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As investors select stocks more efficiently to form portfolios that meet their objectives, 

they should be grouped based on their time-varying risk levels. One of the clustering 

approaches is time series clustering with a model-based approach using hierarchical and 

K-means clustering algorithms. The distance calculation is based on the estimated

parameters of the model used; in this case, the GARCH (1,1) model is used. This paper

proposes a modified Piccolo distance that uses the absolute value between two GARCH

(1,1) models, which is a development of the Manhattan distance. The modified Piccolo

distance improves robustness to outliers and simplifies calculations, resulting in more

accurate and efficient time series cluster analysis. Applying hierarchical and K-means

clustering with modified Piccolo distance will be compared with other model-based

distance modifications for clustering applied to simulated data and case studies using

stock data incorporated in the Indonesia Stock Exchange. A measure of cluster validity

is calculated using the C index. From the simulated data and case studies, it is found

that clustering with Piccolo distance modification and other distance modifications

between two GARCH (1,1) models produce clusters with a small C index, both for

simulated data and case studies. A small C index value in the clustering results indicates

good clustering quality, where the clusters formed have high similarity and are well

separated from others. Furthermore, the clusters formed will be considered in making a

good portfolio, so it is expected to reduce the risk in the stock portfolio.
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1. INTRODUCTION

A financial portfolio or a collection of assets is an attractive 

investment to an investor. Forming an optimal portfolio is a 

challenge in mathematical modeling to achieve the desired 

goal: minimizing risk or maximizing profits. Therefore, the 

problem in the portfolio is determining the suitable 

composition for each asset so that the investor’s goals are 

achieved. One of the development strategies in compiling a 

portfolio is the selection of assets that are incorporated. The 

more diverse the assets in the portfolio, the more it can be 

diversified so that it can be considered to reduce the risk that 

can occur in the portfolio. The risk in question is the risk of 

the same movement, which refers to the scenario where the 

price decline in one asset will also lead to a similar movement 

in other assets in the portfolio, thereby increasing the overall 

risk. This is known as systematic risk and cannot be diversified 

away. Therefore, several studies on portfolios and stock 

selection strategies have been carried out. One is by grouping 

stocks using clustering techniques such as those conducted by 

Tola et al. [1], where clustering techniques can increase 

portfolio reliability regarding the ratio between risk 

predictions. Specifically, the clustering used is time series 

clustering. Time series clustering is an unsupervised learning 

method that groups data into groups based on their degree of 

similarity [2], so observations in one group tend to be more 

similar (based on predetermined criteria) than in other groups 

[3]. Aghabozorgi et al. [4] described three methodologies for 

clustering time series: shape-based, feature-based, and model-

based. Shape-based algorithms usually use conventional 

clustering methods that fit static data, while the distance 

measure has been modified to a measure suitable for time 

series. Feature-based algorithms transform raw time series 

data into feature vectors with reduced dimensionality. These 

extracted feature vectors are subsequently analyzed using 

conventional clustering algorithms. Conversely, model-based 

methods transform raw time series data into parameters 

associated with a specific parametric model for each time 

series. Following this transformation, an appropriate model 

distance is selected, and conventional clustering algorithms 

are then applied to the derived model parameters. 

The clustering algorithm is subsequently applied to the data 

utilizing a distance measure. Selecting an appropriate distance 

measure that considers the dependencies between time series 

is important. Various types of distance measures are utilized 

in time series clustering, including model-free, model-based, 

and complexity methods [5]. The model-free approach uses 

the similarity of the values of two-time series at a specific 

point in time to calculate how close they are. A possible 

approach is to compare the two-time series' autocorrelation 

function (ACF) [6-9]. In addition, in clustering based on raw 

data, the most commonly used distances are Euclidean 

distance and Dynamic Time Warping (DTW) [10-12]. Model-

based approaches consider that some model or mixture of 
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underlying probability distributions generates each time 

series. Model-based approaches, for instance, presume that 

every time series adheres to an ARMA model. Piccolo [13] 

used the Euclidean distance between the AR model parameters 

to compute the distance between two-time series. A chi-square 

test statistic was assigned to compare two time series using the 

AR model parameters [14, 15]. Caiado et al. [7] compared and 

expressed the periodograms of two-time series in terms of 

Euclidean distance. The complexity-based approach compares 

the level of complexity of the time series. The similarity of the 

two-time series depends on measuring the information shared 

by the two-time series. It is independent of specific time series 

features or knowledge of the underlying model. Complexity 

can be considered in two ways: computing each time series’ 

complexity and comparing them to one another [16-18] or 

giving complexity a weighting function [19]. 

Kim and Kim [20] have discussed comparing clustering 

methods for time series with model-free, model-based, and 

complexity-based approaches. They have been applied to 

power consumption time series as power consumption 

profiles. Further to the fact that the variability of financial time 

series data is not constant, the Generalized Autoregressive 

Heteroscedasticity (GARCH) model is a suitable choice to 

capture this variability [21]. GARCH is used because it can 

overcome the excessive parameters of the ARCH model when 

applied to time series data, thus ensuring compliance with the 

principle of parsimony. The GARCH model can categorize 

stocks into groups based on their volatility. The model uses a 

positive parameter directly related to the overall variance. As 

the parameter value increases, the variance value also 

increases. An essential component of the GARCH model is the 

grouping of stocks based on time-varying variance. The model 

that will be of particular interest is the GARCH (1,1) model, 

which combines the corrected mean return at the time (t-1) and 

its variance. The research reveals that the GARCH (1,1) model 

is highly effective for accurately modeling time series data and 

is the most widely used model for this purpose [22]. This is by 

parsimony, which effectively reduces the number of 

parameters in the ARCH model and generalizes them to other 

parameters [23]. 

Otranto [24] introduced a metric to measure the 

dissimilarity between two GARCH (1,1) models and used it in 

clustering. The distance metric between two GARCH (1,1) 

models, called Piccolo distance, is suitable for comparing time 

series data. Therefore, the novelty in this study is the 

development of Otranto, which modifies the Piccolo distance 

by replacing it with the absolute value between two GARCH 

(1,1) models, which is the development of the Manhattan 

distance. The modified Piccolo distance is proposed as an 

alternative to overcome the distance formula's limitations in 

handling outliers in time series data. Replacing the distance 

formula with the absolute value between two GARCH (1,1) 

models improves robustness to outliers and simplifies 

calculations compared to measures involving squares or other 

powers. Furthermore, clustering is performed on the GARCH 

(1,1) model using the modified Piccolo distance and compares 

the distance with the distances based on model-based 

approaches [7, 13, 15, 25], and cosine distance. Clustering is 

categorized into two primary types: hierarchical clustering and 

partitional clustering [26]. This study utilizes both algorithms 

for its analysis. In hierarchical clustering, the number of 

clusters is not predetermined. This algorithm initiates by 

treating each time series as an individual cluster, then 

gradually merging the closest clusters until all the data is 

incorporated into one large cluster. Next, complete linkage is 

used to calculate the distance between groups, where the 

method is based on maximum distance. The K-means 

algorithm, the simplest and most commonly used clustering 

method, is employed to group data due to its fast and efficient 

computation time. This algorithm uses a centroid-based 

partitioning method to divide observations into several K 

clusters, with a predetermined value of K, which is the number 

of clusters to be created by the algorithm. The selection of the 

optimal number of clusters and the accurate identification of 

centroids determines the effectiveness of the K-means 

clustering process. These factors are essential for achieving 

precise and reliable clustering results [27, 28]. 

The structure of this paper is as follows. Section 2 

introduces the modified Piccolo distance between GARCH 

(1,1) models and some model-based distance measures 

between two GARCH (1,1) models. Section 3 presents the 

hierarchical and K-means clustering algorithm and validity 

clustering measures. Section 4 outlines the results of the 

clustering analyses based on simulated data, and a case study 

applied to some stock data listed on the Indonesia Stock 

Exchange. The conclusions and limitations of the study are 

given in Section 5. 

 

 

2. DISTANCE BETWEEN TWO GARCH (1,1) MODELS 

 

The model of primary focus is the GARCH (1,1) model, 

which combines the corrected mean return at a point in time 

and its variance. Research indicates that the GARCH (1,1) 

model is highly effective for accurately modeling time series 

data and is the most popular model adopted for time series 

[22]. This is done by parsimony, which effectively reduces the 

number of parameters in the ARCH model and generalizes 

them to other parameters [23]. This section will explore the 

theoretical basis of the distance between two GARCH (1,1) 

models. 

 

2.1 GARCH (1,1) model 

 

The GARCH (1,1) model is widely recognized as one of the 

foremost models for analyzing various time series data [20]. 

This model adheres to the principle of parsimony by 

effectively reducing the number of parameters present in 

ARCH models and generalizing them into alternative 

parameters [22]. According to Bollerslev [23], the GARCH 

(1,1) model is considered the most suitable for characterizing 

financial data. Its simplicity, involving only two parameters, 

facilitates the calculation of the distance between two GARCH 

(1,1) models, thereby enhancing its utility in practical 

applications. 

It is known that 𝜀𝑡 = 𝑟𝑡 − 𝜇𝑡 the mean corrected log return, 

𝜀𝑡 adheres to the GARCH (1,1) model [21] if 

 

𝜀𝑡 = 𝜈𝑡𝜎𝑡 (1) 

 

with 

 

𝜎𝑡
2 = 𝛾 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎1𝜀𝑡−1
2  (2) 

 

where, 𝜈𝑡 ∼ 𝐼𝐼𝐷(0,1), 𝛾 > 0, 𝛼1 ≥ 0, 𝛽1 ≥ 0  and (𝛼1 +
𝛽1) < 1 . Assumed 𝐸(𝜀𝑡|𝐹𝑡−1) = 0, 𝑉𝑎𝑟(𝜀𝑡|𝐹𝑡−1) =
𝐸(𝜀𝑡

2|𝐹𝑡−1) = 𝜎𝑡
2. 

 

126



 

2.2 Parameter estimation of GARCH (1,1) model 

 

Parameter estimation of 𝛾,  𝛼1 and 𝛽1 in the GARCH (1,1) 

model requires modeling the regression such that 

 

𝑦𝑡 = 𝜏0 + 𝜏1𝑦𝑡−1 + 𝜀𝑡 , 𝑡 = 1, … , 𝑇 (3) 

 

with 

 

𝜀𝑡 = 𝜈𝑡𝜎𝑡 = 𝜈𝑡√ℎ𝑡, ℎ𝑡 = 𝛾 + 𝛼1𝜀𝑡−1
2 + 𝛽1ℎ𝑡−1 (4) 

 

The parameter vector �̃� is expressed as 

 

�̃�  = (𝜏0, 𝜏1, 𝛾, 𝛼1, 𝛽1)′ = (�̃�′, 𝛿′) 

with 

 

�̃� = [
𝜏0

𝜏1
], 𝛿 = [

𝛾
𝛼1

𝛽1

] 

 

In general, Eq. (3) is an AR (1) model with 𝜏0 as a constant 

and 𝜏1  autoregressive coefficients, while the GARCH (1,1) 

model is according to Eq. (2), which is rewritten in Eq. (4). For 

this reason, because the GARCH (1,1) model is used, the 

parameters estimated according to Eq. (4) are 𝛾, 𝛼1 and 𝛽1. To 

estimate the parameters of 𝛾, 𝛼1 and 𝛽1 begins by finding the 

likelihood function on: 

 

𝑓(𝜀𝑡|𝐹𝑡−1) =
1

√2𝜋ℎ𝑡

𝑒
−

1
2

𝜀𝑡
2

ℎ𝑡  (5) 

 

The likelihood function for the 𝑡 observation and sample 

size expressed with 𝑇 is denoted by 𝐿𝑡, then: 

 

𝐿𝑡 = −
1

2
𝑙𝑛 2𝜋 −

1

2
𝑙𝑛 ℎ𝑡 −

1

2

𝜀𝑡
2

ℎ𝑡

 (6) 

 

Furthermore, it is derived from 𝛿, obtained: 

 

𝜕𝐿𝑡

𝜕𝛿
=

1

2ℎ𝑡

𝜕ℎ𝑡

𝜕𝛿
(

𝜀𝑡
2

ℎ𝑡
2 − 1) =

1

2
(

1

ℎ𝑡

) �̃�𝑡𝜈𝑡 (7) 

 

The iteration form is derived from the modified Newton-

Raphson method as follows: 

 

𝛿𝑖+1 = 𝛿𝑖 − [∑ 𝜈𝑡
2 (

1

2

�̃�𝑡

ℎ𝑡

) (
1

2

�̃�𝑡

ℎ𝑡

)

′𝑇

𝑡=1

]

−1

∑
1

2
(

1

ℎ𝑡

) �̃�𝑡𝜈𝑡

𝑇

𝑡=1

 (8) 

 

with  

 

�̃�𝑡 =
𝜕ℎ𝑡

𝜕𝛿

𝜀𝑡
2

ℎ𝑡
2 , 𝜈𝑡 =

𝜕ℎ𝑡

𝜕𝛿
 

 

2.3 Distance between two GARCH (1,1) models 

 

The distance between two GARCH (1,1) models is 

calculated based on an extension of the ARMA (1,1) model 

distance proposed by Piccolo [13]. The time series model with 

𝑡 = 1, 2, ⋯ , 𝑇 is as follows: 

Model 1: 𝑦1,𝑡 = 𝜇1 + 𝜀1,𝑡 

Model 2: 𝑦2,𝑡 = 𝜇2 + 𝜀2,𝑡 

where, 𝜀1,𝑡  and 𝜀2,𝑡  are errors with zero mean and time-

varying variance. It is assumed that the variances ℎ1,𝑡 and ℎ2,𝑡 

adhere to two distinct and independent GARCH (1,1) 

structures, as in Eq. (4), 
 

𝜎1,𝑡
2 = ℎ1,𝑡 = 𝛾1 + 𝛼1𝜀1,𝑡−1

2 + 𝛽1, ℎ1,𝑡−1

𝜎2,𝑡
2 = ℎ2,𝑡 = 𝛾2 + 𝛼2𝜀2,𝑡−1

2 + 𝛽2, ℎ2,𝑡−1

 

 

with 𝛾𝑖 > 0, 0 < 𝛼𝑖 < 1, 0 < 𝛽𝑖 < 1, (𝛼𝑖 + 𝛽𝑖) < 1 (𝑖 =
1, 2). Further, 𝑉𝑡  be a zero-mean ARMA invertible process 

and 𝐹 is a class of invertible ARMA processes. It is known 

that if 𝑉𝑡 ∈ 𝐹, then, there exists a constant 𝜋𝑖 such as 
 

∑ |

∞

𝑗=1

𝜋𝑗| < ∞ 

and 

 

𝑉𝑡 = ∑ 𝜋𝑗𝑉𝑡−𝑗

∞

𝑗=1

+ 𝜀𝑡 ,with 𝜀𝑡 ∼ 𝑊𝑁(0, 𝜎2) 

 

The distance between two processes 𝑉1𝑡 , 𝑉2𝑡 ∈ 𝐹 is defined 

as stated by Piccolo and then called Piccolo distance [13]. 

 

𝑑2(𝑉1𝑡 , 𝑉2𝑡) = ∑(𝜋1𝑗 − 𝜋2𝑗)2

∞

𝑗=1

 

𝑑 = [∑(𝜋1𝑗 − 𝜋2𝑗)
2

∞

𝑗=1

]

1
2

 

(9) 

 

with 𝜋1𝑗 and 𝜋2𝑗 are the coefficients of the two AR processes. 

From Eq. (9), the distance of two GARCH (1,1) models is as 

follows: 

 

𝑑 = (∑(𝛼1𝛽1
𝑗

− 𝛼2𝛽2
𝑗
)

2
∞

𝑗=0

)

1
2

 

𝑑 = (
𝛼1

2

1 − 𝛽1
2 +

𝛼2
2

1 − 𝛽2
2 −

2𝛼1𝛼2

1 − 𝛽1𝛽2

)

1
2

 

(10) 

 

2.3.1 Modified Piccolo distance 

Modified Piccolo distance is the new distance that is 

different from the Piccolo distance in the GARCH model (see 

Eq. (10)) developed by Otranto [24]. The background of the 

modified Piccolo distance is based on the Manhattan distance, 

where the calculation method for the distance space applies the 

concept of absolute difference. The squared distance is 

generally the most used distance metric, as in Eq. (9). Still, it 

has some disadvantages compared to the absolute distance, 

which is sensitive to outliers. Since the difference of the data 

is squared, if there is extreme data in one dimension, the 

overall value of the squared distance can increase 

significantly, so the outlier value will greatly affect the result 

of the distance calculation. This is one of the motivations to 

modify the Piccolo distance using absolute values. Then, the 

distance between the two processes 𝑉1𝑡 , 𝑉2𝑡 ∈ 𝐹 is defined as 
 

𝑑 = ∑|𝜋1𝑗 − 𝜋2𝑗|

∞

𝑗=1

 (11) 
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with 𝜋1𝑗  and 𝜋2𝑗 are the coefficients of the two AR processes, 

like the Piccolo distance for the GARCH model by Otranto 

[24]. From Eq. (11), the distance between two GARCH (1,1) 

models, which is a modification of the Piccolo distance, is 

shown below: 

 

𝑑 = ∑|𝛼1𝛽1
𝑗−1

− 𝛼2𝛽2
𝑗−1

|

∞

𝑗=1

 

= ∑|𝛼1𝛽1
𝑗

− 𝛼2𝛽2
𝑗
|

∞

𝑗=0

= |𝛼1 ∑ 𝛽1
𝑗

∞

𝑗=0

− 𝛼2 ∑ 𝛽2
𝑗

∞

𝑗=0

| 

= |𝛼1(𝛽1
0 + 𝛽1

1 + 𝛽1
2 + ⋯ ) − 𝛼2(𝛽2

0 + 𝛽2
1 + 𝛽2

2 + ⋯ )| 

= |
𝛼1

1 − 𝛽1

−
𝛼2

1 − 𝛽2

| 

(12) 

 

2.3.2 Distance measure by Caiado 

Two-time series each fit the GARCH (1,1) model, with 

𝜋1 = (𝛼1, 𝛽1) and 𝜋2 = (𝛼2, 𝛽2) as the parameter estimation 

vectors. Furthermore, 𝑆1 and 𝑆2 are estimates of the variance-

covariance matrix, respectively. Caiado and Crato [29] defined 

the distance between volatilities of time series data as 

 

𝑑 = (𝜋1 − 𝜋2)′𝑆−1(𝜋1 − 𝜋2) (13) 

 

where, 𝑆 = 𝑆1 + 𝑆2. This distance captures all the stochastic 

structure of a process's conditional variance and offers a 

solution for comparing time series data of unequal lengths 

[29]. 

 

2.3.3 Maharaj distance 

Maharaj et al. [14, 30] proposed a hypothesis test that has 

practical applications in evaluating whether there is a 

significant difference between two-time series. This test is 

designed to assess whether the generation processes of the 

two-time series differ significantly. The corresponding test 

statistic is defined as follows: 

 

𝑑 = √𝑇(𝜋1 − 𝜋2)′𝑆−1(𝜋1 − 𝜋2) (14) 

 

with 𝑇  is the length of the series, 𝜋1 = (𝛼1, 𝛽1)  and 𝜋2 =
(𝛼2, 𝛽2)  as the parameter estimation vectors. 𝑆 = 𝜎1

2𝑅1
−1 +

𝜎2
2𝑅2

−1, where 𝜎1
2 and 𝜎2

2 are the variances of the white noise 

processes for each series, 𝑅1 and 𝑅2 the samples covariance 

matrices of both series. 

The null hypothesis (𝐻0) is rejected at the 𝛼 significance 

level when the statistic 𝑑 > 𝜒2(𝑘), where 𝜒2(𝑘) denotes the 
(1 − 𝛼) th quantile of the chi-square distribution with 𝑘 

degrees of freedom. If the null hypothesis is rejected, it 

indicates that the series 𝑦1,𝑡 and 𝑦2,𝑡 generating processes are 

significantly different [14]. 

 

2.3.4 Distance cosine 

Cosine distance is a quantitative measure of dissimilarity 

between two vectors and is calculated as the complement of 

the cosine similarity value. Cosine similarity assesses the 

degree of similarity between two vectors by evaluating the 

cosine of the angle formed between them. The Euclidean dot 

product formula can determine this cosine value for two non-

zero vectors. 

 

𝜋1 ⋅ 𝜋2 = ‖𝜋1‖‖𝜋2‖𝑐𝑜𝑠(𝜃) 

 

with 𝜋1 = (𝛼1, 𝛽1)  and 𝜋2 = (𝛼2, 𝛽2)  as the parameter 

estimation vectors. The cosine similarity, 𝑐𝑜𝑠(𝜃) is 

represented using a dot product given two n-dimensional 

vectors, 𝜋1 and 𝜋2. 

 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠(𝜃) =
𝜋1 ⋅ 𝜋2

‖𝜋1‖‖𝜋2‖
 

𝑐𝑜𝑠(𝜃) =
∑ 𝜋1𝑖𝜋2𝑖

𝑛
𝑖=1

√∑ 𝜋1𝑖
2𝑛

𝑖=1 ⋅ √∑ 𝜋2𝑖
2𝑛

𝑖=1

 
(15) 

 

where, 𝜋1𝑖  and 𝜋2𝑖  are the 𝑖th components of vectors 𝜋1  and 

𝜋2, respectively. The cosine distance between two vectors 𝜋1 

and 𝜋2 is defined as: 

 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜋1, 𝜋2) = 1 − 𝑐𝑜𝑠(𝜃) (16) 

 

with 𝑐𝑜𝑠(𝜃) is the cosine similarity calculated according to 

Eq. (15). 

 

 

3. CLUSTERING ALGORITHM 

 

This section will explore the theoretical basis of the 

clustering algorithm. 

 

3.1 Hierarchical clustering 

 

Hierarchical clustering is a method utilized in unsupervised 

machine learning to identify clusters of observations within a 

dataset. This technique does not necessitate the specification 

of a predefined number of clusters, as is the case with K-means 

clustering. A principal application of hierarchical clustering is 

consolidating groups exhibiting similar volatility structures. 

The methodology involves merging the two closest clusters 

based on a defined distance measure. Furthermore, two 

clusters with a notably low distance measure may also be 

combined. The distance used in this context is calculated 

between two GARCH (1,1) models, as discussed in Section 

2.3. 

The distance between two GARCH models can be 

employed to cluster 𝑛 time series into a homogeneous group 

with a similar structure. In agglomerative hierarchical 

clustering, all-time series commences in individual clusters, 

which are then recursively merged at various levels based on 

similarity. Meanwhile, 𝑇 − 1  merging steps are reported to 

correspond with 𝑇  observations. Measuring the dissimilarity 

between the clusters is necessary to figure out the merging 

order. Several measures exist, including complete, single, and 

average linkage. For this study, complete linkage has been 

selected to define the dissimilarity between clusters A and B as 

follows: 

 

𝑑(𝐴, 𝐵) = max
𝑖∈𝐴,𝑗∈𝐵

𝑑𝑖,𝑗 (17) 

 

where, 𝑑𝑖,𝑗  is the distance between observation 𝑖  and 𝑗  in 

clusters A and B according to Eqs. (10)-(15). 

 

3.2 K-means clustering 

 

K-means clustering is a practical algorithm for partitioning 

a given data set into 𝐾 distinct clusters. This method enhances 

data organization by ensuring high similarity among objects 

within the same cluster (high intra-class similarity) while 
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maintaining low similarity among objects in different clusters 

(low inter-class similarity). In the K-means clustering process, 

each cluster is characterized by a centroid, which is 

determined by calculating the average of the data points 

assigned to that cluster. Using the mean formula between the 

objects, the algorithm allowed objects to be clustered 

according to the nearest centroid. Let 𝑦 = 𝐶1 ∪ 𝐶2 ∪ ⋯ ∪ 𝐶𝐾 

and 𝐶𝑖 ∩ 𝐶𝑗 = ∅. Clusters are determined by 

 

𝑎𝑟𝑔 min
𝐶

∑ ∑ ‖𝑦𝑗 − 𝐶𝑖‖
2

𝑦𝑗∈𝐶𝑖

𝐾

𝑖=1

 (18) 

 

where, 𝐶𝑖 is the center of the cluster. The K-means clustering 

process resembles that of the EM algorithm. At the outset, 

each object is randomly allocated to a cluster according to the 

cluster centers. 

 

3.3 Cluster validity measure 

 

The evaluation of clustering algorithm results is 

fundamentally based on cluster validation. Several validation 

indices have been developed to assess the quality of clusters, 

with the C-index serving as a significant validation tool [31, 

32]. The C-index is categorized as an internal validity index 

that aims to define and identify the most effective partitioning 

of a set of 𝑛 objects. This process utilizes unlabelled feature 

vectors or dissimilarity matrix data [33]. This measure 

considers the ratio between the total observed within-cluster 

distances and the total minimum and maximum distances 

possible for the same number of clusters. The calculation of 

the C-index is detailed as follows: 

 

𝐶 =
𝑆𝑤 − 𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

 (19) 

 

where, 𝑆𝑤 denotes the total distance between all pairs of items 

within the same cluster. Here, 𝑛  represents the number of 

pairings while 𝑆𝑚𝑖𝑛  indicates the total of all object pairs' 

lowest distances. In contrast, 𝑆𝑚𝑎𝑥  refers to the sum of the 

highest distances across all possible pairs. The C-index's 

properties evaluate how well a cluster's data points are 

grouped. The C-index value ranges from 0 to 1. A C-index 

value close to 0 indicates that the resulting cluster is close to 

optimal clustering. C-index values close to 1 indicate that the 

clustering results are less than optimal. The reason for 

choosing the C-Index lies in its simplicity and effectiveness. 

Unlike other validity indices (e.g., silhouette score, Dunn 

index), the C-index focuses only on the distance within 

clusters without considering the inter-cluster distance, which 

is particularly useful for assessing the quality of clustering 

based on parameter estimates (e.g., in GARCH models). Since 

the modified Piccolo distance is used in this study, the C-index 

effectively captures cluster compactness based on this distance 

measure, ensuring consistency in evaluation. 

 

 

4. DATA ANALYSIS 

 

4.1 Simulation 

 

The simulated data consists of 15 time series clustered into 

3 clusters. Each cluster consists of 5 time series with 100 

points in each time series. The following provides a detailed 

description of each cluster. 

Cluster 1. GARCH (1,1) Model, with 

 

ℎ𝑡 = 0.005 + 0.1𝜀𝑡−1
2 + 0.1ℎ𝑡−1 

 

Cluster 2. GARCH (1,1) Model, with 

 

ℎ𝑡 = 0.1𝜀𝑡−1
2 + 0.8ℎ𝑡−1 

 

Cluster 3. GARCH (1,1) Model, with 

 

ℎ𝑡 = −0.005 + 0.9𝜀𝑡−1
2 + 0.01ℎ𝑡−1 

 

The steps of the clustering process include: 

1. Generate time series using the GARCH (1,1) model with 

the conditions described in the simulation data above. 

Repeat for each model (Cluster 1, 2, and 3) with 5 time 

series each. 

2. Calculate the distance between time series using different 

distances based on the estimated GARCH (1,1) parameters 

according to Eqs. (10)-(16). 

3. Implementation of clustering algorithm  

a. Hierarchical Clustering 

i. Use complete linkage as the linkage method according 

to Eq. (17). 

ii. Input the distance between time series calculated in 

Step 2 into the hierarchical clustering algorithm. 

b. K-means Clustering 

i. Initialize the initial centroid using 3 random time series 

from the dataset (since the number of clusters is 3).  

ii. Assign each time series to the cluster with the smallest 

distance from the centroid. 

iii. Update the centroid to show the average of the 

estimated parameters of each cluster. 

iv. Repeat the above steps until it converges. 

4. Evaluate the validity of clustering results using the C-index 

validity measure. 

Figure 1 shows the average line of each cluster. Table 1 

shows the results of 5 distance measures with hierarchical 

complete linkage and K-means clustering algorithms. The 

complete linkage method based on Eq. (17) minimizes the 

variance between clusters in hierarchical clustering. As for K-

means, the initial centroid initialization process is randomly 

selected from the existing dataset. Furthermore, the C-index is 

used to measure the validity of the cluster.  

 

 
 

Figure 1. Plot of each cluster 
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Table 1. Clustering with simulation data 

 
Algorithm Distance C-Index 

Hierarchical 

Piccolo 0.578118 

Modified Piccolo 0.578118 

Caiado 0.450013 

Maharaj 0.450013 

Cosine 0.450013 

K-means 

Piccolo 0.578118 

Modified Piccolo 0.455615 

Caiado 0.007818 

Maharaj 0.001686 

Cosine 0.001686 

 
Table 1 shows that the best-performing hierarchical 

clustering with small c-index values is obtained using Caiado, 

Maharaj, and cosine distances. Then, in K-means clustering, 

Maharaj and cosine distance gave the best performance. 

However, when compared to the Piccolo distance, the 

modified Piccolo distance produces a smaller c-index for K-

means clustering. 

 

4.2 Stock data analysis 

 

The case study used data from twelve stocks listed on the 

Indonesia Stock Exchange using daily closing prices taken 

from Yahoo Finance. These stocks include PT Adaro Minerals 

Indonesia Tbk (ADMR), PT AKR Corporindo Tbk (AKRA), 

PT Elang Mahkota Teknologi Tbk (EMTK), PT Indofood CBP 

Sukses Makmur Tbk (ICBP), PT Indah Kiat Pulp and Paper 

Tbk (INKP), PT Kalbe Farma Tbk (KLBF), PT Merdeka 

Copper Gold Tbk (MDKA), PT Mitra Keluarga Karyasehat 

Tbk (MIKA), State Gas Company (PGAS), PT Chandra Asri 

Pacific Tbk, PT Unilever Indonesia Tbk (UNVR), and PT 

Solusi Sinergi Digital Tbk from January 3rd, 2023 until 

January 9th, 2024. The first step is to calculate the return, and 

then each stock return is estimated using the GARCH (1,1) 

model according to Eq. (4).  

 

 
 

Figure 2. Plot return of each stock 

 

Table 2. Clustering with return stock data 

 

Algorithm Distance 
Number of 

Clusters 
C-Index 

Hierarchical 

Piccolo 2 0.514991 

Modified 

Piccolo 
2 0.547525 

Caiado 2 0.650697 

Maharaj 2 0.650697 

Cosine 2 0.650697 

K-means 

Piccolo 2 0.452220 

Modified 

Piccolo 
2 0.490864 

Caiado 2 0.001865 

Maharaj 2 0.087182 

Cosine 2 0.001865 

 

Table 3. Recapitulation of cluster members for hierarchical 

clustering with Piccolo and modified Piccolo distance 

 
Cluster 1 Cluster 2 

ADMR, EMTK, PGAS, UNVR, ICBP, MDKA, 

MIKA, WIFI, KLBF, TPIA, INKP 
AKRA 

 

Table 4. Recapitulation of cluster members for K-means 

clustering with Caiado and cosine distance 

 
Caiado Distance Cosine Distance 

Cluster 1 Cluster 2 Cluster 1 Cluster 2 

ADMR, 

PGAS, 

ICBP, 

MIKA 

EMTK, UNVR, 

MDKA, WIFI, 

KLBF, TPIA, 

INKP, AKRA 

EMTK, UNVR, 

MDKA, WIFI, 

KLBF, TPIA, 

INKP, AKRA 

ADMR, 

PGAS, 

ICBP, 

MIKA 
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Figure 2 shows the return plot for each stock. Each stock 

shows different volatility. It can be seen that TPIA and WIFI 

stocks show higher volatility spikes compared to others. Table 

2 shows the results of 5 distance measures with hierarchical 

complete linkage and K-means clustering algorithms. 

Similarly to what was done with the simulated data, in 

hierarchical clustering, the complete linkage method based on 

Eq. (17) minimizes the variance between clusters. For K-

means, the initial centroid initialization process is randomly 

selected from the existing data set. Next, the C-index measures 

the validity of the cluster.  

In Table 2, the hierarchical clustering algorithm with the 

distance that gives the best performance is the small c-index 

value achieved in Piccolo and modified Piccolo distance. In K-

means clustering, Caiado and cosine distance gave the best 

performance. Furthermore, Table 3 shows the clusters formed 

for hierarchical clustering with Maharaj, Caiado, and cosine 

distance, and Table 4 shows K-means clustering with Caiado 

and cosine distance. 

Table 3 shows that two clusters with the same cluster 

members are obtained for each of the Piccolo and modified 

Piccolo distances. K-means clustering can be seen in Table 4, 

where two clusters with the same cluster members are also 

obtained using Caiado and cosine distances. 

The clustering results based on GARCH (1,1) models allow 

investors to identify asset groups with similar volatility 

patterns. From the clustering results, two clusters with 

different volatility patterns are obtained. Stocks in one cluster 

tend to have similar volatility parameters, providing a 

framework for selecting assets from different clusters. TPIA 

and WIFI stocks that show higher volatility (also shown in 

Figure 2) are in the same group. The results are expected to 

reduce the risk in portfolio selection. For example, investors 

can combine stocks from high-volatility clusters with stocks 

from low-volatility clusters to create a more balanced 

portfolio. Information from the clusters can also be used to 

determine the optimal weight of assets in the portfolio. Stocks 

in lower-risk clusters can be given more weight for 

conservative investors, while stocks from high-volatility 

clusters can be included in smaller proportions to increase 

profit opportunities. Furthermore, the clusters formed can be 

updated regularly as market volatility patterns change. This 

helps investors adjust the portfolio to dynamic market 

conditions, such as increased volatility during periods of 

economic uncertainty. The ability to cluster assets based on 

volatility patterns aims to provide analytical tools for investors 

and portfolio managers. Therefore, these clustering results 

bridge theoretical models of volatility and practical 

applications in investment decision-making. 

 

 

5. CONCLUSIONS 

 

This study develops a modified Piccolo distance, based on 

Manhattan distance and absolute difference, to improve the 

clustering of time series data modeled with the GARCH (1,1) 

model. Using hierarchical clustering and K-means algorithms, 

the proposed distance metric is evaluated on simulated data 

and stock return data from the Indonesia Stock Exchange 

(January 3rd, 2023 to January 9th, 2024). The results show that 

the modified Piccolo distance consistently produces high-

quality clusters, as small C index values indicate. Two distinct 

clusters are identified for the stock data, which capture 

differences in volatility patterns. This research shows that the 

proposed clustering method can improve portfolio 

optimization by guiding investment strategies, allowing the 

identification of homogeneous groups of assets based on risk 

profiles. For example, clusters with low volatility may be 

suitable for conservative investors, while clusters with high 

volatility may suit higher risk and higher return strategies. In 

addition, it can also improve risk management by grouping 

assets based on volatility patterns, allowing for more 

optimized asset allocation and early detection of systemic risk. 

Although this research is limited to the GARCH (1,1) model 

and standard clustering algorithms, it provides a basis for 

further exploration of more sophisticated models and methods. 

Future research could extend the modified Piccolo distance to 

other time series models, such as (EGARCH or higher order 

GARCH models) or utilize other clustering techniques, such 

as density-based clustering. This research advances the 

understanding of time series clustering and offers practical 

insights for financial modeling. 
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