

 

 
 

Figure 15. Evaluation of the LSTM model 

 

These results (Figure 15) demonstrate excellent model 

performance, with scores near perfection across all metrics. 

This indicates that the model is highly capable of accurately 

distinguishing between classes in terms of both precision and 

recall. 

This confusion matrix (Figure 16) confirms that the LSTM 

model is highly efficient and reliable for failure prediction in 

industrial systems, achieving near-perfect accuracy. These 

results are particularly valuable for anticipating failures and 

enhancing predictive maintenance. 

 

 
 

Figure 16. Confusion matrix of the LSTM model 

 

The ROC curve (Figure 17) shows that the LSTM model is 

extremely effective in failure prediction, with an excellent 

detection rate and a very low false alarm rate. These results are 

crucial for enhancing predictive maintenance in industrial 

environments. 

 

 
 

Figure 17. The ROC curve of the LSTM model 

 

 

7. CONCLUSION 

 

In a highly competitive and demanding environment, 

maintenance is now considered an essential component of the 

manufacturing process. It plays a crucial role in improving 

product quality and operational performance by ensuring 

equipment availability and meeting delivery schedules. The 

growing importance of maintenance has sparked significant 

interest in designing and adopting effective maintenance 

strategies aimed at enhancing system reliability, anticipating 

failures, and optimizing associated costs. 

In this context, predictive maintenance policies and 

strategies, combined with big data and data science 

approaches, can serve as essential tools for the digitalization 

of maintenance processes in the industry 4.0 era. In our study, 
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we proposed a predictive maintenance model following the 

IDAIC framework, which is an adapted and enhanced version 

of the general CRISP-DM approach. The steps of this 

methodology led us to develop a deep learning algorithm 

based on neural networks to predict future failures of a plastic 

injection molding machine. 

The implemented algorithm is an LSTM with cross-

validation applied to data collected from sensors and various 

systems using the Euromap 63 standard. The model was 

evaluated using various metrics, such as the confusion matrix, 

the ROC curve, and error measures, demonstrating high 

predictive performance.  

The integration of this model into the industrial 

management systems of SMEs will strengthen the decision-

making framework and develop proactive action plans to 

minimize unexpected downtimes, ensuring equipment 

availability and optimizing the adherence to delivery 

deadlines. 

Future work will focus on developing classification models 

for failure types, estimating Remaining Useful Life (RUL), 

and improving the machine's cycle time within a 

comprehensive quality approach. 
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