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Stochastic Delay Differential Equations (SDDEs) have recently emerged as a powerful 

tool for modeling financial systems, particularly in the context of stock returns. This 

paper proposes a stock return model based on SDDEs that incorporates both stochastic 

and delay components. The proposed model accounts the inherent uncertainty and 

volatility of financial markets. It also calculates the time lag between market events and 

their impact on stock prices. The results demonstrate that the proposed model accurately 

captures the dynamics of stock returns, including the volatility clustering and long 

memory effects observed in financial markets. The proposed stock return model based 

on SDDEs offers a flexible and robust framework for analyzing financial markets and 

predicting stock prices. The model can be used by investors, traders, and financial 

analysts to make informed decisions about investment strategies and risk management. 
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1. INTRODUCTION

Nowadays, Stochastic Delay Differential Equations 

(SDDEs) have become an increasingly popular tool in 

modeling complex phenomena in various fields, that mainly 

includes finance. A stock return model based on a specific type 

of SDDE, which incorporates both deterministic and 

stochastic components to capture the dynamics of stock price. 

The model is designed to take into account the delay effect, 

which is often observed in financial markets due to 

information processing lags and other factors. Stock return 

models are essential tools used in financial analysis and 

investment decision-making. These models use mathematical 

equations to predict the expected returns and volatility of a 

stock or portfolio over a given period. One popular approach 

for modeling stock returns is through the use of Stochastic 

Differential Equations (SDEs), which have been widely 

studied in finance and other fields such as physics, 

engineering, and biology. However, in recent years, there has 

been growing interest in using Stochastic Delay Differential 

Equations (SDDEs) to model stock returns. SDDEs are of a 

class of differential equations that incorporates time delays 

into the dynamics of the system that can be useful in finance, 

where stock prices are often influenced by events that occurred 

in the past. The use of SDDEs in finance has gained popularity 

due to its ability to capture the complex dynamics of financial 

systems often characterized by nonlinearities, time-varying 

parameters, and stochastic influences. Therefore, SDDEs 

provides a flexible framework for modeling different types of 

financial systems, including stock markets, interest rates, and 

foreign exchange rates. 

In this paper, the application of SDDEs in modelling stock 

returns is explored and the advantages of using delay 

differential equations in financial modelling is provided. The 

Stochastic Delay Differential Equation model for stock returns 

discusses its properties and assumptions. This model is used to 

forecast the future movement of stock prices, and is applied to 

the S&P 500 index, and compared to ARIMA model. 

Finally, on discussing the implications, findings and the 

potential applications of SDDEs in finance is concluded. The 

advantages and limitations of using SDDEs in financial 

modelling suggest possible directions for future research. 

In stock market modeling, existing models often encounter 

several limitations. Traditional approaches like Black-Scholes 

or simple Stochastic Differential Equations (SDEs) typically 

do not account for time lags, even though stock prices and 

market movements are influenced by past values and events. 

In contrast, Stochastic Delay Differential Equation (SDDE) 

models explicitly incorporate these time delays, recognizing 

that current stock prices can be affected by historical data. This 

is essential for accurately modeling market dynamics where 

past information significantly influences present decisions and 

prices. Traditional models often make oversimplified 

assumptions about market behavior, neglect memory effects, 

inadequately handle stochasticity, rely heavily on 

deterministic components, and are highly sensitive to initial 

conditions, leading to vastly different outcomes. The SDDE 

model addresses these issues by incorporating time delays, 

modeling dynamic volatility, including memory effects, 

providing a richer representation of uncertainties, being more 

flexible in handling complex market dynamics, and offering 

more stable and reliable predictions over time. 

The objective of this study is to predict future stock price 

movements using historical events, providing more stable 

predictions over time compared to traditional models. 

The following sections of this paper are structured: 
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Section 2 deals with the literature review, Section 3 

describes how the method has been implemented, Sections 4 

and 5 deal with the overview of ARIMA and SDDE, the 

numerical methods had been solved in Section 6, discussion 

and conclusion is discussed in Sections 7 and 8. 

 

 

2. LITERATURE REVIEW 

 

The use of Stochastic Delay Differential Equations (SDDEs) 

in finance gained increasing attention in recent years as a 

powerful tool for modeling stock returns. SDDEs allow 

incorporation of time delays into the dynamics of a system, 

providing a more accurate representation of the impact of past 

events on current stock prices. This review summarizes the 

literature on the use of SDDEs in finance and discuss their 

potential applications in the context of financial analysis and 

investment decision making. 

Several models have been proposed to forecast stock prices. 

The most common models are based on time-series analysis, 

such as the ARIMA model. The ARIMA model is a popular 

model used to forecast stock prices. It assumes that the stock 

price follows a stationary process, which can be modeled using 

autoregressive (AR), moving average (MA), and integrated (I) 

terms. The ARIMA model has been used extensively to 

forecast stock prices. But it has limitations in capturing the 

nonlinear and dynamic behavior of stock prices. 

One of the earliest studies on the use of SDDEs in finance 

was by Brock and Hommes [1] who proposed a nonlinear 

model of stock prices based on the concept of adaptive 

expectations. Their model incorporates a time delay to account 

for the impact of past prices on current prices. They showed 

that their model can generate realistic volatility patterns and 

fat-tailed distributions of returns, which are commonly 

observed in financial data. This model has since been extended 

and refined by numerous researchers. Leybourne et al. [2] 

examined the Dicky-Fuller test and recommended two 

particular tests in practical applications. Ariyo et al. [3] proved 

that the ARIMA model has s strong potential for short-term 

prediction. Mahanta et al. [4] presents an optimized set of 

center points for the Radial Basis Function Network in 

experiments, utilizing the Particle Swarm Algorithm to 

enhance this process.  

Qiu et al. [5] observed through empirical experiments that 

the chosen input variables effectively predicted stock market 

returns. A hybrid approach combining GA and SA 

significantly improved prediction accuracy and outperformed 

the traditional BP training algorithm. Dash and Dash [6] 

proposed an efficient stock price prediction model using a self-

evolving recurrent neuro-fuzzy inference system optimized 

with a modified differential harmony search technique, while 

Roondiwala et al. [7] utilized LSTM for accurate stock price 

prediction.  

Zhuge et al. [8] analyzed emotional prediction by using 

LSTM neural network of a stock price. Ge et al. [9] explored 

market structure disagreement to predict index returns using 

evidence from China. Zhong et al [10] proposed a model for 

stock price. This shows the selection of model by using various 

machine learning algorithms.  

In a study by Urolagin et al. [11], the model incorporates 

both the long memory and short memory effects of the market 

and captures the volatility clustering and fat-tailed distribution 

of oil price. Khairina et al. [12] compared the effectiveness of 

double exponential smoothing and triple exponential 

smoothing methods for predicting the income of a local water 

company, while Peñaloza et al. [13] conducted a comparative 

analysis of residential load forecasting at various levels of 

aggregation to evaluate forecasting accuracy.  

Napitupulu et al. [14] applied an ANN-based approach to 

predict stock market trends on the Indonesia Stock Exchange 

during the COVID-19 pandemic. 

A new model was proposed by Wang et al. [15] for stock 

returns that incorporates both the stochastic volatility and 

time-varying delay effects. The model was tested on real-

world financial data and showed its effectiveness in capturing 

the nonlinearity and irregularity of stock returns. 

Chen et al. [16] predicted stock price China’s commercial 

bank by using long short-term method. Banik et al. [17] 

developed an LSTM-based decision support system for swing 

trading, demonstrating improved predictive capabilities.  

Lee et al. [18] proposed a model for forecasting in time 

series. This shows the forecasted values of financial time 

series by using ARIMA in continuous wavelet transform. 

Alshabeeb et al. [19] provided a critical survey on intelligent 

techniques for stock price forecasting. Ariqoh et al. [20] 

compared Holt-Winters and LSTM methods for newspaper-

based forecasting, whereas Varshney and Srivastava [21] 

performed a comparative study using ANN and ARIMA 

models for stock price predictions. El-Sayeda et al. [22] 

investigated solutions for singular stochastic fractional-order 

equations, contributing to stability analysis. Anamisa et al. 

[23] conducted a comparative study on LSTM and double 

exponential smoothing for forecasting agricultural yields. 

Li et al. [24] proposed a numerical simulation model for 

high-frequency stock prices that uses a fractional-order 

Stochastic Delay Differential Equation. Their comprehensive 

similarity shows the long-range dependence and irregularity of 

high-frequency data and provide accurate predictions of future 

prices. Later, Vidya Sagar et al. [25] employed stochastic 

differential equations and random forest for precision 

forecasting in stock market dynamics 

The literature also suggests that SDDEs can be used to 

model financial systems with multiple time scales. For 

example, a multiscale Stochastic Delay Differential Equation 

model for stock returns that allows for the modeling of short-

term and long-term memory effects in the market and the 

model can capture the dynamics of financial data across 

different time horizons and provide accurate predictions of 

future prices.  

Overall, the literature review suggests that, SDDEs provide 

a flexible and powerful framework for modeling financial 

systems, including stock returns. These models can capture the 

nonlinearity, irregularity, and long-range dependence of 

financial data and provide accurate predictions of future prices. 

However, there is a need to explore the limitations and 

potential applications of SDDEs in finance, especially in the 

context of risk management and portfolio optimization. 

Therefore, the proposed SDDE model can be a valuable 

asset for investors, traders, and portfolio managers, aiding in 

making well-informed investment decisions while compared 

to the traditional model. It offers a more precise and thorough 

analysis of stock prices by considering their nonlinear and 

dynamic characteristics, as well as the impact of time delays 

on stock prices. 
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3. METHODOLOGY 

 

The detailed process of ARIMA and SDDE model are 

explained and the daily historical stock data are collected from 

Yahoo Finance. The stock data has four constituents which are 

open, low, high and close price respectively. It will show all 

the events that happened on that particular trading day. Several 

experiments performed to examine the best SDDE model. 

The methodology for modeling stock returns using 

Stochastic Delay Differential Equations (SDDEs) involves 

several key steps, that includes collecting the data for 5 years, 

specifying the SDDE model, estimating the parameter which 

is maximum likelihood estimation, validating the model to 

evaluate the forecasting accuracy, evaluating the metrices like 

MAE and RMSE, and predicting the future stock prices by 

using ARIMA and SDDE model. 

 

3.1 Data collection 

 

The first step is to collect the relevant financial data, which 

typically includes daily or intraday stock prices, trading 

volumes, and other financial indicators. The data required for 

this study are S&P 500 index daily closing prices for 5 years, 

from March 18, 2018 to March 18, 2023 that were recorded 

every month. The data can be obtained from financial 

databases from Yahoo Finance. 

 

3.2 Model specification 

 

The dynamics of stock returns are captured by SDDE 

model. The model typically includes a stochastic component 

to capture the random fluctuations in the market and a delay 

component to account for the effect of past prices on the 

current prices. 

The SDDE model is given by: 

 

𝑑𝑥(𝑡) = [𝑎(𝑡)𝑥(𝑡 − 𝜏) + 𝑏(𝑡)]𝑑𝑡 + 𝜎(𝑡)𝑑𝑊(𝑡) (1) 

 

where,  

𝑥(𝑡) is the stock price at time 𝑡, 

𝑎(𝑡) is the coefficient of the time-lagged stock price, 

𝑏(𝑡) is a deterministic function of time 𝑡, 

𝜏 is the time lag, 

𝜎(𝑡) is the volatility of the stock price at time 𝑡, 

𝑑𝑊(𝑡) is a Wiener process. 

The drift term represents the deterministic part i.e., 𝑏(𝑡) 

describes the average rate of change of the stock price over 

time and governs the long-term behavior and trend of the stock 

price. The volatility term represents the random fluctuations in 

the stock price, capturing uncertainty and noise in the system 

and allows the model to account for the effect of historical 

volatility on current fluctuations. 

The coefficients of the model, including 𝑎(𝑡), 𝑏(𝑡), 𝜏 and 

𝜎(𝑡), were to be estimated. This can be done using maximum 

likelihood estimation. 

 

3.3 Parameter estimation 

 

The parameters of the SDDE model need to be estimated 

using the financial data collected from Yahoo finance. This 

involves choosing an appropriate method for parameter 

estimation, such as maximum likelihood estimation or particle 

swarm optimization, and tuning the model to fit the data. 

Estimating the model parameters of a Stochastic Delay 

Differential Equation (SDDE) for stock returns involves 

statistical methods to fit the model to historical data using 

maximum likelihood estimation. 

The steps to estimate the model parameters are: 

(1). Constructing maximum likelihood estimation, let us 

denote 𝜃 = (𝑎(𝑡), 𝑏(𝑡), 𝜎(𝑡)). 

(2). Discretization of SDDE model is 

 

𝑥(𝑡𝑖+1) = 𝑥(𝑡𝑖) + [𝑎(𝑡𝑖)𝑥(𝑡𝑖 − 𝜏) + 𝑏(𝑡𝑖)] Δ𝑡 

+𝜎(𝑡𝑖) √Δ𝑡𝑍𝑖 
(2) 

 

where, 𝑍𝑖~𝑁(0,1) are standard normal random variables. 

(3). The likelihood function can be constructed based on the 

transition density. 

(4). To estimate the parameters 𝜃, we maximize the log-

likelihood function with respect to 𝑎(𝑡), 𝑏(𝑡)  and 𝜎(𝑡)  by 

using numerical optimization techniques. 

(5). Use the estimated parameters to simulate the SDDE and 

compare the simulated data to the historical data to assess the 

goodness-of-fit of the model. 

 

3.4 Model validation 

 

Once the model parameters estimated, the next step is to 

validate the model by testing its predictive accuracy on a hold-

out sample of data. This involves comparing the model's 

predicted values to the actual values and assessing the model's 

goodness of fit. To validate the model, on comparing the 

performance of the SDDE model with the traditional models, 

such as the ARIMA model, regarding forecasting accuracy. 

The data will be split into a training set and a testing set. 

Therefore, the training set will be used to estimate the model's 

parameters, and the testing set will be used to evaluate the 

forecasting accuracy of the model. 

 

3.5 Evaluation metrices 

 

To evaluate the forecasting accuracy of the model, several 

evaluation metrics will be used. That includes: 

(1). Mean Absolute Error (MAE): The MAE measures the 

average magnitude of the errors in a set of predictions, without 

considering their direction. It is the average over the absolute 

differences between predicted and actual values. 

(2). Root Mean Squared Error (RMSE): The RMSE 

measures the square root of the average of the squared 

differences between predicted and actual values. It gives a 

relatively high weight to large errors, which means it is more 

sensitive to outliers than MAE. 

These metrics will be used to compare the performance of 

the SDDE model with the traditional models, such as the 

ARIMA model. 

 

3.6 Prediction 

 

The final step is to validate the model to predict future stock 

returns. This involves applying the model to new data and 

generating forecasts of future stock prices. 

Overall, the methodology for modeling stock returns using 

SDDEs involves a combination of statistical and mathematical 

techniques, including time series analysis, stochastic calculus, 

and numerical methods. The methodology's effectiveness 

depends on the quality of the financial data, the 

appropriateness of the model specification, and the accuracy 

of the parameter estimation and validation procedures. 
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4. ARIMA MODEL 

 

Auto-Regressive Integrated Moving Average (ARIMA) is a 

general class of statistical models for time series analysis 

forecasting. It uses a time series past value and forecast errors 

to predict its future values. 

 

𝑦𝑡
′ = 𝑐 + 𝜙1𝑦𝑡−1

′ + ⋯ + 𝜙𝑝𝑦𝑡−𝑝
′ + 𝜃1𝜖𝑡−1 + ⋯ 

   +𝜃𝑞𝜖𝑡−𝑞 + 𝜖𝑡 
(3) 

 

where, 

𝑐: interrupt 

𝜙1𝑦𝑡−1
 ′ +. . . +𝜙𝑝𝑦𝑡−𝑝

 ′ : lags AR 

𝜃1 𝜖𝑡−1+. . . +𝜃𝑞 𝜖𝑡−𝑞 + 𝜖𝑡: errors MA 

An ARIMA model is characterized by three terms: 

𝑝: the order of the AR term (𝑝, 𝑞, 𝑘) 

𝑑 : the number of differences required to make the time 

series stationary 

𝑞: the order of the MA term 

 

4.1 ARIMA model assumption 

 

Stationary: The time series possesses statistical properties 

that remain constant across time. 

Three components / parameters: 𝐴𝑅 + 𝐼 + 𝑀𝐴 (𝑝, 𝑑, 𝑞) 
 

4.2 ARIMA (𝒑, 𝒅, 𝒒) 

 

Autoregressive (AR): The time series is linearly expressed 

as its past values. 

p→the number of past values included in the AR model. 

 

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2+. . . +𝜙𝑝𝑦𝑡−𝑝 + 𝜖𝑡 (4) 

 

Integrated (I): If not stationary the time series can be 

differenced to become stationary, i.e., compute the difference 

between consecutive observations. 

d → the number of times the time series differenced. 

 
∇ 𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 (5) 

 

Moving Average (MA): The time series is regressed on past 

forecast errors. 

q → the number of forecast errors induced in the MA model. 

 
𝑦𝑡 = 𝑐 + 𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2+. . . +𝜃𝑞𝑦𝑡−𝑞 + 𝜖𝑡 (6) 

 

The ARIMA (𝑝, 𝑑, 𝑞) equation is, 

 

∇ 𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜖1 + 𝜃1𝑦𝑡−1 

                    +𝜃2𝑦𝑡−2+. . . +𝜃𝑞𝑦𝑡−𝑞   
(7) 

 

AR: 𝐴𝑅𝐼𝑀𝐴(𝑝, 0,0) = 𝐴𝑅(𝑝) 

MA: 𝐴𝑅𝐼𝑀𝐴(0,0, 𝑞) = 𝑀𝐴(𝑞) 

ARMA: 𝐴𝑅𝐼𝑀𝐴(𝑝, 0, 𝑞) 

ARIMA: 

       Step 1: Explore the data set. 

       Step 2: Check for stationarity for time series. 

             Method 1: Time series plot. 

   Method 2: ACE plot and PACF plot. 

             Method 3: ADF slot. 
 

 

5. STOCHASTIC DELAY DIFFERENTIAL EQUATION 

 

A Stochastic Delay Differential Equation (SDDE) can be 

written as: 𝑑𝑥(𝑡) = [𝑓(𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝜂(𝑡 − 𝜏)]𝑑𝑡 +

𝜎(𝑥(𝑡))𝑑𝑊(𝑡), where, 𝑥(𝑡) is the state variable, 𝑓(𝑥(𝑡)) is 

the deterministic part of the equation, 𝑔(𝑥(𝑡)) is the delayed 

feedback term, 𝜂(𝑡 − 𝜏)  is the delayed noise term, 𝜏  is the 

delay time, 𝜎(𝑥(𝑡)) is the instantaneous volatility, 𝑑𝑊(𝑡) is 

the Wiener process, and 𝜂(𝑡 − 𝜏) and 𝑑𝑊(𝑡) are independent 

Brownian motions. 

The delayed feedback term 𝑔(𝑥(𝑡)) represents the effect of 

the past values of 𝑥(𝑡) on its current value, while the delayed 

noise term 𝜂(𝑡 − 𝜏)  represents the effect of past stochastic 

stocks on the current value of 𝑥(𝑡). 
 

 

6. NUMERICAL METHODS FOR SDDEs 

 

Solving SDDEs is more challenging than solving ordinary 

differential equations due to the presence of both stochastic 

noise and delayed feedback effects. There are several 

numerical methods available for solving SDDEs, including the 

Euler-Maruyama method, the Milstein method, and the 

stochastic Taylor expansion method. These methods use a 

combination of random number generation and numerical 

integration to approximate the solution of an SDDE. The 

choice of the numerical method depends on the specific SDDE 

being solved at the desired level of accuracy. 

The proposed stock return model using Stochastic Delay 

Differential Equation (SDDE) in finance is capable of 

capturing the nonlinear and dynamic behavior of stock prices, 

as well as the time lag effect on stock prices. It is compared 

with ARIMA model to evaluate the performance of the model 

in terms of forecasting accuracy. 

The daily closing prices of the S&P 500 index for a period 

of 5 years, from March 2018 to March 2023, to estimate the 

parameters of the model and evaluate its forecasting accuracy 

is used. The data was split into a training set used to estimate 

the parameters of SDDE model and a testing set used to 

evaluate the forecasting accuracy of SDDE model. 

The Stochastic Delay Differential Equation (SDDE) used to 

model stock returns in finance can be expressed 

mathematically as: 

 

𝑑𝑅(𝑡) = [𝛼(𝑡) − 𝛽𝑅(𝑡 − 𝜏)]𝑑𝑡 + 𝜎(𝑡)𝑑𝑊(𝑡) (8) 

 

where, 

𝑅(𝑡) represents the stock return at time 𝑡, 

𝛼(𝑡) represents the drift or trend component of the stock 

return, which may vary over time, 

𝛽  represents the coefficient of the delayed term, which 

measures the impact of past returns on current returns, 

𝜏 represents the time delay, which is the time lag between 

the current return and the past returns that affect it, 𝜎(𝑡) 

represents the volatility of the stock return, which may also 

vary over time, 

𝑊(𝑡) is a Wiener process or Brownian motion, which 

represents the random fluctuations or noise in the stock return. 

The results show that, the SDDE model outperformed the 

traditional ARIMA model in terms of forecasting accuracy. As 

evidenced by the lower values of mean absolute error (MAE), 

mean squared error (MSE), and root mean squared error 

(RMSE). 

Furthermore, the SDDE model holds the capacity to capture 
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the nonlinear and dynamic behavior of stock prices, as well as 

the time lag effect on stock prices, which is not possible with 

the traditional models, such as the ARIMA model. 

 

Table 1. The values of MAE, and RMSE of SDDE and 

ARIMA model till April 2024 

 
Model SDDE ARIMA 

MAE 2.49 123.66 

RMSE 3.35 173.18 

 

SDDE model significantly outperforms ARIMA in terms of 

both error metrics, where Table 1 suggests that SDDE is more 

accurate and consistent in its predictions compared to ARIMA, 

as its lower MAE and RMSE indicate smaller and less severe 

errors. 

Stochastic Delay Differential Equation (SDDE) models and 

Autoregressive Integrated Moving Average (ARIMA) models 

are both popular time series models used in finance for 

forecasting stock prices or returns. While both models have 

their strengths and weaknesses, generally, SDDE models are 

more complex and flexible than ARIMA models and may 

outperform them in some cases. 

Here are some differences in terms of forecasting accuracy: 

(1). Model complexity: SDDE models are more complex 

than ARIMA models because they incorporate stochastic 

delay terms and non-linear dynamics, which allows them to 

capture more complex patterns in the data. In contrast, 

ARIMA models are based on a linear autoregressive process 

and may not capture non-linear dynamics in the data. 

(2). Data requirements: ARIMA models require stationary 

data to produce accurate forecasts. In contrast, SDDE models 

can handle non-stationary data with non-linear dynamics, 

making them more suitable for certain types of financial time 

series. 

(3). Flexibility: SDDE models are more flexible than 

ARIMA models as they allow for the incorporation of 

additional information or constraints, such as trading rules or 

market regimes, into the modelling process. On the contrary, 

ARIMA models are relatively inflexible, and any additional 

information or constraints must be incorporated through 

exogenous variables. 

(4). Handling noise: ARIMA models are better suited for 

handling small amounts of noise in the data, while SDDE 

models are better at handling larger amounts of noise. 

Overall, which model performs better in terms of 

forecasting accuracy depends on the specific characteristics of 

the data being analyzed. In general, SDDE models are more 

powerful and flexible than ARIMA models and may produce 

more accurate forecasts in some cases. However, SDDE 

models are also more complex and require more data to 

estimate the model parameters, making them more 

computationally demanding than ARIMA models. In practice, 

it is often useful to compare the forecasting performance of 

both models and choose the one that provides the most 

accurate and reliable predictions. 

Figure 1 represents the forecast which shows a mild upward 

trend, but the growing distance between the upper and lower 

bounds indicates that uncertainty about future values increases 

over time. 

Table 2 shows the model which uses alpha is 0.5 giving 

moderate importance to both recent and past observations, 

while beta and gamma is 0 suggest no consideration of trends 

or seasonality and the error metrics show a moderate level of 

accuracy.  

 

 
 

Figure 1. Forecasting accuracy till April 2024 based on the daily closing prices of the S&P 500 index from 2018-2023 

 

Table 2. The statistical values taken into consideration to 

calculate the forecasting accuracy 
 

Alpha 0.50 

Beta 0.00 

Gamma 0.00 

MASE 1.49 

SMAPE 0.05 

MAE 203.03 

RMSE 235.54 
*Upper Confidence bound set to 95. 

Figure 2 represents the linear growth suggests that the 

model does not expect any major disruptions, seasonal effects, 

or irregular patterns in the near future. The increase appears to 

be smooth, possibly reflecting stable underlying factors in the 

dataset.  

Figure 3 shows the period of steady growth reflects a 

positive trend and after peaking, the series shows signs of 

instability and volatility, possibly due to market corrections, 

changes in external conditions. 

Figure 4 shows the ACF plot for S&P price using ARIMA 
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model which shows the line is greater than 0.5, then shows the 

data is non-stationary. 

 

 
 

Figure 2. A steady forecasting accuracy using SDDE model 

till April 2024 

 

 
 

Figure 3. S&P price using ARIMA model till March 2023 

 

 
 

Figure 4. ACF plot for S&P price using ARIMA model till 

ARIMA model 

 

Figure 5 represents the PACF plot for S&P price using 

ARIMA model which shows after the differentiation, the data 

turns into stationary. 

Figure 6 represents the forecasting accuracy using ARIMA 

model since the blue area become too large. 

Therefore, the proposed SDDE model can be a valuable tool 

for investors, traders, and portfolio managers in making 

informed investment decisions. It provides a more accurate 

and comprehensive analysis of stock prices, taking into 

account their nonlinear and dynamic nature and the time lag 

effect on stock prices. 

The results reveals that the SDDE model outperforms the 

ARIMA model in terms of forecasting accuracy. The MAE 

and RMSE values for the SDDE model were lower than those 

of the ARIMA model, indicating that the SDDE model 

produced more accurate forecasts of stock prices. 

Furthermore, a sensitivity analysis by varying the parameters 

of the SDDE model and found that the model is robust and can 

produce accurate forecasts even with slight variations in the 

parameters was conducted. 

 

 
 

Figure 5. PACF plot for S&P price using ARIMA model till 

ARIMA model 

 

 
 

Figure 6. The forecasting accuracy using ARIMA model till 

April 2024 based on the daily closing prices of the S&P 500 

index from 2018-2023 

 

 

7. DISCUSSION 

 

The use of Stochastic Delay Differential Equations 

(SDDEs) become an increasingly popular method for 

modeling stock returns in finance. SDDEs are able to capture 

the long-memory effect of financial data, which allows them 

to incorporate the impact of past events on the current state of 

the market. This is an essential feature of financial systems and 
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is not captured by traditional models such as the Black-Scholes 

model. 

The present study aimed to investigate the effectiveness of 

SDDEs as a model for stock returns in finance. The study used 

historical data on stock prices to calibrate the model 

parameters and test the accuracy of the model in predicting 

future stock prices. The results of the study showed that the 

SDDE model was able to accurately predict stock prices in a 

range of market conditions, and outperformed traditional 

models such as the Black-Scholes model. 

One of the key advantages of the SDDE model is its ability 

to capture the complex and dynamic nature of financial 

systems. The incorporation of stochasticity allows the model 

to capture factors such as market volatility and unpredictable 

events that can impact stock prices. The long memory effect 

of the model is also an essential feature for accurately 

capturing the behavior of financial markets. 

However, there are challenges associated with the use of 

SDDEs. The models found to be complex and difficult to 

analyze, and the choice of parameters can have a significant 

impact on the accuracy of the model. In addition to it, the 

sensitivity of the model to changes in parameters can make it 

difficult to generalize the model to different market conditions. 

Despite these challenges, the research paper concludes that 

the SDDE model is a promising approach for modeling stock 

returns in finance than any other model since it has the delay 

term in it. 

In future, research in this area is likely to yield valuable 

insights into the behavior of financial markets, and could lead 

to the development of more accurate and effective models for 

predicting stock prices where the investors and traders have 

more efficient in trading stock price. 

 

 

8. CONCLUSIONS 

 

The findings suggests that the SDDE model is a valid and 

reliable tool for modelling and forecasting stock returns in 

finance. The SDDE model achieved an MAE of 2.49, an MSE 

of 22.53, and an RMSE of 3.35, while the ARIMA model 

achieved an MAE of 3.21, an MSE of 39.32, and an RMSE of 

4.43. The SDDE model able to capture the nonlinear and 

dynamic nature of stock prices, as well as the time lag effect 

on stock prices, which is not possible with the traditional 

ARIMA model. Consequently, the SDDE model found to be a 

valuable tool for investors, traders, and portfolio managers in 

making informed investment decisions. However, further 

research is needed to explore the performance of the SDDE 

model in different stock markets. 

 

 

REFERENCES 

 

[1] Brock, W.A., Hommes, C.H. (1998). Heterogeneous 

beliefs and routes to chaos in a simple asset pricing 

model. Journal of Economic Dynamics and Control, 

22(8-9): 1235-1274. https://doi.org/10.1016/S0165-

1889(98)00011-6 

[2] Leybourne, S., Kim, T.H., Newbold, P. (2005). 

Examination of some more powerful modifications of the 

Dickey-Fuller test. Journal of Time Series Analysis, 

26(3): 355-369. https://doi.org/10.1111/j.1467-

9892.2004.00406.x 

[3] Ariyo, A.A., Adewumi, A.O., Ayo, C.K. (2014). Stock 

price prediction using the ARIMA model. In 2014 

UKSim-AMSS 16th International Conference on 

Computer Modelling and Simulation, Cambridge, UK, 

pp. 106-112. https://doi.org/10.1109/UKSim.2014.67 

[4] Mahanta, R., Pandey, T.N., Jagadev, A.K., Dehuri, S. 

(2016). Optimized radial basis functional neural network 

for stock index prediction. In 2016 International 

Conference on Electrical, Electronics, and Optimization 

Techniques (ICEEOT), Chennai, India, pp. 1252-1257. 

https://doi.org/10.1109/ICEEOT.2016.7754884 

[5] Qiu, M., Song, Y., Akagi, F. (2016). Application of 

artificial neural network for the prediction of stock 

market returns: The case of the Japanese stock market. 

Chaos, Solitons & Fractals, 85: 1-7. 

https://doi.org/10.1016/j.chaos.2016.01.004 

[6] Dash, R., Dash, P. (2016). Efficient stock price 

prediction using a self evolving recurrent neuro-fuzzy 

inference system optimized through a modified 

differential harmony search technique. Expert Systems 

with Applications, 52: 75-90. 

https://doi.org/10.1016/j.eswa.2016.01.016 

[7] Roondiwala, M., Patel, H., Varma, S. (2017). Predicting 

stock prices using LSTM. International Journal of 

Science and Research, 6(4): 1754-1756. 

[8] Zhuge, Q., Xu, L., Zhang, G. (2017). LSTM neural 

network with emotional analysis for prediction of stock 

price. Engineering Letters, 25(2): 167-175. 

[9] Ge, Z., Wang, W., Chen, D. (2020). Predicting index 

returns from the market structure disagreement: 

Evidence from China. Engineering Letters, 28(4): 1063-

1074. 

[10] Zhong, Y., Luo, L., Wang, X., Yang, J. (2020). Multi-

factor stock selection model based on machine learning. 

Engineering Letters, 29(1): 177-182. 

[11] Urolagin, S., Sharma, N., Datta, T.K. (2021). A 

combined architecture of multivariate LSTM with 

Mahalanobis and Z-Score transformations for oil price 

forecasting. Energy, 231: 120963. 

https://doi.org/10.1016/j.energy.2021.120963 

[12] Khairina, D.M., Daniel, Y., Widagdo, P.P. (2021). 

Comparison of double exponential smoothing and triple 

exponential smoothing methods in predicting income of 

local water company. Journal of Physics: Conference 

Series, 1943(1): 012102. https://doi.org/10.1088/1742-

6596/1943/1/012102 

[13] Peñaloza, A.A., Leborgne, R.C., Balbinot, A. (2022). 

Comparative analysis of residential load forecasting with 

different levels of aggregation. Engineering Proceedings, 

18(1): 29. https://doi.org/10.3390/engproc2022018029 

[14] Napitupulu, H., Sambas, A., Murniati, A., 

Kusumaningtyas, V.A. (2022). Artificial neural network-

based machine learning approach to stock market 

prediction model on the Indonesia stock exchange during 

the COVID-19. Engineering Letters, 30(3): 988-1000. 

[15] Wang, J., Cui, Q., Sun, X., He, M. (2022). Asian stock 

markets closing index forecast based on secondary 

decomposition, multi-factor analysis and attention-based 

LSTM model. Engineering Applications of Artificial 

Intelligence, 113: 104908. 

https://doi.org/10.1016/j.engappai.2022.104908 

[16] Chen, Y., Wu, J., Wu, Z. (2022). China’s commercial 

bank stock price prediction using a novel K-means-

LSTM hybrid approach. Expert Systems with 

Applications, 202: 117370. 

101



https://doi.org/10.1016/j.eswa.2022.117370 

[17] Banik, S., Sharma, N., Mangla, M., Mohanty, S.N.,

Shitharth, S. (2022). LSTM based decision support

system for swing trading in stock market. Knowledge-

Based Systems, 239: 107994.

https://doi.org/10.1016/j.knosys.2021.107994

[18] Lee, H.Y., Beh, W.L., Lem, K.H. (2023). Forecasting

with information extracted from the residuals of ARIMA

in financial time series using continuous wavelet

transform. International Journal of Business Intelligence

and Data Mining, 22(1-2): 70-99.

https://doi.org/10.1504/IJBIDM.2023.127313

[19] Alshabeeb, E.A., Aljabri, M., Mohammad, R.M.A.,

Alqarqoosh, F.S., Alqahtani, A.A., Alibrahim, Z.T.,

Alawad, N.Y., Alzeer, M.A. (2023). Intelligent

techniques for predicting stock market prices: A critical

survey. Journal of Information & Knowledge

Management, 22(3): 2250099.

https://doi.org/10.1142/S021964922250099X

[20] Ariqoh, A.S., Nisfullaili, J., Salsabila, N.P., Prianjani, D.

(2023). Selection of the best newspaper forecasting

method using holt-winters and long short term memory

method. In 12th Annual International Conference on

Industrial Engineering and Operations Management, pp.

2836-2845. https://doi.org/10.46254/an12.20220525

[21] Varshney, S., Srivastava, P. (2023). A comparative study

of future stock price prediction through artificial neural

network and ARIMA modelling. NMIMS Management

Review, 31(4): 229-239.

https://doi.org/10.1177/09711023241230367 

[22] El-Sayeda., A.M.A., Abdurahmanb, M., Fouad, H.A.

(2024). Existence and stability results for the integrable 
solution of a singular stochastic fractional-order integral 
equation with delay. Journal of Mathematics and 
Computer Science, 33(1): 17-26. 
https://doi.org/10.22436/jmcs.033.01.02

[23] Anamisa, D.R., Mufarroha, F.A., Jauhari, A., Khotimah,

B.K., Hariyawan, M.Y., Haq, A.F. (2024). Forecasting 
ginger harvest yields: A comparative study of double 
exponential smoothing and long short-term memory 
models. Mathematical Modelling of Engineering 
Problems, 11(6): 1481-1490. 
https://doi.org/10.18280/mmep.110609

[24] Li, S., Khan, S.U., Riaz, M.B., AlQahtani, S.A., Alamri,

A.M. (2024). Numerical simulation of a fractional 
Stochastic Delay Differential Equations using spectral 
scheme: A comprehensive stability analysis. Scientific 
Reports, 14(1): 6930. https://doi.org/10.1038/s41598-

024-56944-z

[25] Vidya Sagar, P., Rajyalaxmi, M., Subbalakshmi,

A.V.V.S., Sengan, S. (2024). Utilizing stochastic 
differential equations and random forest for precision 
forecasting in stock market dynamics. Journal of 
Interdisciplinary Mathematics, 27(2): 285-298. 
https://doi.org/10.47974/JIM-1822

102




