
Estimating Parameters of Software Reliability Growth Models Using Artificial Neural

Networks Optimized by the Artificial Bee Colony Algorithm Based on a Novel NHPP

Halkawt R. Hussein1 , Sarkawt R. Hussein1 , Adel S. Hussain1 , Mohammad A. Tashtoush2,3,4*

1 IT Department, Amedi Technical Institutes, University of Duhok Polytechnic, Duhok 42001, Iraq
2 Department of Basic Sciences, Al-Huson University College, Al-Balqa Applied University, Salt 19110, Jordan
3 Faculty of Education and Arts, Sohar University, Sohar 311, Oman
4 Jadara University Research Center, Jadara University, Irbid 21110, Jordan

Corresponding Author Email: tashtoushzz@su.edu.om

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120104 ABSTRACT

Received: 10 October 2024

Revised: 3 December 2024

Accepted: 10 December 2024

Available online: 25 January 2025

In this paper, the software reliability growth model of Rayleigh Order Statistics

distribution, formulated under the Non-Homogeneous Poisson Process (NHPP) model,

is presented. This model seeks to include new approaches in the data analysis to improve

the reliability of the software reliability predictions taking into consideration the various

issues of failure data. For parameter estimation, a hybrid Artificial Neural Network

(ANN) model is introduced, which has been trained by the Artificial Bee Colony (ABC)

algorithm, and the analysis shows that such a model yields much better results in

predictive performance. The research assesses the performance of the developed model

based on actual software reliability data sets and demonstrates the superiority of the

proposed model to conventional NHPP models in goodness-of-fit and predictive

accuracy. Further, the study reveals some of the deficiencies with the current models

and the significance of accurate failure data in the analysis of reliability; also, the paper

recommends the recognition and incorporation of higher levels of intelligent

calculations in future work. These findings add practical value to further developments

in software engineering, especially in increasing the effectiveness of quality assurance

and extending the durability of software applications.

Keywords:

Rayleigh Order Statistics process, software

reliability growth model, Non-Homogeneous

Poisson Process, unconstrained optimization

technique, Artificial Neural Network, Artificial

Bee Colony, simulation

1. INTRODUCTION

In the fast-paced realm of modern technology, ensuring the

reliability of software systems is crucial for maintaining

operational efficiency and achieving user satisfaction [1, 2].

Software failures can result in substantial financial

repercussions, security vulnerabilities, and a loss of user trust.

Consequently, the development of robust Software Reliability

Growth Models (SRGMs) is vital for accurately predicting and

enhancing software performance throughout its lifecycle [3-

6].

In today’s software world, software dependability is a

critical objective in software construction. Multi Var Time

Series Software Reliability Growth Models Losses occur if

software fails to meet the customers’ expectations, poses

insecurities, and loses users’ confidence hence the need for

developers to incorporate effective SRGMs. As will be

discussed, these models are invaluable in the context of

software performance prediction and improvement across the

software development life-cycle. With an even more complex

structure of applications being developed every passing day,

there has been growing pressure for even better modeling

methods that can capture software failure behavior [7-10].

The Non-Homogeneous Poisson Process, abbreviated as

(NHPP) has increasingly become a popular choice for

software reliability modeling [11]. This approach enables one

to express the failure occurrences with time and enables one to

capture changes in failing rates resulting from differences in

operating conditions. The new developments in future work

have incorporated Order Statistics distributions, namely

Rayleigh distribution, in presenting better reliability features

to software systems. These distributions help the researchers

to understand failure data better and consequently make

accurate predictions of the software’s performance [12-14].

Besides statistical methods, the use of new methods like

Machine Learning methods, particularly Artificial Neural

Networks (ANN) has also been incorporated in software

reliability modeling [15, 16]. The integration of ANN with

optimization algorithms like the Artificial Bee Colony (ABC)

algorithm has proved to improve parameter estimation

techniques incorporated in SRGMs. This innovative approach

not only enhances the accuracy of the predictors but is also

capable of dealing with massive and complicated data and

information that are universal in software applications [17-19].

Nevertheless, there are some issues with the application of

software reliability modeling even if certain improvements can

be seen. While using such models, the assumptions made are

often not well adaptable to diverse software systems in their

current form. Precisely, the quality and representativeness of

failure data play important roles in determining the

Mathematical Modelling of Engineering Problems
Vol. 12, No. 1, January, 2025, pp. 25-36

Journal homepage: http://iieta.org/journals/mmep

25

https://orcid.org/0009-0008-9131-5185
https://orcid.org/0009-0003-3439-6867
https://orcid.org/0000-0003-0653-1876
https://orcid.org/0000-0002-2436-8155
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120104&domain=pdf

performance of these models. Finally, situations, when the

data is scarce or contaminated, affect the reliability

predictions, which proves the importance of developing

stronger techniques suitable for software systems.

This research seeks to fill gaps found in existing models of

software reliability including the failure to capture intricate

patterns that vary with time. Through this work, a new model

within the NHPP framework, incorporating the Rayleigh

Order Statistics of software reliability, and ANN-ABC

principles for parameter estimation has been developed. These

more advanced methods improve the capability of the software

reliability models and make them more general for many

software systems. The results of the study should encourage

further development of software engineering research in the

aspect of improving quality assurance as well as the

prolongation of software systems’ life cycle.

1.1 Literature review

In 2017, the researchers proposed a new NHPP software

reliability model with an S-shaped growth curve that accounts

for random operating environments. They aimed to improve

predictions of software defects, optimize release times, and

minimize overall software system costs during the

development process [20].

Furthermore, in 2019, the researchers developed a new

software reliability growth model based on the Weibull Order

Statistics distribution and the NHPP. They created an

algorithm and a MATLAB program for practical

implementation, employed maximum likelihood estimation

for parameter estimation, and analyzed software failure data to

validate the model. Additionally, they suggested future

research directions involving advanced optimization

techniques to enhance reliability predictions [21].

In 2022, the researchers proposed a hybrid meta-heuristic

approach combining Ant Colony Optimization (ACO) with

the BAT Algorithm (HACO-BA) to optimize deep learning

models for software cost estimation. Their work focused on

improving the accuracy of software cost predictions by fine-

tuning COCOMO II coefficients and enhancing deep learning

model training. By comparing various optimization

algorithms, including ACO, BAT, and HACO-BA, the

researchers demonstrated that HACO-BA provided better

performance in terms of minimizing execution time and

improving prediction accuracy [22].

In 2023, all the researchers in this article aimed to apply the

NHPP reliability growth model to assess failure data in

repairable systems. They explored and estimated various

models such as the Crow Power Law model and also

conducted tests for goodness of fit. This also involved using a

log-linear model when results from the Power Law model

were and/or could not adequately fit. Moreover, the utilization

of the Weibull Time to Failure Recurrent Neural Network

(WTTE-RNN) framework was attempted but not viable for

some types of NHPP data [23].

In 2024, the researchers propose a finite failure software

reliability model based on the extended log-logistic

distribution within the framework of the NHPP. They derived

the model's properties, applied the maximum likelihood

estimation method to estimate its parameters using the

Newton-Raphson method, and evaluated the model with three

real software reliability datasets. The results show that the

proposed model outperformed several well-known NHPP

models in terms of goodness-of-fit and predictive performance

across all datasets [24].

Future trends for SRGM are aimed mainly at the

improvement of the accuracy of prediction, flexibility of

models, and applicability of the modeling approaches in

practice. These include the application of artificial intelligence

and machine learning for enhanced prediction as well as the

use of real-time failure data to enhance model responsiveness.

It has been observed that modern mixed models that integrate

statistical and machine learning methods have been evolving.

Further, the focus has shifted to the collection of user-oriented

reliability measures, like user satisfaction level and user

experience. Finally, efforts are made to get more empirical

evidence to prove models on different software systems and

environments which remains a challenge for developing more

advanced SRGMs to fulfill the demands of modern software

engineering.

1.2 Limitations of the NHPP model for Rayleigh Order

Statistics in SRGM

Model assumptions: The proposed reliability growth

model is based on specific assumptions inherent to the

Rayleigh process and the NHPP. These assumptions may not

hold for all software systems or failure scenarios, potentially

limiting the model's applicability in diverse contexts.

Data dependency: The effectiveness of the Weibull order

statistics distribution in modeling software reliability is

contingent upon the quality and quantity of failure data

available. In cases where data is sparse or not representative of

the software's operational environment, the model's

predictions may be less reliable.

Complexity of real-world systems: Real-world software

systems often exhibit complex behaviors that may not be fully

captured by the proposed model. Factors such as user

interactions, environmental conditions, and varying usage

patterns can influence software reliability in ways that are

difficult to quantify.

Computational resources: The implementation of the

algorithm and MATLAB program may require significant

computational resources, especially when dealing with large

datasets or complex models. This could pose challenges for

practitioners with limited access to advanced computational

tools.

Limited scope of optimization techniques: Although the

paper suggests the integration of advanced optimization

techniques like ANN and ABC for future research, the current

study does not explore these methods in depth. The potential

benefits of these techniques remain theoretical until

empirically validated in the context of software reliability.

Generalizability: The findings and methodologies

presented may be specific to the datasets used in the study.

Generalizing the results to other software systems or industries

may require further validation and testing.

Focus on quantitative metrics: The model primarily

emphasizes quantitative reliability metrics, potentially

overlooking qualitative aspects of software reliability, such as

user experience and satisfaction, which are also critical for

assessing overall software performance.

By tackling the pressing need for dependable software

systems, this research contributes significantly to the ongoing

advancements in software engineering, particularly in

enhancing quality assurance practices and prolonging the

operational lifespan of software applications. The insights and

methodologies presented in this work are intended to serve as

26

a valuable resource for both researchers and practitioners,

promoting further progress in the domain of software

reliability.

This paper introduces an innovative approach to assessing

software reliability by formulating a growth model based on

the Rayleigh Order Statistics distribution, anchored in the

NHPP. The Rayleigh process is esteemed for its adaptability

in modeling diverse failure rates, making it particularly

suitable for addressing the intricacies of software reliability.

By utilizing order statistics, this model establishes a

comprehensive framework for analyzing failure data and

estimating key reliability metrics.

Moreover, the paper advocates for the incorporation of

advanced optimization techniques, such as the combination of

ANN and ABC, in future research endeavors. This synergistic

approach holds promise for enhancing parameter estimation

processes, thereby yielding more precise predictions of

software reliability.

1.3 Theoretical foundations of Software Reliability

Growth Model

Software reliability growth modeling is an important sub-

discipline of software engineering that deals with the

prediction and enhancement of the reliability of software

systems in the software development life-cycle stages.

SRGMs apply statistical assessments to the failure data

collected, allowing the developer to predict the remaining

defective items and the reliability level of the software in use.

SRGMs can also serve as a guide to defining the improvement

of reliability when defects are found and fixed to facilitate

better planning of release times, improvement of QA

measures, and, consequently, the minimization of expenses

connected with software failures. With the developing

complexity of the software systems, operational effectiveness

and user satisfaction calls for efficient SRGMs.

The main models in Software Reliability Growth Modeling

(SRGM) include:

NHPP: This model takes into consideration different failure

rates at different times to accommodate for dynamism in

environments such as software.

Weibull distribution models: These models effectively

provide options for the portrayal of various failure behaviors

by holding the capability to portray rising and declining failure

rates.

Logarithmic and exponential models: These have been

widely adopted since they are easy to apply but often, they lack

the capability of modeling complex failure functions.

Hybrid models: These models integrate standard and

advanced statistical methods with MLE’s and contribute to

improved prognosis and adaptability for increased variable

difficulty and data licenses.

Meta-heuristic approaches: Two classes of metaheuristic

methods, including Genetic Algorithms and Particle Swarm

Optimization, are applied to enhance parameter estimation of

SRGMs.

All of these models have some advantages and

disadvantages, the decision on which model to use when

depends on the nature of the software being analyzed.

The NHPP, which is assumed by the majority of SRGMs, is

described by the following equation:

𝑝[𝑁(𝑡) = 𝑦] =
[𝑚(𝑡)]𝑦𝑒−𝑚(𝑡)

𝑦!
, 𝑦 = 1,2,3, … (1)

It describes the total number of failures up to a specific

execution time 𝑡, shown as 𝑁(𝑡) (𝑡 > 0). The predicted

cumulative number of failures at time t is represented by the

mean value function 𝑚(𝑡), as follows:

𝑚(𝑡) = ∫ 𝜆(𝑢) 𝑑𝑢

𝑡

0

, 0 < 𝜏 < ∞ (2)

with 𝑚(𝑡) the NHPP-based dependability function may be

stated as follows [24]. The likelihood of no failures in the time

interval (0, t) is defined as the reliability function 𝑅(𝑡), which

is provided by:

𝑅(𝑡) = 𝑝{𝑁(𝑡) = 0} = 𝑒−𝑚(𝑡) (3)

Reliability 𝑅 (
𝑦

𝑡
) generally indicates the likelihood that

there won't be any failures during the period. [𝑡, 𝑡 + 𝑦] is given

by:

𝑅 (
𝑦

𝑡
) = 𝑝{𝑁(𝑡 + 𝑦) − 𝑁(𝑡) = 0} = 𝑒−[𝑚(𝑡+𝑦)−𝑚(𝑡)] (4)

Eq. (4) is called the SRGM or software reliability based on

NHPP. The probability density functions as follows:

𝑓(𝑦) = λ(t + y)𝑒−[𝑚(𝑡+𝑦)−𝑚(𝑡)] (5)

2. MODIFIED ARTIFICIAL NEURAL NETWORK

Artificial Neural Network is a collection of neurons linked

by pathways in which those neurons carry weights and biases.

They further explain that once the network structure has been

developed, the next process is to exercise the network. The

process of setting the weights and biases of the networks to

their optimal values is called network training. Typically, one

or several techniques are employed in evaluating proper

weights and bias for the ANN. In order to get the best result in

the training of network, the ABC has been applied in this

study. Further information about ABC is available in studies

[25, 26], which contains a detailed overview of the ABC

approach used in this investigation [27]. Furthermore, there

exist the MATLAB implementation codes of the following.

2.1 Proposed Artificial Neural Networks training

approach using Artificial Bee Colony algorithm

ANNs are one of the most widely used artificial intelligence

tools in applications including classification, prediction, and

pattern recognition. Neural networks can perform millions of

operations without missing a beat given the right weights and

parameters for training. In the past, it was customary to train a

neural network using an optimization algorithm for example

the gradient descent; this tends to get stuck in a local minimum

depending on the loss function space. To overcome these

challenges, suggest the ABC algorithm as another innovative

approach to training Artificial Neural Networks. The Artificial

Bee Colony algorithm is similar to the Fireflies optimization

algorithm, where fireflies are attracted by the other based on

the light intensity. Six essential phases will be involved in

training the ANN with algorithm ABC as follows [28]:

Step 1. Data formatting: collecting and dividing data.

Step 2. Neural network design: determining the structure,

27

activation functions, and loss functions.

Step 3. Initializing the ABC algorithm: Defining the set of

fireflies and the brightness function.

Step 4. Training a neural network with ABC: Calculating

brightness, updating ABC locations, evaluating performance,

and iterating.

Step 5. Validation and final evaluation: Use validation and

test suites to evaluate Eq. (18).

Step 6. Implementation and application: Using the trained

Eq. (18) in practical applications.

3. MATHEMATICAL FORMULATIONS,

PROPERTIES, AND ASSUMPTIONS OF THE

PROPOSED MODEL

3.1 Mathematical formulations

Software reliability is best described as the ability of a

software system to perform without encountering any error

over a given duration of operation given certain conditions.

Reliability analysis must also be done and quality maintenance

of software is highly important in order that the system have

the right performance and dependability that is needed.

Software Reliability Growth Models therefore stand as key

drivers for assessing performance and achieving rigorous

debugging in order to improve the durability of the system

[29].

A previous model has been developed based on the

Rayleigh Order Statistics distribution fit within the NHPP

model. This integration enables the model to capture failure

rates to increase monotonically with time as observed in

realistic software systems. The foundation of the model is the

mean value function 𝑚1(𝑡) which is mathematically:

𝑚1(𝑡) = ∫ 𝜆(𝑢) 𝑑𝑢

𝑡

0

 (6)

where, 𝜆(𝑡) denotes the failure intensity function. For a

random variable X following a Rayleigh process, the

occurrence rate is determined by:

𝜆(𝑡) =
1

𝑏2 𝑡, t0, b>0 (7)

where, 𝑏 represents scale parameter. If we substitute Eq. (7)

into Eq. (6) and simplify, then we obtain:

𝑚1(𝑡) =
1

2𝑏2
𝑡2 (8)

For the stochastic process, the inter-arrival times are

determined by Hussain et al. [29]:

𝑓(𝑡) = 𝜆(𝑡)𝑒−𝑚(𝑡0) (9)

For the Rayleigh process, we may express the probability

density function as follows:

𝑓(𝑡) =
1

𝑏2
𝑡 𝑒

−
1

2𝑏2𝑡0
2

, 𝑡 > 0 (10)

The cumulative distribution function for New Process is:

𝐹(𝑡) = 1 − 𝑒
−

1
2b2t0

2

 (11)

Suppose that (𝑋1, … , 𝑋𝑛), there are n random variables with

joint distribution. The 𝑋𝑖′𝑠 is arranged in ascending order,

which represents the order of the corresponding statistics.

Thus 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛 . An independent, identically

distributed sample from a continuous distribution of absolute

density 𝑓(𝑥) has the joint density function of the order

statistics as [30]:

𝑓𝑋1:𝑛,…,𝑋𝑛:𝑛
(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑛! ∏ 𝑓(𝑥𝑖)

𝑛

𝑖=1

,

−∞ < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 < ∞

(12)

NHPP models or fault counting models can be classified

into finite or infinite failure models, depending on the

specification. In this model, the number of failures follows the

distribution of a Non-Homogeneous Poisson Process, and the

failure severity function is determined according to this

distribution 𝜆1(𝑥) is defined as 𝜆1(𝑥) = 𝑎𝑓(𝑥), where 𝑎 is the

number of failures expected and 𝑓(𝑥) is the probability

density function of 𝑋 . Based on NHPP assumptions, mean

value function is 𝑚(𝑥) = 𝑎 𝐹(𝑥) where 𝐹(𝑥) is the

cumulative distribution function of X and 𝑎 =
𝑚(𝑥)

𝐹(𝑥)
 [31].

3.2 Properties of the model

The proposed model exhibits the following properties:

Time-dependent failure analysis: The model integrates

failure rates that tend to rise over time, factors considered

when analyzing software stress and operational usage with the

help of the NHPP framework.

Order statistics integration: Order statistics are

incorporated into the model in order to model the prospective

time until the k-th failure, a parameter, which is essential if the

system needs to be repaired more than once.

Adaptability: The model is flexibly designed for

accommodating different current operational conditions and

different failure patterns making it to suit many scenarios of

software reliability.

3.3 Assumptions

The proposed model is based on the following assumptions:

•The software failure process follows Rayleigh distribution

of the NHPP model.

•The failure rates rise with time and this is consistent with

the behavior experienced with software reliability data.

•Failure data needs to be of high quality and preferably

representative of the actual system for accurate identification

of the parameters and subsequent prediction of the system.

3.4 New process order statistics growth model

Let 𝑋1, 𝑋2, … , 𝑋𝑛 random variables represent a sample of

the cumulative time intervals between failures. And let

𝑋1:𝑛 , … , 𝑋𝑛:𝑛 the original random variables so that 𝑋1:𝑛 ≤
𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛 are called the order statistics. The

probability density function of Rayleigh process 𝑟𝑡ℎ order

statistics is given by:

28

𝑓𝑟:𝑛(𝑥) = 𝑟(𝑛
𝑟
)

𝑥

𝑏2 [1 − 𝑒
−𝑥0

2

2𝑏2]

𝑟−1

𝑒
−(𝑛−𝑟+1)

𝑥0
2

2𝑏2 ,

𝑥𝜖[0, ∞); 𝑏 > 0; 1 ≤ 𝑟 ≤ 𝑛

(13)

The 𝑐𝑑𝑓 is:

𝐹𝑟:𝑛(𝑥) = ∑ (
𝑛

𝑖
)

𝑛

𝑖=𝑟

[1 − 𝑒
−𝑥0

2

2𝑏2]

𝑟

𝑒
−(𝑛−𝑖)

𝑥0
2

2𝑏2 (14)

4. PARAMETER ESTIMATION

This section describes two techniques for estimating the

parameters of the new process order statistics growth model.

4.1 Modified maximum likelihood estimation (MMLE)

Let's look at some software failure data that is expressed as

(𝑥𝑖 , 𝑡𝑖), where 𝑖 is a number between 1 and 𝑛. Here, 𝑥𝑖 denotes

the number of failures that have been seen within the time

interval [0, 𝑡𝑖], where time point’s fall into the range 0 < 𝑡1 <
𝑡2 <. . . < 𝑡𝑛, usually this kind of information is called "failure

count data." The NHPP parameters may be estimated by

building a log-likelihood function, which has the following

form [32, 33]:

𝑙 = ∏ 𝑟 (
𝑛

𝑟
)

𝑥𝑖

𝑏2
[1 − 𝑒

−𝑥0
2

2𝑏2]

𝑟−1

𝑒
−(𝑛−𝑟+1)

𝑥0
2

2𝑏2

𝑛

𝑖=1

 (15)

The maximum likelihood estimator for the value b can be

obtained from Eq. (15), where:

log 𝑙 = 𝑛 log 𝑟 + log (
𝑛

𝑟
) + 𝑛(𝑟 − 1) log (1 − 𝑒

−𝑥0
2

2𝑏2)

−(𝑛 − 𝑟 + 1)
𝑥0

2

2𝑏2 + ∑ log (
𝑥𝑖

𝑏2
)

𝑛

𝑖=1

(16)

This equation can be solved numerically using iterative

methods such as the Newton-Raphson algorithm or the EM

algorithm to obtain estimates of the parameter 𝑏 that maximize

the likelihood function [34, 35]. We find that solving the

equation derived from Eq. (16) with respect to 𝑏 is not possible

using conventional methods due to the high degree of

nonlinearity. Therefore, we propose a modified method to

achieve the maximum likelihood by combining the ANN

technique with the ABC algorithm.

4.2 NHPP Model for Rayleigh Order Statistics SRGM

The mean value function for this SRGM, using Eq. (9) is:

𝑚(𝑥) = 𝑎 ∑ (
𝑛

𝑖
)

𝑛

𝑖=𝑟

[1 − 𝑒
−𝑥0

2

2𝑏2]

𝑟

𝑒
−(𝑛−𝑖)

𝑥0
2

2𝑏2 (17)

The intensity value function, using Eq. (8) is:

𝜆1(𝑥) = 𝑎 𝑟 (
𝑛

𝑟
)

𝑥

𝑏2
[1 − 𝑒

−𝑥0
2

2𝑏2]

𝑟−1

𝑒
−(𝑛−𝑟+1)

𝑥0
2

2𝑏2 (18)

where, a the expected number of failures. Then

𝑎 =
𝑛

∑ (𝑛
𝑖
)𝑛

𝑖=𝑟 [1 − 𝑒
−𝑥0

2

2𝑏2]

𝑟

𝑒
−(𝑛−𝑖)

𝑥0
2

2𝑏2

(19)

Figure 1. Flowchart of ANN-based ABC

4.3 ANN-ABC algorithm for parameter estimation in new

process order statistics SRGM

This algorithm identifies the process of preparing the input

data for the neural network as well as the way of initialization

and training of ANN model. All the input variables are factors

that describe the data Set, which in most cases refers to the

independent variables. All these inputs are forwarded into the

neurons in the input layer of the devised neural network.

Before we begin the training process, we have to set the

weights and biases of the neural network. This is normally

done at random and can be from a uniform distribution as well

select (random), here this needs to be done randomly normally

distribution Weights denote the connection of neurons in

different layers and bias brings for each neuron a new internal

29

parameter for regulating the output [36].

After the weights and the bias are initialized, the data is

passed forward through to the network. In this case, the

weights are in the range of 0.001 to 0.009 while the bias is

always greater than 0. In the hidden layer, each neuron

processes input from the input layer in the manner mentioned

above where the weighted sum is calculated using the weight

factor and additional bias factor accompanied by the activation

function to generate an output. After that, we chose a

multilayer FFNN that contains two hidden layers: one input

and one output. The first hidden layer is comprised of six nods

and the second one is comprised of nine nods. These

experiments showed us that the network topology with two

hidden layers produces better results than with one and three

hidden layers. In particular, when using 6 nodes in the first

hidden layer and 9 nodes in the second hidden layer, this

configuration showed statistically significant superiority; the

output of the neural network is then tested against the actual

target values using a loss function.

For example, in this case, the most widely used measure is

the root mean squared error (RMSE). Thus, it can be

concluded that lower MSE means that the shown model and

structure of the neural network correspond to the described

task of approximating the target values as much as possible.

This process has to be carried out until the model returns a

satisfactory performance or until a predefined stop has been

reached. Theis’s process is summarized by the following steps

[37]:

Step 1. Initialize ANN

•Initialize an Artificial Neural Network with a specified

number of hidden layers, neurons, and weights.

•The ANN is used to model the system or predict the output.

Step 2. Initialize ABC

•Initialize the ABC algorithm with a population of artificial

bees and the number of iterations with 𝑖𝑚𝑎𝑥 = 100, where

each bee represents a potential solution to the optimization

problem.

•Each bee is assigned a random position X in the search

space, which corresponds to the weights and biases of the

ANN.

•Determine the objective function that represents the Eq.

(17) & Fitness function is 𝑆𝐸 = √
∑ (𝛾𝑖̂−𝛾)2𝑄

𝑖=1

𝑄
 .

Step 3. Evaluate ANN

•Evaluate the fitness of each bee (solution) using the ANN.

•The fitness function is defined as the negative of the root

mean squared error (RMSE) between the predicted output of

the ANN and the target output.

Step 4. Employed bees phase

Each employed bee searches for a new food source

(solution) in the neighborhood of its current position using the

following equation:

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝜋𝑖𝑗 ∗ (𝑥𝑖𝑗 − 𝑥𝑘𝑗) (20)

where,

𝑣𝑖𝑗 is the new food source (solution).

𝑥𝑖𝑗 is the current position of the employed bee.

𝜋𝑖𝑗 is a random number between -1 and 1.

𝑥𝑘𝑗 is the position of a randomly selected bee 𝑘.

Step 5. Onlooker bees phase

Each onlooker bee selects a food source (solution) from the

employed bees based on the probability.

Step 6. Scout bees phase

If a food source (solution) is abandoned, a scout bee is sent

to search for a new food source using the following equation:

𝑥𝑖𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗) (21)

where,

𝑥𝑖𝑗 is the new food source (solution).

𝑥𝑚𝑎𝑥,𝑗 and 𝑥𝑚𝑖𝑛,𝑗 are the minimum and maximum bounds

of the 𝑗𝑡ℎ.

Step 7. Once the weights and biases have been updated,

check the mean square error. If 𝑀𝑆𝐸𝑛𝑒𝑤 ≤ 𝑀𝑆𝐸𝑜𝑙𝑑 , then

choose 𝑀𝑛𝑒𝑤 = 𝑀𝑜𝑙𝑑/𝐵 and go to step 2. Otherwise choose

𝑀𝑛𝑒𝑤 = 𝑀𝑜𝑙𝑑 ∗ 𝐵 and go to step 3.

Step 8. Iteration

Repeat steps 3-7 until a stopping criterion is reached. Then

a flowchart of ANN training with the ABC algorithm is given

in Figure 1 [38].

5. CONCEPT OF SIMULATION

Simulation is a scenario designed to compare any system

with the real world, and is defined as the attempt to simulate a

particular process under specific circumstances using artificial

methods that resemble natural conditions. This includes

building a smaller model that is an identical copy of the real

model and performing tests on the miniature model examining

the results and generalizing them to the original model, or

computer simulation by writing a program for the methods to

be chosen under realistic programming conditions and then

observing the results obtained with the program and drawing

a conclusion based on them [37, 39].

There are different simulation methods, namely the (analog

method), the (mixed method) and the (Monte Carlo method).

The Monte Carlo method is one of the most important and

widely used simulation methods, in which a random sample of

the phenomenon is generated, that corresponds to the behavior

of a certain probability distribution that the phenomenon has.

To achieve this, the probability distribution of the

phenomenon it has (CDF) it is known that the set of samples

random in this way possesses the property of independence

because random samples in this method are by applying the

mathematical method to each sample separately [38-40].

To put the previously discussed ideas into practice, the

practical part of the research focused on the estimators of the

suggested model for both of the approaches used, utilizing a

simulation method. The objective was to apply the RMSE

statistical criteria to various sample sizes in order to assess the

optimality of these estimators. The purpose of the simulation

model was to provide a comparison study of the approaches

that were evaluated. By showing how the estimate techniques

affect the following variables, this strategy seeks to determine

the best technique for estimating parameters inside the interval

of the new process distribution [39].

• Change in sample size.

• Change in model parameter values.

5.1 Stages of building a simulation experience

First stage: Parameter value selection: Many of the default

values were selected based on prior studies and experimental

tests (𝑎 = 1.9; 0.9; 1.2; 1.1 and 𝑏 = 0.9; 1.2; 1.1; 1.9), with

statistical methods such as modified maximum likelihood

30

estimation and an enhanced neural network optimized using

the ABC algorithm employed to determine the optimal

parameter values. It is the most important stage on which the

program’s steps and procedures depend. Below are the steps

for this stage:

Choose default values for the parameters of the new

process. Several default values were chosen for the failures

expected parameter a and the scale parameter b for the new

process by reviewing previous studies and experimenting with

many default values for the parameters, which led us to choose

the best of these values, as follows above.

Second stage: Choose sample sizes: Several different

sample sizes (small, medium, large) were chosen as follows:

(𝑛 = 20; 50).

Third stage: Number of replications: The simulation was

repeated 1000 times to obtain reliable estimates and to account

for the variability in the data to achieve a balance between

computational efficiency and statistical reliability.

Fourth stage: Performance metrics: Root Mean Square

Error (RMSE) measure was used. To evaluate the accuracy of

parameter estimates. It is calculated as

𝑅𝑀𝑆𝐸 = √
∑ (𝛾𝑖̂ − 𝛾)2𝑄

𝑖=1

𝑄

where,

𝛾𝑖̂ ∶ represents value of the parameter estimated in iteration

𝑖.
𝛾 ∶ represents the real parameter value.

𝑄 ∶ represents number of iterations.

In the context of the study, RMSE quantifies the difference

between the observed software failure data and the values

predicted by the proposed model. The smaller the 𝑅𝑀𝑆𝐸, the

closer the predictions are to the actual data, indicating better

model performance.

Fifth stage: Data generation: At this stage, random data is

generated using the inverse transformation method and

according to the new process, as follows:

Generating a random variable 𝑢𝑖 that follows a uniform

distribution with the interval (0,1) using the cumulative

distribution function with the help of the Rand.

𝑢𝑖~𝑈(0,1), 𝑖 = 0,1,2, … . . , 𝑛 (22)

where, 𝑢𝑖 represents a continuous random variable that

follows a uniform distribution.

Convert the data generated in step (first) that follows a

uniform distribution into data that follows a new mixed

distribution using the inverse function (CDF) transformation

method and according to Eq. (17) and as in the following

formula.

𝑡𝑖 = √2𝑏2 ∗ ln(1 −
𝑢

𝑎
),𝑖 = 0, 1, 2, … , 𝑛 (23)

Sixth stage: At this stage, parameters are estimated over the

period for the new process and for all methods, which are

MMLE, and ANN-ABC.

Seventh stage: The experiment is repeated (1000) times.

5.2 Simulation result

After conducting the simulation experiment by

implementing the program in the electronic calculator, the

results of the parameter estimate for the new mixed Rayleigh

distribution were obtained using the two estimation methods

described in the above sections and the RMSE. The results of

the simulation estimations were presented in Table 1 in order

to reach the best estimate. Comparison between the studied

estimation methods. In simulating the proposed model,

parameters 𝑎 and 𝑏 were chosen based on empirical evidence

from prior studies and sensitivity analysis to balance model

accuracy and computational efficiency. The values different a,

and b were selected for their effectiveness in minimizing

RMSE and capturing observed failure characteristics.

Table 1. Simulated RMSE comparison of MMLE and ANN-

ABC estimates for new process parameters

𝒏 Parameters Methods 𝑹𝑴𝑺𝑬(𝛌𝟏̂(𝒙))

20

{𝑎 = 0.5; 𝑏 = 0.6}
MMLE 0.0843

ANN-ABC 0.0765

{𝑎 = 0.6; 𝑏 = 0.5}
MMLE 0.0664

ANN-ABC 0.0096

{𝑎 = 0.6; 𝑏 = 0.7}
MMLE 0.1339

ANN-ABC 0.0549

50

{𝑎 = 0.5; 𝑏 = 0.6}
MMLE 0.0836

ANN-ABC 0.0738

{𝑎 = 0.6; 𝑏 = 0.5}
MMLE 0.0848

ANN-ABC 0.0778

{𝑎 = 0.6; 𝑏 = 0.7}
MMLE 0.0847

ANN-ABC 0.0779

6. APPLICATION WITH A REAL DATA

The real-world dataset we use is derived from reference [21]

and represents failure attributes including failure time stamp,

failure type, and operational conditions, which truly

demonstrate various failure characteristics and are suitable for

model testing. When the produced model is checked against

this dataset,

The real-world dataset we use is derived from reference [21]

and represents failure attributes including failure time stamp,

failure type, and operational conditions, which truly

demonstrate various failure characteristics and are suitable for

model testing. When the produced model is checked against

this dataset, one can determine how well it performs on real-

world software reliability and failure patterns hence making it

quite practical on software quality enhancement.

Forming a dataset originating from the software system,

Table 2 shows a time split-up of failure intervals and their

cumulative time [22]. This information is essential for

detecting and assessing system efficiency and reliability issues

while offering statistics describing previous failures. In

particular, it is possible to observe that some measured failure

intervals are rather long – 125.67 CPU units between the 17

and 18th failures – while others are short, meaning that the

tested software can be characterized by different levels of

reliability in the course of its functions. These datasets can be

used to prove the adequacy of the SRGM models based on the

proposed NHPP model through graphical analysis.

Besides providing insights into the software’s operational

characteristics, this dataset has been used to proffer

recommendations that may be useful in tuning the software

further in the future. These include the following: The best of

these insights is to improve software dependability, lessen the

frequency of outages, and advance development and

maintenance practices [22].

31

Secondly, the datasets are graphically examined to

investigate their suitability for the new process in SRGM. This

is achieved by plotting the distribution using an Artificial

Neural Network, as shown in Figure 2.

The histogram of cumulative failures at day of the specific

dataset under analysis is represented in the form of the

graphical logarithmic function in Figure 2. The scatter diagram

shows an obvious positive linearity; this is good evidence for

utilizing a mean value function to model this data. To

strengthen this modeling, a novel data analysis model based

on an Artificial Neural Network optimized through an

Artificial Bee Colony algorithm (ANN-ABC) has been used to

improve the predictive accuracy of the proposed model [41-

44].

Table 2. The cumulative time between failures

Failure

Number

Time Between Failure

Times in CPU Units

Cumulative Time

Between Failures

1 5.5 5.5

2 1.83 7.33

3 2.75 10.08

4 70.89 80.97

5 3.94 84.91

6 14.98 99.89

7 3.47 103.36

8 9.96 113.32

9 11.39 124.71

10 19.88 144.59

11 7.81 152.4

12 14.59 166.99

13 11.42 178.41

14 18.94 197.35

15 65.3 262.65

16 0.04 262.69

17 125.67 388.36

18 82.69 471.05

19 0.45 471.5

20 31.61 503.11

21 129.31 632.42

22 47.6 680.02

Table 3. Models t-test

Models t 𝐝. 𝐟.
Mean

Difference

Std. Error

Difference

Weibull model 3.284 108 0.533 0.166

Suggested

model
3.217 107.817 0.533 0.162

Figure 2. Target vs. predicted output

The t-test of comparing the proposed model with the

Weibull model is presented in Table 3, where t-value is

compared with degrees of freedom, mean difference, and

standard errors. The t-value of the proposed model is 3.217

with 107.817 degree of freedoms and there is t-value 3.284

with 108 degrees of freedoms of Weibull model. The models

indicate a mean difference of 0.533 with the proposed model

having slightly higher standard error of 0.162 and the Weibull

model having a standard error of 0.166. These results verify

the proposed model is appropriate and comparable to the

Weibull model for estimation of software reliability, though

has lesser standard error, making it more precise and suitable

for conduct of reliability growth models.

7. RESULTS AND DISCUSSION

The first differences of the mean value function are

presented in Tables 4 and 5, 𝑚(𝑥) of the model suggested in

this paper well compared with the Weibull model [21],

estimated based on the ANN-ABC. Table 3 illustrates the

effectiveness of the proposed model compared to Table 4 and

the Weibull model that can unavailable failure numbers Table

4 shows the comparison of the proposed model in terms of the

average time length with the result presented in Table 5 and

Figure 3. This is because the mean value function rises with

failure and this indicates huge differences. For example, the

mean value function increases from 1.0604 when the system

fails number 3 to 6.0667 when the system fails number 4

suggesting that the system can have multiple failures as a

result of perhaps inherent software flaws. On the other hand,

the latter failures possess more stable values of the successive

differences which indicates a possibility of the reliability

growth curve flattening which should be studied further [45].

This analysis therefore supports the utility of advanced

modeling methods like ANN-ABC in developing greater

insights or otherwise, of the patterns of software reliability and

to assist in the formulation of good approaches towards

improving the performance of software systems and systems.

Table 4. Successive differences of the mean value function

for the new model obtained using ANN-ABC optimization

based on mean square error

Failure

Number

Mean Value

Function 𝒎(𝒙)

Successive

Differences of 𝒎(𝒙)

1 0.5633 0.1016

2 0.7551 0.1832

3 1.0604 4.8063

4 6.0667 0.1557

5 6.2334 0.8587

6 7.2132 0.1050

7 7.4182 0.4895

8 8.0278 0.5519

9 8.6698 0.0613

10 9.7311 0.2811

11 10.1221 0.5870

12 10.8312 0.4155

13 11.3378 0.7025

14 12.1513 1.2219

15 14.4722 0.0011

16 14.4877 2.0681

17 17.5524 0.2316

18 19.0030 0.0022

19 19.0012 0.3101

20 19.3112 1.1403

21 20.5606 0.2172

22 21 20

32

Table 5. Successive differences of the mean value function

for the Weibull model obtained using ANN-ABC

optimization based on mean square error

Failure

Number

Mean Value

Function 𝒎(𝒙)

Successive

Differences of 𝒎(𝒙)

1 0.6644 0.2017

2 0.8661 0.2943

3 1.1604 5.9173

4 7.0777 0.2668

5 7.3445 0.9698

6 8.3143 0.2151

7 8.5293 0.5985

8 9.1278 0.6519

9 9.7798 1.0613

10 10.8411 0.3922

11 11.2332 0.6980

12 11.9312 0.5155

13 12.3378 0.8025

14 13.1513 2.2219

15 15.4722 0.0012

16 15.4877 3.0681

17 18.5524 1.2316

18 20.0030 0.0072

19 20.0012 0.4101

20 20.3112 1.2403

21 21.5606 0.3172

22 22 ----

Figure 3. Histogram of cumulative failures with

logarithmic function representation

Table 6. RMSE comparison of estimation methods for the

proposed order statistics growth model and the Weibull

model

Methods
Suggested Model

𝑹𝑴𝑺𝑬(𝛌𝟏̂(𝒙))

Weibull Model

𝑹𝑴𝑺𝑬(𝛌̂(𝒙))

MMLE 0.1943 0.2854

ANN-ABC 0.1755* 0.2856

As shown in Table 6, ANN trained using ABC algorithm

outperformed the MMLE method, achieving the lowest RMSE

for the proposed model compared to the Weibull model.

7.1 Accuracy evaluation

The comparison of the execution time of the ANN

combined with the ABC algorithm with the MMLE method is

likewise dependent on the size of data set, the complexity of

the developed model, and the procedure of algorithm

implementation. ANN-ABC, despite being potentially more

accurate because of high flexibility due to non-parametric

belonging, trained iteratively and optimized, highly

computational and slower in large data mining exercises. On

the other hand, MMLE is more efficient and the method which

goes straight to calculate the maxima of the likelihood

function, but it is not suitable for complex and non-linear data

forms [46]. Deciding between these is a function of the user’s

particular needs when it comes to maximizing accuracy versus

computational time with ANN-ABC scaling in favor of

accuracy over speed and MMLE appropriate for the speed it

offers over other methods.

7.2 Discussion

This paper presents the incorporation of Rayleigh Order

Statistics distribution into a new service time distribution

model anchored on NHPP. This approach allows for a more

reactive approach to different failure rates, thus coping with

the unbounded failure of real-life software systems. This

incorporation of Artificial Neural Networks is in combination

with optimization methods such as the ABC algorithm that

leads to more precise identification of parameters which in

turn provides much more likelihood of correct predictions

regarding the performance of the given software. These

contributions have real-world relevance for software

developers and engineers because the model proposed in this

paper can enhance quality control processes and extend the

deployment time of software solutions. Thus, given the higher

understanding of failure patterns and reliability growth, the

model helps make successful maintenance decisions and avoid

resource wastage. However, the study has its shortcomings,

which include the quality and quantity of failure data, failure

of the method to represent real-world system complexity, and

computational difficulty in the implementation of this method.

Regarding its originality, additional focus should be made

on comparing the paper’s proposed methodologies to the

traditional NHPP models or other statistical methods to

achieve a clearer perspective of the strengths and the

weaknesses of the proposed work as a contribution to the state

of the art in software reliability analysis. Perhaps the

deconstruction of these aspects would add more depth to these

arguments, and, therefore, the study; more so, because the

research findings appear to have applicability for both

researchers and practitioners.

8. FUTURE WORK

The extension of the use of the ABC algorithm in fine-

tuning ANNs is a milestone in machine learning as well as

optimization. This approach enhances the capabilities of

ANNs in several ways:

Global optimization: The best global optimization is

provided by the ABC algorithm which was derived by mimic

identification of honeybees. While gradient descent may

converge to local minima, the overall performance of the

proposed ABC algorithm is broader in the parameter space to

obtain more weight and bias optimization in ANNs.

Robustness to initial conditions: Another advantage of the

formulated ABC algorithm is that it evades the premature

convergence problem owing to the population-based strategy

where in a number of solutions are considered at a time. This

33

diversity reduces the probability of poor convergence due to

the initial weights assumptive of being adverse.

Adaptability to complex problems: As seen before, the

ABC algorithm is best used in high dimensions and

optimization problems with high complexities. This versatility

can be employed across practically all distinct ANN

topographies while being capable of supporting simple

regression analysis all the way to advanced pattern

identification.

Improved convergence speed: The ABC algorithm utilizes

the population of the bees to enhance the solution search and

is most of the time faster than other methods when fixed time

is required.

Integration potential: The described above ABC

algorithm can be easily combined with other optimization

methods or machine learning algorithms. ABC also

demonstrates good results if integrated with other swarm

intelligence methods, which improves the efficiency of

training.

Enhanced predictive accuracy: The proposed ABC

algorithm fine-tunes ANN parameters better than the

traditional approach, which enhances its accuracy in capturing

data patterns hence better prediction.

Broad applicability: It is flexible, and therefore can solve

different problems in various sectors, such as software

reliability modeling, financial forecasting, and even diagnosis

of diseases. The versatility reveals the ability to address other

domain optimization problems with suitable levels of

efficiency.

In conclusion, improving ANNs by the ABC algorithm not

only put higher performance and stability for the model but

also contributes to develop the optimization field with

optimize, flexible and effective method than original

approach. This contribution enhances the body of knowledge

regarding the applicability of ANN to various tasks, in making

it a useful instrument towards solving large, real life problems

robustness.

9. CONCLUSIONS

This article is a major breakthrough in software reliability

modeling owing to the development of the growth model

formulated from the Rayleigh Order Statistics distribution

within the context of the NHPP model. This approach

improves the feasibility of modeling various failure rates of

software systems since failure rates differ from one project to

another. The feature of the proposed model presents clear

advantages in reliability assessment over conventional

techniques since it can provide more reliable estimation of

failure behavior and other crucial measures affecting

reliability to enhance the objectives of quality in software

engineering disciplines.

In addition, the use of ANN together with optimization

algorithms like ABC algorithm opens another prospect for

improvement in parameters identification as well as prediction

accuracy especially in regard to large and intricate datasets

characteristic of software systems. This paper also puts

forward the direction for the future empirical research with

reference to the proposed methodologies for the software

systems and industries after establishing the effectiveness of

the proposed measures through quantitative analysis the

proposed measures should also incorporate other qualitative

measures such as the satisfaction level of the end user for the

proposed measures for the software systems.

The experimental results indicated and have clearly proved

that the proposed model enhanced the reliability of the

software. Thus, by presenting the results for increased

reliability indicators, the work meets the goal of improving the

software reliability growth model. Just as in the integration of

ANNs and swarm intelligence through the use of the ABC

algorithm, the optimization of parameter estimation and

enhancement of predictive error can be revealed. This research

also enhances knowledge in software reliability modeling and

emphasizes a more pragmatic facet of employing new

computation approaches to deal with complicated failure data

in enhancing software systems dependency.

ACKNOWLEDGMENT

The authors are very grateful to the Duhok of Polytechnic

University for providing access which allows for more

accurate data collection and improved the quality of this work.

REFERENCES

[1] Huang, Y.S., Chiu, K.C., Chen, W.M. (2022). A software

reliability growth model for imperfect debugging.

Journal of Systems and Software, 188: 111267.

https://doi.org/10.1016/j.jss.2022.111267

[2] Luo, H., Xu, L., He, L., Jiang, L., Long, T. (2023). A

novel software reliability growth model based on

generalized imperfect debugging NHPP Framework.

IEEE Access, 11: 71573-71593.

https://doi.org/10.1109/access.2023.3292301

[3] Chiu, K.C., Huang, Y.S., Huang, I.C. (2019). A study of

software reliability growth with imperfect debugging for

time-dependent potential errors. International Journal of

Industrial Engineering: Theory, Applications and

Practice, 26(3): 376-393.

https://doi.org/10.23055/ijietap.2019.26.3.2237

[4] Gupta, N., Anwar, Z. (2019). Relations for single and

product moments of odds generalized exponential-Pareto

distribution based on generalized order statistics and its

characterization. Statistics, Optimization & Information

Computing, 7(1): 160-170.

https://doi.org/10.19139/soic.v7i1.478

[5] Pradhan, V., Dhar, J., Kumar, A. (2023). Testing

coverage-based software reliability growth model

considering uncertainty of operating environment.

Systems Engineering, 26(4): 449-462.

https://doi.org/10.1002/sys.21671

[6] Pradhan, S.K., Kumar, A., Kumar, V. (2023). A new

software reliability growth model with testing coverage

and uncertainty of operating environment. Computer

Sciences & Mathematics Forum.

[7] Pradhan, S.K., Kumar, A., Kumar, V. (2023). A testing

coverage based SRGM subject to the uncertainty of the

operating environment. Computer Sciences &

Mathematics Forum, 7(1): 44.

https://doi.org/10.3390/iocma2023-14436

[8] Haque, M.A., Ahmad, N. (2023). Software reliability

modeling under an uncertain testing environment.

International Journal of Modelling and Simulation,

22(1): 1-7.

https://doi.org/10.1080/02286203.2023.2201905

34

[9] Chatterjee, S., Saha, D., Sharma, A., Verma, Y. (2022).

Reliability and optimal release time analysis for multi up-

gradation software with imperfect debugging and varied

testing coverage under the effect of random field

environments. Annals of Operations Research, 312(1):

65-85. https://doi.org/10.1007/s10479-021-04258-y

[10] Lee, D.H., Chang, I.H., Pham, H. (2020). Software

reliability model with dependent failures and SPRT.

Mathematics, 8(8): 1366.

https://doi.org/10.3390/math8081366

[11] Zhu, M., Pham, H. (2022). Software reliability modeling

and methods: A state of the art review. In Optimization

Models in Software Reliability, pp. 1-29.

https://doi.org/10.1007/978-3-030-78919-0_1

[12] Cox, D.R. (2013). Confidence distribution, the

frequentist distribution estimator of a parameter: A

review discussions. International Statistical Review,

81(1): 40-41. https://doi.org/10.1111/insr.12007

[13] Kotz, S., Balakrishnan, N., Johnson, N. (2019).

Continuous Multivariate Distributions. John Wiley &

Sons.

[14] van de Schoot, R., Depaoli, S., King, R., Kramer, B., et

al. (2021). Bayesian statistics and modelling. Nature

Reviews Methods Primers, 1(1): 1.

https://doi.org/10.1038/s43586-020-00001-2

[15] Xu, Z., Saleh, J. H., Subagia, R. (2020). Machine

learning for helicopter accident analysis using supervised

classification: Inference, prediction, and implications.

Reliability Engineering & System Safety, 204: 107210.

https://doi.org/10.1016/j.ress.2020.107210

[16] Habtemariam, G., Mohapatra, S., Seid, H., Mishra, D.

(2022). A Systematic literature review of predicting

software reliability using machine learning techniques.

In Optimization of Automated Software Testing Using

Meta-Heuristic Techniques, pp. 77-90.

https://doi.org/10.1007/978-3-031-07297-0_6

[17] Chupradit, S., Widjaja, G., Mahendra, S.J., Ali, M.H., et

al. (2023). Modeling and optimizing the charge of

electric vehicles with genetic algorithm in the presence

of renewable energy sources. Journal of Operation and

Automation in Power Engineering, 11(1): 33-38.

https://doi.org/10.22098/joape.2023.9970.1707

[18] Yadav, S., Kishan, B. (2020). Assessments of

computational intelligence techniques for predicting

reliability of component based software parameter and

design issues. International Journal of Advanced

Research in Engineering and Technology, 11(6): 565-

584.

[19] Khoshniat, N., Jamarani, A., Ahmadzadeh, A., Haghi

Kashani, M., Mahdipour, E. (2024). Nature-inspired

metaheuristic methods in software testing. Soft

Computing, 28(2): 1503-1544.

https://doi.org/10.1007/s00500-023-08382-8

[20] Song, K.Y., Chang, I.H., Pham, H. (2017). An NHPP

software reliability model with S-shaped growth curve

subject to random operating environments and optimal

release time. Applied Sciences, 7(12): 1304.

https://doi.org/10.3390/app7121304

[21] Li, Q., Pham, H. (2019). A generalized software

reliability growth model with consideration of the

uncertainty of operating environments. IEEE Access, 7:

84253-84267.

https://doi.org/10.1109/access.2019.2924084

[22] ul Hassan, C.A., Khan, M.S., Irfan, R., Iqbal, J., et al.

(2022). Optimizing deep learning model for software

cost estimation using hybrid meta-heuristic algorithmic

approach. Computational Intelligence and Neuroscience,

2022(1): 3145956.

https://doi.org/10.1155/2022/3145956.

[23] Brown, B., Liu, B., McIntyre, S., Revie, M. (2023).

Reliability evaluation of repairable systems considering

component heterogeneity using frailty model.

Proceedings of the Institution of Mechanical Engineers,

Part O: Journal of Risk and Reliability, 237(4): 654-670.

https://doi.org/10.1177/1748006x221109341

[24] Aseri, H., Al-Turk, L., Shahbaz, S. (2024). A finite

failure software reliability model using extended log-

logistic distribution. AIP Advances, 14(3): 035116.

https://doi.org/10.1063/5.0191412

[25] Sammouda, R., Adgaba, N., Touir, A., Al-Ghamdi, A.

(2014). Agriculture satellite image segmentation using a

modified artificial Hopfield neural network. Computers

in Human Behavior, 30: 436-441.

https://doi.org/10.1016/j.chb.2013.06.025

[26] Babikir, H.A., Abd Elaziz, M., Elsheikh, A.H., Showaib,

E.A., Elhadary, M., Wu, D., Liu, Y. (2019). Noise

prediction of axial piston pump based on different valve

materials using a modified Artificial Neural Network

model. Alexandria Engineering Journal, 58(3): 1077-

1087. https://doi.org/10.1016/j.aej.2019.09.010

[27] Shirawia, N., Qasimi, A., Tashtoush, M., Rasheed, N.,

Khasawneh, M., Az-Zo’bi, E. (2024). Performance

assessment of the calculus students by using scoring

rubrics in composition and inverse function. Applied

Mathematics and Information Sciences, 18(5): 1037-

1049. https://doi.org/10.18576/amis/180511

[28] Kaya, E., Baştemur Kaya, C. (2021). A novel neural

network training algorithm for the identification of

nonlinear static systems: Artificial bee colony algorithm

based on effective scout bee stage. Symmetry, 13(3):

419. https://doi.org/10.3390/sym13030419

[29] Hussain, A., Oraibi, Y., Mashikhin, Z., Jameel, A.,

Tashtoush, M., Az-Zo’Bi, E.A. (2024). New software

reliability growth model: Piratical swarm optimization-

based parameter estimation in environments with

uncertainty and dependent failures. Statistics,

Optimization & Information Computing, 13(1): 209-221.

https://doi.org/10.19139/soic-2310-5070-2109

[30] Arnold, B.C., Balakrishnan, N. (2012). Relations,

Bounds and Approximations for Order Statistics.

Springer Science & Business Media.

[31] Shirawia, N.A.W.A.L., Kherd, A., Bamsaoud,

S.A.L.I.M., Tashtoush, M., Jassar, A., Az-Zo’bi, E.

(2024). Dejdumrong collocation approach and

operational matrix for a class of second-order delay

IVPs: Error analysis and applications. WSEAS

Transactions on Mathematics, 23: 467-479.

https://doi.org/10.37394/23206.2024.23.49

[32] Chen, W., Xie, M., Wu, M. (2016). Modified maximum

likelihood estimator of scale parameter using moving

extremes ranked set sampling. Communications in

Statistics-Simulation and Computation, 45(6): 2232-

2240. https://doi.org/10.1080/03610918.2014.904520

[33] Xu, M., Mao, H. (2024). Q-Weibull distributions:

Perspectives and applications in reliability engineering.

IEEE Transactions on Reliability.

https://doi.org/10.1109/tr.2024.3448289

[34] Willis, B.H., Baragilly, M., Coomar, D. (2020).

35

Maximum likelihood estimation based on Newton–

Raphson iteration for the bivariate random effects model

in test accuracy meta-analysis. Statistical Methods in

Medical Research, 29(4): 1197-1211.

https://doi.org/10.1177/0962280219853602

[35] Hockney, R., Eastwood, J. (1988). Computer Simulation

Using Particles. 1st ed. CRC Press.

[36] Fernández-Canteli, A., Castillo, E., Blasón, S. (2021). A

methodology for phenomenological analysis of

cumulative damage processes. Application to fatigue and

fracture phenomena. International Journal of Fatigue,

150: 106311.

https://doi.org/10.1016/j.ijfatigue.2021.106311

[37] Aster, R., Borchers, B., Thurber, C. (2018). Parameter

Estimation and Inverse Problems. Elsevier.

[38] Viswanathan, A.S., Ramani, S. (2018). Algorithm and

MATLAB program for software reliability growth model

based on Weibull order statistics distribution.

International Journal of Advanced Scientific Research

and Management, 3(11): 199-203.

[39] Chupradit, S., Tashtoush, M.A., Al-Muttar, M.Y.O.,

Mahmudiono, T., et al. (2022). A multi-objective

mathematical model for the population-based

transportation network planning. Industrial Engineering

& Management Systems, 21(2): 322-331.

https://doi.org/10.7232/iems.2022.21.2.322

[40] Yera, Y.G., Lillo, R.E., Nielsen, B.F., Ramírez-Cobo, P.,

Ruggeri, F. (2021). A bivariate two-state Markov

modulated Poisson process for failure modeling.

Reliability Engineering & System Safety, 208: 107318.

https://doi.org/10.1016/j.ress.2020.107318

[41] Kavita, Sharma, S.K. (2023). A study on various

software reliability estimation models.

https://doi.org/10.2139/ssrn.4638684

[42] Zureigat, H., Tashtoush, M.A., Jassar, A.F.A., Az-Zo’bi,

E.A., Alomari, M.W. (2023). A solution of the complex

fuzzy heat equation in terms of complex Dirichlet

conditions using a modified crank–Nicolson method.

Advances in Mathematical Physics, 2023(1): 6505227.

https://doi.org/10.1155/2023/6505227

[43] Tashtoush, M.A., Ibrahim, I.A., Taha, W.M., Dawi,

M.H., Jameel, A.F., Az-Zo’bi, E.A. (2024). Various

closed-form solitonic wave solutions of conformable

higher-dimensional Fokas model in fluids and plasma

physics. Iraqi Journal for Computer Science and

Mathematics, 5(3): 18.

https://doi.org/10.52866/ijcsm.2024.05.03.027

[44] Az-Zo’bi, E.A., Afef, K., Ur Rahman, R., Akinyemi, L.,

et al. (2024). Novel topological, non-topological, and

more solitons of the generalized cubic p-system

describing isothermal flux. Optical and Quantum

Electronics, 56(1): 84. https://doi.org/10.1007/s11082-

023-05642-7

[45] Prashanth, M., Madhu, D., Ramanarasimh, K., Suresh, R.

(2022). Effect of heat input and filling ratio on raise in

temperature of the oscillating heat pipe with different

working fluids using ANN model. International Journal

of Heat and Technology, 40(2): 535-542.

https://doi.org/10.18280/ijht.400221

[46] Faura-Pujol, A., Faundez-Zanuy, M., Moral-Viñals, A.,

López-Xarbau, J. (2023). Eye-tracking calibration to

control a cobot. International Journal of Computational

Methods and Experimental Measurements, 11(1): 17-25.

https://doi.org/10.18280/ijcmem.110103

36

https://doi.org/10.1007/s11082-023-05642-7
https://doi.org/10.1007/s11082-023-05642-7
https://doi.org/10.18280/ijht.400221

