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The DiPPM approach has been suggested as a potential resolution to the issue of 

bandwidth usage that affects alternative PPM formats. The construction of DiPPM is 

straightforward as it employs a dual-slot mechanism for transmitting a single unit of 

pulse code modulation (PCM). As a new coding scheme, the public literature has little 

analysis and experimental outcomes. This especially addressed the implementation of 

DiPPM to alleviate the problem of current PPM formats' excessive bandwidth 

utilization. DiPPM suffers from the same three forms of pulse detection mistakes as 

conventional PPM schemes: incorrect slot, false alarm, and erasure. This article focuses 

on extensively improving the error performance of DiPPM by using low density parity 

check (LDPC) as forward error correction (FEC) codes. To systematically evaluate the 

effectiveness of DiPPM-encoded LDPC, the error performance of a non-coded DiPPM 

system with that of DiPPM-encoded and DiPPM-encoded Reed Solomon Code (RS) 

(another FEC) system, transmission efficiency, and bandwidth broadening are 

compared. The results confirm a clear improvement in the performance of DiPPM for 

fault detection LDPC operates at its optimum values. LDPC code provided more than 

5.12 dB. 
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1. INTRODUCTION

The communication device uses a channel or transmission 

method, such as wired or wireless, to facilitate the transfer of 

data from the source to the receiving device [1]. The primary 

elements affecting the reliability of the data obtained are the 

channel and specifically the background noise present on the 

channel. In essence, noise is what causes signal interference 

and data transmission mistakes. An innovative method for 

improving interface performance in low-turbulence conditions 

is channel coding. In order to achieve this, several PPM format 

types have been suggested as optical communication coding 

systems in the literature. Take MPPM and DPPM, for instance. 

Due to its notable features, PPM is largely used in deep space 

optical communications, including elevated energy 

consumption, robust resistance against interference, and a 

heightened detection frequency. But because PPMs have a 

large bandwidth expansion factor, one of their biggest 

drawbacks is that their ultimate data rates are incredibly high 

[2]. Stated differently, the maximum line rate that may be 

achieved would restrict its use. Therefore, in scenarios when 

capacity is not required, these coding methods can be used to 

effectively construct direct lines for vision networks using 

fiberglass optic cables. Because optical fiber connections are 

inexpensive, they are frequently used in low-bandwidth 

magnetic logging networks. Sibley [3] created DiPPM as a 

novel coding scheme with greater properties over the PPMs 

suggested in order to address the bandwidth concern. More 

specifically, the DiPPM was created to address the PPM's 

primary difficulty with bandwidth dissipation. 

In comparison to other adaptive codes, LDPC codes are 

commonly employed due to their ability to facilitate efficient 

and dependable transmission of information over broadband 

channels, even in the presence of deteriorating noise 

conditions. Hence, LDPC codes have the capability to function 

over several channels. However, as the block length gets 

smaller, these codes and procedures become less accurate and 

reliable. This signalling type exclusively transmits data 

updates, while signals containing static data are not compatible 

[4]. 

One of the most extensively researched areas in channel 

coding is LDPC codes, widely used in a wide range of 

communication and data storage systems, such as deep-space, 

wireless, optical, and magnetic recoding systems [5-10]. 

Deep space algorithms are extremely desirable for use in 

LDPC and PPM iterative demodulation systems because they 

can achieve output performance that is very close to the 

theoretical Shannon limit. The highest error-free data 

transmission rate that may be attained across a communication 

channel at a particular noise level when random data 

transmission defects are present is known as the Shannon limit 

[11, 12]. 

The Reed-Solomon code was developed by Reed and 

Solomon as a means to effectively manage the factors 
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contributing to DiPPM error. Reed and Solomon demonstrated 

the superior effectiveness of DiPPM in detecting faults, hence 

improving packet error rate performance while using the RS 

technique for error detection. Moreover, the DiPPM errors 

discovered during transmission can be fixed with the MLSD 

error corrector [13]. Also proposed by Al-Nedawe et al. [13], 

Reed-Solomon eliminated sources of DiPPM inaccuracy to 

reduce the amount of transmission mistakes by a significant 

margin. 

In order to address the DiPPM's error sources, LDPC is 

introduced for the first time in this study. For the LDPC code, 

the ideal DiPPM system parameters have been discovered. The 

metrics of photons per pulse and transmission efficacy were 

used to evaluate uncoded and coded DiPPM systems utilising 

RS codes. 

To the authors' knowledge, there has been no exploration of 

the employment of DiPPM and LDPC code decoding 

approaches to address the issues related to bandwidth increase 

in PPM. For this reason, the main goal of this research is to 

integrate LDPC and DiPPM code for error mitigation in order 

to address the previously mentioned issue, while also 

examining the most effective LDPC configurations. 

 

 

2. DICODE PULSE POSITION MODULATION 

 

Due to a difficulty with bandwidth expansion, DiPPM was 

established to overcome PPM [3]. Thus, the DiPPM formats 

follows the same pattern of the PPMs formats. Analog signals 

that have been sampled digitally are represented using the 

pulse code modulation (PCM) technique. An analog signal's 

amplitude is periodically sampled by a (PCM) stream, which 

quantizes each sample to the closest value within a 

predetermined range of digital steps. DiPPM employs the 

PCM method in a single time and four time slots for interval 

amplification. The first slot receives a SET (S) pulse first, 

while the second slot receives a SET (S) pulse second. The 

second spot is filled with a RESET (R) pulse, and inter-symbol 

interference protection is placed in the third and fourth slots 

(ISI). PCM data from 0 to 1 is inverted to form the S pulse. 

But one-to-zero data is inverted to produce the R pulse. Figure 

1 provides a visual representation of this. The top tracks of 

dicode, Figure 1 depicts the interpretation of PCM data by 

displaying the centre tracks of dicode and the bottom trace of 

DiPPM. Table 1 displays the DiPPM code alphabet [14]. 

 

 
 

Figure 1. Transformation of PCM data into dicode and 

DiPPM formats 

Table 1. Alphabetical list of DiPPM codes 

 
PCM DiPPM Symbol 

00 No Pulse N 

01 Set S 

10 Reset R 

11 No Pulse N 

 

No pulse is conveyed, even though the PCM data is 

unaltered. But when central decision detection replaced the 

slope detection method, inter-symbol interference was 

reduced. The complexity of the DiPPM decoder has been 

decreased through the use of a central decision tracking 

technique, enabled by the addition of a third-order Butterworth 

filter and an approachable Cascaded first-order preamplifier. 

The line an average of the DiPPM was twice as fast as the true 

data because there were no guard bits. Given its great efficacy 

and simplicity, it is conceivable that the DiPPM format will be 

able to vie with the PPM styles already in use in fiber optic 

grid. 

 

 

3. DIPPM ERROR 

 

The DiPPM format has been found to exhibit three distinct 

types of flaws, including erasure, wrong-slot, and false alert 

[15]. In the subsequent sections, a comprehensive analysis of 

these errors is presented, including an assessment of their 

likelihood.  

 

3.1 Wrong-slot error 

 

These errors happen when noise on a detected pulse's slope 

is loud enough to produce a false trigger, causing a pulse to 

arrive early or late. In order to mitigate this inaccuracy, it is 

imperative to locate the pulse at the temporal midpoint of the 

time slot, characterized by a duration of Ts. As a result, the 

edge's movement caused by |Ts/2| causes errors to be produced. 

Pes, which appears in the position before it, stands for the 

likelihood of an error. It was delivered by: 

 

𝑃𝑒𝑠 = 0.5𝑒𝑟𝑓𝑐(𝑄𝑒𝑠/√2) (1) 

 

where, Qes is given by: 

 

𝑄𝑒𝑠 = [𝑇𝑠𝑠𝑙𝑜𝑝𝑒(𝑡𝑑)]/ [2√𝑛𝑜
2] (2) 

 

The variable slope (td) denotes the quantification of the 

gradient of the pulse signal detected precisely at the point of 

crossing the threshold, which is recorded at td. Additionally, 

"no
2 denotes" is used to indicate the average square noise of the 

receiver. 

In the instance of dicode PPM, a wrong-slot occurrence can 

result in one of four possible failures. The appearance of the 

edge in the preceding or next slot is contingent upon the 

location of the pulse within the slot. There won't be a detection 

error and the decoder won't be able to identify the incorrect 

threshold crossing if it arrives in the slot before it. 

 

3.2 Erasure error 

 

The threshold is crossed when the highest signal voltage, 

errors in pulse erasure occur. When there is a lot of noise, this 
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occurs most frequently. The following equation can be used to 

determine the likelihood of an error, Per. 

 

𝑃𝑒𝑟 = 0.5𝑒𝑟𝑓𝑐 (
𝑄𝑒𝑟

√2
) (3) 

 

𝑄𝑒𝑟 = (𝑣𝑝𝑘 − 𝑣𝑑)/√𝑛𝑜
2 (4) 

 

The voltage at the threshold crossing is vd, while the voltage 

at the receiver's output is vpk.  

 

3.3 False-alarm error 

 

Noise in data transmission causes false alarm errors, which 

result in the occurrence of a threshold crossing event in any 

free time period. The likelihood of this error, Pt, has been 

computed as follows [11]: 

 

𝑃𝑡 = 0.5𝑒𝑟𝑓𝑐 (
𝑄𝑡

√2
) (5) 

 

where, 

 

𝑄𝑡 = 𝑣𝑑/√𝑛𝑜
2 (6) 

 

The ratio 𝑇𝑠/𝜏𝑅  can be used to determine the number of 

uncorrelated samples in each time slot. Is 𝜏𝑅 the point at which 

the autocorrelation function in the receiver's filter becomes 

negligible. The likelihood of a false alarm, or 𝑃𝑓 , can be 

calculated using the following formula: 

 

𝑃𝑓 =
𝑇𝑠

𝜏𝑅

0.5𝑒𝑟𝑓𝑐 (
𝑄𝑡

√2
) (7) 

 

PCM mistakes in the dicode for PPM to occur, it must to be 

the different type of symbol from the one that initiated the 

sequence. 

 

 

4. REED-SOLOMON CODES 

 

The Reed-Solomon Codes (RS) are incredibly powerful and 

useful. Due to their accessible benefits, the codes are currently 

frequently used in a number of applications, particularly in 

wireless communications systems [16]. The associated facts of 

RS codes including: 

•RS codes are made up of sequences of m bits, with any 

positive integer greater than two denoted by m. They are not 

binary cyclic in nature. 

•The m-bit symbols have corresponding symbols for the RS 

codes. 

•Examples of systems that fit this description include n and 

k.  

 

0 < 𝑘 < 2𝑚 + 2 (8) 

 

The quantity of symbols in the data that undergo decoding 

by RS codes during the process of data transmission is denoted 

by the variable k in this statement. The result indicates how 

many symbols there are overall. nRS stands for the entire 

number of symbols in the code's block [17]. 

By using RS codes, it is possible to cover the smallest 

distance while receiving the highest code. The system's 

encoder input and output system at its closest point (dmin) for 

any code in linear location. 

RS codes are well-known novelist codes that can correct the 

following representations of t or fewer combinations of 

communications channel faults: 

 

𝑡 = [(𝑑𝑚𝑖𝑛 − 1)/2] = [(𝑛 − 𝑘)/2] (9) 

 

Figure 2 is an example of a standard RS code system. 

 

 
 

Figure 2. Code Reed-Solomon system 

 

The equation shown herein demonstrates the utilization of 

commonly accepted parameters, namely n, k, and t, alongside 

positive integers denoted as m, whose value must be more than 

2, these codes can be created, which is the most efficient way 

to express Reed Solomon encoding [18]. 

The Reed Solomon codes' encoding equation is: 

 
(𝑛, 𝑘) = (2𝑚 − 1, 2𝑚 − 1 − 2𝑡) (10) 

 

The equation n-k=2 is given. The variable t is used to 

represent the total amount of parity symbols in the Reed 

Solomon code. On the other hand, the variable t also denotes 

the capacity of the code to repair symbols that include faults.  

The generating polynomial used in a Reed-Solomon code is 

shown in the equation indicated. 

 

𝑔(𝑋) = 𝑔0 + 𝑔1𝑋 + 𝑔2𝑋2 + ⋯ + 𝑔2𝑡−1𝑋2𝑡−1 + 𝑋2𝑡 (11) 

 

The Bose, Chaudhuri, and Hocquenghem (BCH) codes [19] 

can be thought of as an extension of the Reed and Solomon 

codes, which were first obtained by Gus Solomon and Irving 

Reed. It is also possible to encode Reed-Solomon codes 

methodically. Due to the cyclical structure of binary codes, the 

systematic technique has been shown to be comparable to the 

process of binary encoding. In the present scenario, it is 

possible to conceptualize a message polynomial, indicated as 

m(X), as undergoing a shift operation within the stages of a 

code word register, with each step represented by k. 

Subsequently, a parity polynomial, written as p(X), is 

appended to the shifted polynomial. This phenomenon is 

commonly observed in the stages that are positioned towards 

the extreme left, specifically indicated by the n-k locations. As 

a result, a shift can be introduced into the message polynomial 

by multiplying m(X) by Xn-k. Divide the result by the generator 

polynomial, g(X), and you get the following equation: 

 

𝑋𝑛−𝑘𝑚(𝑋) = 𝑞(𝑋)𝑔(𝑋) + 𝑝(𝑋) (12) 

 

The polynomials q(X) and p(X) respectively denote the 

quotient and remainder. The decoding of Reed Solomon codes 

can be comprehended by utilizing the viewpoints and analyzes 

of the early researchers. It is generally accepted that system 

failures caused the codewords to get corrupted during the 

communication signal's transmission. that academics have 

used to explain the Reed-Solomon codes are systematically 

encoded using (n-k) stage and register shifters [20]. 
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5. LOW DENSITY PARITY CHECK CODES 

 

The implementation of the (LDPC) algorithm involves the 

utilization of a parity search array, denoted as H, which is 

composed of N columns and M rows, resulting in a matrix with 

dimensions [M×N]. LDPC codes are mostly composed of a 

significant quantity of zeros and a relatively small quantity of 

ones. In other words, systematic LDPC codes have been 

developed to differentiate specific attributes. Based on the 

established criterion, each row and column must contain a 

unique numerical value of 1, referred to as the column weight 

and the row weight, respectively. However, there is a 

discrepancy between the weights assigned to the columns and 

those assigned to the rows. The LDPC code, characterized by 

the parameters (N, j, k), is governed by a set of well-defined 

rules. Here, N denotes repetition, while j and k represent the 

column and row weights of the LDPC code, respectively. 

The equation 1-y/k=1-M/N represents the encoding rate for 

LDPC codes. The following is a depiction of the parity-check 

array featuring an eight-bit coding capacity [21]. 
 

𝑣1𝑣2 ⋯ ⋯ ⋯ 𝑣𝑥  

𝐻 = [

0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0

]

𝑐1

𝑐2

⋮
𝑐𝑦

, 

x=1, 2, …, N and y=1, 2, ..., M 
 

Figure 3 displays a graphical representation of LDPC codes. 

Specifically, a new H matrix configuration is used, in addition 

to the Tanner graph, which displays the check node groups and 

variable nodes every matrix row and column. 

The encoding process involves the utilization of a 

generating matrix to transform data bits into code words. A 

correlation has been seen between the generating matrix and 

the parity check matrix. The standard form is capable of 

yielding the provided parity check matrix [22]. 

 

𝐻 = [𝐴|𝐼(𝑛−𝑘)] (13) 

 

The symbol H represents the parity check matrix. Several 

key factors contribute to the generation of code words. 𝐼(𝑛−𝑘) 

is identity matrix and generator matrix is: 

 

𝐺 = [𝐼𝐾|𝐴𝑇] (14) 

 

The codeword C will be produced in the following manner:  

 

C=UG (15) 

 

The block associated to the information bits is denoted by 

the symbol U, whereas the generator matrix is represented by 

the symbol G. The verification process for a valid code-word 

should be conducted in the following manner: 

 

𝐻𝐶𝑇 =0 (16) 

 

In this context, the symbol (.)T denotes the transpose 

operation applied to a matrix. If the outcome in Eq. (16) is not 

equal to zero, it indicates that C is invalid. Consequently, the 

error correcting process will be employed in this scenario. 

Hard decisions and soft decisions are the two main 

categories of decisions that are included in the iterative parity 

check decoder. For soft judgments, a message-passing method 

called the Sum-Product Method (SPA) is employed. Each bit's 

input is represented as the probability of earlier knowledge 

obtained from the channel. Previous study [23] indicates that 

there are three different forms of SPA classification: 

Probability Domain, Log Domain, and Min-Sum SPA. The 

classification is predicated upon the structural composition of 

the message exchanges occurring between variable nodes and 

check nodes. The DiPPM system model using LDPC coding 

is displayed in Figure 4. 

 

 
 

Figure 3. LDPC codes represented graphically 

 

 
 

Figure 4. DiPPM system model with LDPC coding 

 

 

6. RESULT 

 

Based on the outcomes of the simulation, it can be observed 

that LDPC codes significantly enhance the efficiency of 

DiPPM transmission by reducing the photon count. When 

utilized at the prescribed coding rate of 3/4, the statistical 

analysis reveals that the DiPPM coded system exhibits a 

performance improvement of 5.12 dB compared to the 

uncoded system. The performance of the system is enhanced 

when the LDPC  as shown in Figure 5 codeword is increased, 

resulting in a reduction in the bit error rate (BER). The findings 

indicate that both the coding style and the system employed do 

not have a discernible influence on the optimal code rate of 

LDPC codes. The utilization of an LDPC code with DiPPM is 

seen more advantageous compared to the utilization of an RS 

code, as evidenced by the observed outcomes.  

In Figure 6, a comparative analysis is presented, examining 

the photon count in each pulse for both the DiPPM approach 

and the RS Code. This analysis takes into account various 

normalized fiber bandwidths (fn). Assuming an adjusted 
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bandwidth, there is a positive correlation between the number 

of photons in each pulse and the RS code rate. As the code rate 

is augmented, there is a concomitant augmentation in the 

number of photons inside a designated bandwidth. 
 

 

 

 
 

Figure 5. Comparation between without encoder and with 

encoder 

 
 

Figure 6. The correlation between the number of photons 

and the rate of Reed-Solomon coding at various adjusted 

bandwidths 

 

 
 

Figure 7. The correlation between the Reed-Solomon (RS) 

code rate and transmission efficiency for various normalized 

bandwidth values 

 

 
 

Figure 8. A comparison between the amount of photons and 

the LDPC code rate at various code levels 

 

The relationship between the adjusted bandwidth and the 

transmission efficiency of both coded and uncoded DiPPM 

systems is shown in Figure 7. The employment of Reed-

Solomon coding in the coded dicode pulse position 

modulation (DiPPM) scheme results in better transmission 
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efficiency, especially in channels that have poor 

dispersiveness. The need for more bandwidth to accommodate 

the redundancy symbols in RS coding is the likely cause of 

this issue. 

It seems possible to compute the minimum numbers of 

photons at various LDPC coding rates and constant 

normalized bandwidth (fn=0.6). It's important to note that the 

system made the least possible mistakes in Figures 8 and 9. 

For comparison, Figure 10 shows the associated results of 

the number of photons for uncoded DiPPM, coded DiPPM 

with RS, and coded DiPPM with LDPC. The initial operational 

bandwidth varies from system to system. 

Figure 9. The effect of LDPC code rate on coded OPPM 

system transmission efficiency 

Figure 10. Comparation between without encoder and with 

encoder 

7. CONCLUSION

The program for implementing the DiPPM system with RS 

and LDPC codes was developed using MATLAB software. 

The data obtained by the DiPPM system provided validation 

for the theoretical framework of the DiPPM approach. When 

the signal-to-noise ratio (SNR) reaches or exceeds 12dB, the 

use of the RS and LDPC coding scheme is effective in 

mitigating errors that adversely impact the integrity of the 

transmitted data in the Differential Pulse Position Modulation 

(DiPPM) method. The RS and LDPC code system should 

ideally function at its optimal code rate. The simulation testing 

findings indicate that the utilization of the LDPC decoder leads 

to a notable enhancement in the transmission efficiency of the 

DiPPM system by reducing the photon count. Furthermore, 

empirical evidence has shown that the utilization of the (LDPC) 

code in the system results in a notable enhancement of over 

5.12 decibels when compared to systems that do not 

incorporate the LDPC code. 
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