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In this paper, the software reliability growth model of Rayleigh Order Statistics 

distribution, formulated under the Non-Homogeneous Poisson Process (NHPP) model, 

is presented. This model seeks to include new approaches in the data analysis to improve 

the reliability of the software reliability predictions taking into consideration the various 

issues of failure data. For parameter estimation, a hybrid Artificial Neural Network 

(ANN) model is introduced, which has been trained by the Artificial Bee Colony (ABC) 

algorithm, and the analysis shows that such a model yields much better results in 

predictive performance. The research assesses the performance of the developed model 

based on actual software reliability data sets and demonstrates the superiority of the 

proposed model to conventional NHPP models in goodness-of-fit and predictive 

accuracy. Further, the study reveals some of the deficiencies with the current models 

and the significance of accurate failure data in the analysis of reliability; also, the paper 

recommends the recognition and incorporation of higher levels of intelligent 

calculations in future work. These findings add practical value to further developments 

in software engineering, especially in increasing the effectiveness of quality assurance 

and extending the durability of software applications.  
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1. INTRODUCTION

In the fast-paced realm of modern technology, ensuring the 

reliability of software systems is crucial for maintaining 

operational efficiency and achieving user satisfaction [1, 2]. 

Software failures can result in substantial financial 

repercussions, security vulnerabilities, and a loss of user trust. 

Consequently, the development of robust Software Reliability 

Growth Models (SRGMs) is vital for accurately predicting and 

enhancing software performance throughout its lifecycle [3-

6]. 

In today’s software world, software dependability is a 

critical objective in software construction. Multi Var Time 

Series Software Reliability Growth Models Losses occur if 

software fails to meet the customers’ expectations, poses 

insecurities, and loses users’ confidence hence the need for 

developers to incorporate effective SRGMs. As will be 

discussed, these models are invaluable in the context of 

software performance prediction and improvement across the 

software development life-cycle. With an even more complex 

structure of applications being developed every passing day, 

there has been growing pressure for even better modeling 

methods that can capture software failure behavior [7-10].  

The Non-Homogeneous Poisson Process, abbreviated as 

(NHPP) has increasingly become a popular choice for 

software reliability modeling [11]. This approach enables one 

to express the failure occurrences with time and enables one to 

capture changes in failing rates resulting from differences in 

operating conditions. The new developments in future work 

have incorporated Order Statistics distributions, namely 

Rayleigh distribution, in presenting better reliability features 

to software systems. These distributions help the researchers 

to understand failure data better and consequently make 

accurate predictions of the software’s performance [12-14].  

Besides statistical methods, the use of new methods like 

Machine Learning methods, particularly Artificial Neural 

Networks (ANN) has also been incorporated in software 

reliability modeling [15, 16]. The integration of ANN with 

optimization algorithms like the Artificial Bee Colony (ABC) 

algorithm has proved to improve parameter estimation 

techniques incorporated in SRGMs. This innovative approach 

not only enhances the accuracy of the predictors but is also 

capable of dealing with massive and complicated data and 

information that are universal in software applications [17-19]. 

Nevertheless, there are some issues with the application of 

software reliability modeling even if certain improvements can 

be seen. While using such models, the assumptions made are 

often not well adaptable to diverse software systems in their 

current form. Precisely, the quality and representativeness of 

failure data play important roles in determining the 
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performance of these models. Finally, situations, when the 

data is scarce or contaminated, affect the reliability 

predictions, which proves the importance of developing 

stronger techniques suitable for software systems.  

This research seeks to fill gaps found in existing models of 

software reliability including the failure to capture intricate 

patterns that vary with time. Through this work, a new model 

within the NHPP framework, incorporating the Rayleigh 

Order Statistics of software reliability, and ANN-ABC 

principles for parameter estimation has been developed. These 

more advanced methods improve the capability of the software 

reliability models and make them more general for many 

software systems. The results of the study should encourage 

further development of software engineering research in the 

aspect of improving quality assurance as well as the 

prolongation of software systems’ life cycle. 

 

1.1 Literature review  

 

In 2017, the researchers proposed a new NHPP software 

reliability model with an S-shaped growth curve that accounts 

for random operating environments. They aimed to improve 

predictions of software defects, optimize release times, and 

minimize overall software system costs during the 

development process [20].   

Furthermore, in 2019, the researchers developed a new 

software reliability growth model based on the Weibull Order 

Statistics distribution and the NHPP. They created an 

algorithm and a MATLAB program for practical 

implementation, employed maximum likelihood estimation 

for parameter estimation, and analyzed software failure data to 

validate the model. Additionally, they suggested future 

research directions involving advanced optimization 

techniques to enhance reliability predictions [21]. 

In 2022, the researchers proposed a hybrid meta-heuristic 

approach combining Ant Colony Optimization (ACO) with 

the BAT Algorithm (HACO-BA) to optimize deep learning 

models for software cost estimation. Their work focused on 

improving the accuracy of software cost predictions by fine-

tuning COCOMO II coefficients and enhancing deep learning 

model training. By comparing various optimization 

algorithms, including ACO, BAT, and HACO-BA, the 

researchers demonstrated that HACO-BA provided better 

performance in terms of minimizing execution time and 

improving prediction accuracy [22].  

In 2023, all the researchers in this article aimed to apply the 

NHPP reliability growth model to assess failure data in 

repairable systems. They explored and estimated various 

models such as the Crow Power Law model and also 

conducted tests for goodness of fit. This also involved using a 

log-linear model when results from the Power Law model 

were and/or could not adequately fit. Moreover, the utilization 

of the Weibull Time to Failure Recurrent Neural Network 

(WTTE-RNN) framework was attempted but not viable for 

some types of NHPP data [23].  

In 2024, the researchers propose a finite failure software 

reliability model based on the extended log-logistic 

distribution within the framework of the NHPP. They derived 

the model's properties, applied the maximum likelihood 

estimation method to estimate its parameters using the 

Newton-Raphson method, and evaluated the model with three 

real software reliability datasets. The results show that the 

proposed model outperformed several well-known NHPP 

models in terms of goodness-of-fit and predictive performance 

across all datasets [24]. 

Future trends for SRGM are aimed mainly at the 

improvement of the accuracy of prediction, flexibility of 

models, and applicability of the modeling approaches in 

practice. These include the application of artificial intelligence 

and machine learning for enhanced prediction as well as the 

use of real-time failure data to enhance model responsiveness. 

It has been observed that modern mixed models that integrate 

statistical and machine learning methods have been evolving. 

Further, the focus has shifted to the collection of user-oriented 

reliability measures, like user satisfaction level and user 

experience. Finally, efforts are made to get more empirical 

evidence to prove models on different software systems and 

environments which remains a challenge for developing more 

advanced SRGMs to fulfill the demands of modern software 

engineering.  

 

1.2 Limitations of the NHPP model for Rayleigh Order 

Statistics in SRGM 

 

Model assumptions: The proposed reliability growth 

model is based on specific assumptions inherent to the 

Rayleigh process and the NHPP. These assumptions may not 

hold for all software systems or failure scenarios, potentially 

limiting the model's applicability in diverse contexts.  

Data dependency: The effectiveness of the Weibull order 

statistics distribution in modeling software reliability is 

contingent upon the quality and quantity of failure data 

available. In cases where data is sparse or not representative of 

the software's operational environment, the model's 

predictions may be less reliable. 

Complexity of real-world systems: Real-world software 

systems often exhibit complex behaviors that may not be fully 

captured by the proposed model. Factors such as user 

interactions, environmental conditions, and varying usage 

patterns can influence software reliability in ways that are 

difficult to quantify. 

Computational resources: The implementation of the 

algorithm and MATLAB program may require significant 

computational resources, especially when dealing with large 

datasets or complex models. This could pose challenges for 

practitioners with limited access to advanced computational 

tools. 

Limited scope of optimization techniques: Although the 

paper suggests the integration of advanced optimization 

techniques like ANN and ABC for future research, the current 

study does not explore these methods in depth. The potential 

benefits of these techniques remain theoretical until 

empirically validated in the context of software reliability. 

Generalizability: The findings and methodologies 

presented may be specific to the datasets used in the study. 

Generalizing the results to other software systems or industries 

may require further validation and testing. 

Focus on quantitative metrics: The model primarily 

emphasizes quantitative reliability metrics, potentially 

overlooking qualitative aspects of software reliability, such as 

user experience and satisfaction, which are also critical for 

assessing overall software performance. 

By tackling the pressing need for dependable software 

systems, this research contributes significantly to the ongoing 

advancements in software engineering, particularly in 

enhancing quality assurance practices and prolonging the 

operational lifespan of software applications. The insights and 

methodologies presented in this work are intended to serve as 
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a valuable resource for both researchers and practitioners, 

promoting further progress in the domain of software 

reliability. 

This paper introduces an innovative approach to assessing 

software reliability by formulating a growth model based on 

the Rayleigh Order Statistics distribution, anchored in the 

NHPP. The Rayleigh process is esteemed for its adaptability 

in modeling diverse failure rates, making it particularly 

suitable for addressing the intricacies of software reliability. 

By utilizing order statistics, this model establishes a 

comprehensive framework for analyzing failure data and 

estimating key reliability metrics. 

Moreover, the paper advocates for the incorporation of 

advanced optimization techniques, such as the combination of 

ANN and ABC, in future research endeavors. This synergistic 

approach holds promise for enhancing parameter estimation 

processes, thereby yielding more precise predictions of 

software reliability. 

 

1.3 Theoretical foundations of Software Reliability 

Growth Model 

 

Software reliability growth modeling is an important sub-

discipline of software engineering that deals with the 

prediction and enhancement of the reliability of software 

systems in the software development life-cycle stages. 

SRGMs apply statistical assessments to the failure data 

collected, allowing the developer to predict the remaining 

defective items and the reliability level of the software in use. 

SRGMs can also serve as a guide to defining the improvement 

of reliability when defects are found and fixed to facilitate 

better planning of release times, improvement of QA 

measures, and, consequently, the minimization of expenses 

connected with software failures. With the developing 

complexity of the software systems, operational effectiveness 

and user satisfaction calls for efficient SRGMs. 

The main models in Software Reliability Growth Modeling 

(SRGM) include: 

NHPP: This model takes into consideration different failure 

rates at different times to accommodate for dynamism in 

environments such as software. 

Weibull distribution models: These models effectively 

provide options for the portrayal of various failure behaviors 

by holding the capability to portray rising and declining failure 

rates. 

Logarithmic and exponential models: These have been 

widely adopted since they are easy to apply but often, they lack 

the capability of modeling complex failure functions. 

Hybrid models: These models integrate standard and 

advanced statistical methods with MLE’s and contribute to 

improved prognosis and adaptability for increased variable 

difficulty and data licenses. 

Meta-heuristic approaches: Two classes of metaheuristic 

methods, including Genetic Algorithms and Particle Swarm 

Optimization, are applied to enhance parameter estimation of 

SRGMs. 

All of these models have some advantages and 

disadvantages, the decision on which model to use when 

depends on the nature of the software being analyzed. 

The NHPP, which is assumed by the majority of SRGMs, is 

described by the following equation: 

 

𝑝[𝑁(𝑡) = 𝑦] =
[𝑚(𝑡)]𝑦𝑒−𝑚(𝑡)

𝑦!
, 𝑦 = 1,2,3, … (1) 

It describes the total number of failures up to a specific 

execution time 𝑡,  shown as 𝑁(𝑡) (𝑡 > 0).  The predicted 

cumulative number of failures at time t is represented by the 

mean value function 𝑚(𝑡), as follows: 

 

𝑚(𝑡) = ∫ 𝜆(𝑢) 𝑑𝑢

𝑡

0

, 0 < 𝜏 < ∞ (2) 

 

with 𝑚(𝑡)  the NHPP-based dependability function may be 

stated as follows [24]. The likelihood of no failures in the time 

interval (0, t) is defined as the reliability function 𝑅(𝑡), which 

is provided by: 

 

𝑅(𝑡) = 𝑝{𝑁(𝑡) = 0} = 𝑒−𝑚(𝑡) (3) 

 

Reliability 𝑅 (
𝑦

𝑡
)  generally indicates the likelihood that 

there won't be any failures during the period. [𝑡, 𝑡 + 𝑦] is given 

by: 

 

𝑅 (
𝑦

𝑡
) = 𝑝{𝑁(𝑡 + 𝑦) − 𝑁(𝑡) = 0} = 𝑒−[𝑚(𝑡+𝑦)−𝑚(𝑡)] (4) 

 

Eq. (4) is called the SRGM or software reliability based on 

NHPP. The probability density functions as follows: 

 

𝑓(𝑦) = λ(t + y)𝑒−[𝑚(𝑡+𝑦)−𝑚(𝑡)] (5) 

 

 

2. MODIFIED ARTIFICIAL NEURAL NETWORK  

 

Artificial Neural Network is a collection of neurons linked 

by pathways in which those neurons carry weights and biases. 

They further explain that once the network structure has been 

developed, the next process is to exercise the network. The 

process of setting the weights and biases of the networks to 

their optimal values is called network training. Typically, one 

or several techniques are employed in evaluating proper 

weights and bias for the ANN. In order to get the best result in 

the training of network, the ABC has been applied in this 

study. Further information about ABC is available in studies 

[25, 26], which contains a detailed overview of the ABC 

approach used in this investigation [27]. Furthermore, there 

exist the MATLAB implementation codes of the following. 

 

2.1 Proposed Artificial Neural Networks training 

approach using Artificial Bee Colony algorithm 

 

ANNs are one of the most widely used artificial intelligence 

tools in applications including classification, prediction, and 

pattern recognition. Neural networks can perform millions of 

operations without missing a beat given the right weights and 

parameters for training. In the past, it was customary to train a 

neural network using an optimization algorithm for example 

the gradient descent; this tends to get stuck in a local minimum 

depending on the loss function space. To overcome these 

challenges, suggest the ABC algorithm as another innovative 

approach to training Artificial Neural Networks. The Artificial 

Bee Colony algorithm is similar to the Fireflies optimization 

algorithm, where fireflies are attracted by the other based on 

the light intensity. Six essential phases will be involved in 

training the ANN with algorithm ABC as follows [28]:   

Step 1. Data formatting: collecting and dividing data. 

Step 2. Neural network design: determining the structure, 
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activation functions, and loss functions. 

Step 3. Initializing the ABC algorithm: Defining the set of 

fireflies and the brightness function. 

Step 4. Training a neural network with ABC: Calculating 

brightness, updating ABC locations, evaluating performance, 

and iterating. 

Step 5. Validation and final evaluation: Use validation and 

test suites to evaluate Eq. (18). 

Step 6. Implementation and application: Using the trained 

Eq. (18) in practical applications. 

 

 

3. MATHEMATICAL FORMULATIONS, 

PROPERTIES, AND ASSUMPTIONS OF THE 

PROPOSED MODEL  

 

3.1 Mathematical formulations 

 

Software reliability is best described as the ability of a 

software system to perform without encountering any error 

over a given duration of operation given certain conditions. 

Reliability analysis must also be done and quality maintenance 

of software is highly important in order that the system have 

the right performance and dependability that is needed. 

Software Reliability Growth Models therefore stand as key 

drivers for assessing performance and achieving rigorous 

debugging in order to improve the durability of the system 

[29]. 

A previous model has been developed based on the 

Rayleigh Order Statistics distribution fit within the NHPP 

model. This integration enables the model to capture failure 

rates to increase monotonically with time as observed in 

realistic software systems. The foundation of the model is the 

mean value function 𝑚1(𝑡) which is mathematically:  

 

𝑚1(𝑡) = ∫ 𝜆(𝑢) 𝑑𝑢

𝑡

0

 (6) 

 

where, 𝜆(𝑡)  denotes the failure intensity function. For a 

random variable X following a Rayleigh process, the 

occurrence rate is determined by: 

 

𝜆(𝑡) =
1

𝑏2 𝑡, t0, b>0 (7) 

 

where, 𝑏 represents scale parameter. If we substitute Eq. (7) 

into Eq. (6) and simplify, then we obtain:  

 

𝑚1(𝑡) =
1

2𝑏2
𝑡2 (8) 

 

For the stochastic process, the inter-arrival times are 

determined by Hussain et al. [29]: 

 

𝑓(𝑡) = 𝜆(𝑡)𝑒−𝑚(𝑡0) (9) 

 

For the Rayleigh process, we may express the probability 

density function as follows: 

 

𝑓(𝑡) =
1

𝑏2
𝑡 𝑒

−
1

2𝑏2𝑡0
2

, 𝑡 > 0 (10) 

 

The cumulative distribution function for New Process is: 

 

𝐹(𝑡) = 1 − 𝑒
−

1
2b2t0

2

 (11) 

 

Suppose that (𝑋1, … , 𝑋𝑛), there are n random variables with 

joint distribution. The 𝑋𝑖′𝑠  is arranged in ascending order, 

which represents the order of the corresponding statistics. 

Thus 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛 . An independent, identically 

distributed sample from a continuous distribution of absolute 

density 𝑓(𝑥)  has the joint density function of the order 

statistics as [30]: 

 

𝑓𝑋1:𝑛,…,𝑋𝑛:𝑛
(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑛! ∏ 𝑓(𝑥𝑖)

𝑛

𝑖=1

, 

−∞ < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 < ∞ 

(12) 

 

NHPP models or fault counting models can be classified 

into finite or infinite failure models, depending on the 

specification. In this model, the number of failures follows the 

distribution of a Non-Homogeneous Poisson Process, and the 

failure severity function is determined according to this 

distribution 𝜆1(𝑥) is defined as 𝜆1(𝑥) = 𝑎𝑓(𝑥), where 𝑎 is the 

number of failures expected and 𝑓(𝑥)  is the probability 

density function of 𝑋 . Based on NHPP assumptions, mean 

value function is 𝑚(𝑥) = 𝑎  𝐹(𝑥)  where 𝐹(𝑥)  is the 

cumulative distribution function of X and 𝑎 =
𝑚(𝑥)

𝐹(𝑥)
 [31]. 

 

3.2 Properties of the model 

 

The proposed model exhibits the following properties: 

Time-dependent failure analysis: The model integrates 

failure rates that tend to rise over time, factors considered 

when analyzing software stress and operational usage with the 

help of the NHPP framework. 

Order statistics integration: Order statistics are 

incorporated into the model in order to model the prospective 

time until the k-th failure, a parameter, which is essential if the 

system needs to be repaired more than once. 

Adaptability: The model is flexibly designed for 

accommodating different current operational conditions and 

different failure patterns making it to suit many scenarios of 

software reliability. 

 

3.3 Assumptions 

 

The proposed model is based on the following assumptions: 

•The software failure process follows Rayleigh distribution 

of the NHPP model. 

•The failure rates rise with time and this is consistent with 

the behavior experienced with software reliability data. 

•Failure data needs to be of high quality and preferably 

representative of the actual system for accurate identification 

of the parameters and subsequent prediction of the system. 

 

3.4 New process order statistics growth model 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 random variables represent a sample of 

the cumulative time intervals between failures. And let 

𝑋1:𝑛 , … , 𝑋𝑛:𝑛  the original random variables so that 𝑋1:𝑛 ≤
𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛  are called the order statistics. The 

probability density function of Rayleigh process 𝑟𝑡ℎ  order 

statistics is given by: 
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𝑓𝑟:𝑛(𝑥) = 𝑟(𝑛
𝑟
)

𝑥

𝑏2 [1 − 𝑒
−𝑥0

2

2𝑏2 ]

𝑟−1

𝑒
−(𝑛−𝑟+1)

𝑥0
2

2𝑏2 , 

𝑥𝜖[0, ∞); 𝑏 > 0; 1 ≤ 𝑟 ≤ 𝑛 

(13) 

 

The 𝑐𝑑𝑓 is: 

 

𝐹𝑟:𝑛(𝑥) = ∑ (
𝑛

𝑖
)

𝑛

𝑖=𝑟

[1 − 𝑒
−𝑥0

2

2𝑏2 ]

𝑟

𝑒
−(𝑛−𝑖)

𝑥0
2

2𝑏2 (14) 

 

 

4. PARAMETER ESTIMATION 

  

This section describes two techniques for estimating the 

parameters of the new process order statistics growth model. 

 

4.1 Modified maximum likelihood estimation (MMLE) 

 

Let's look at some software failure data that is expressed as 

(𝑥𝑖 , 𝑡𝑖), where 𝑖 is a number between 1 and 𝑛. Here, 𝑥𝑖 denotes 

the number of failures that have been seen within the time 

interval [0, 𝑡𝑖], where time point’s fall into the range 0 < 𝑡1 <
𝑡2 <. . . < 𝑡𝑛, usually this kind of information is called "failure 

count data." The NHPP parameters may be estimated by 

building a log-likelihood function, which has the following 

form [32, 33]: 

 

𝑙 = ∏ 𝑟 (
𝑛

𝑟
)

𝑥𝑖

𝑏2
[1 − 𝑒

−𝑥0
2

2𝑏2 ]

𝑟−1

𝑒
−(𝑛−𝑟+1)

𝑥0
2

2𝑏2

𝑛

𝑖=1

 (15) 

 

The maximum likelihood estimator for the value b can be 

obtained from Eq. (15), where: 

 

log 𝑙 = 𝑛 log 𝑟 + log (
𝑛

𝑟
) + 𝑛(𝑟 − 1) log (1 − 𝑒

−𝑥0
2

2𝑏2 ) 

−(𝑛 − 𝑟 + 1)
𝑥0

2

2𝑏2 + ∑ log (
𝑥𝑖

𝑏2
)

𝑛

𝑖=1

 

(16) 

 

This equation can be solved numerically using iterative 

methods such as the Newton-Raphson algorithm or the EM 

algorithm to obtain estimates of the parameter 𝑏 that maximize 

the likelihood function [34, 35]. We find that solving the 

equation derived from Eq. (16) with respect to 𝑏 is not possible 

using conventional methods due to the high degree of 

nonlinearity. Therefore, we propose a modified method to 

achieve the maximum likelihood by combining the ANN 

technique with the ABC algorithm. 

 

4.2 NHPP Model for Rayleigh Order Statistics SRGM 

 

The mean value function for this SRGM, using Eq. (9) is: 

 

𝑚(𝑥) = 𝑎 ∑ (
𝑛

𝑖
)

𝑛

𝑖=𝑟

[1 − 𝑒
−𝑥0

2

2𝑏2 ]

𝑟

𝑒
−(𝑛−𝑖)

𝑥0
2

2𝑏2 (17) 

 

The intensity value function, using Eq. (8) is: 

 

𝜆1(𝑥) = 𝑎 𝑟 (
𝑛

𝑟
)

𝑥

𝑏2
[1 − 𝑒

−𝑥0
2

2𝑏2 ]

𝑟−1

𝑒
−(𝑛−𝑟+1)

𝑥0
2

2𝑏2 (18) 

 

where, a the expected number of failures. Then 

𝑎 =
𝑛

∑ (𝑛
𝑖
)𝑛

𝑖=𝑟 [1 − 𝑒
−𝑥0

2

2𝑏2 ]

𝑟

𝑒
−(𝑛−𝑖)

𝑥0
2

2𝑏2

 
(19) 

 

 
 

Figure 1. Flowchart of ANN-based ABC 

 

4.3 ANN-ABC algorithm for parameter estimation in new 

process order statistics SRGM 

 

This algorithm identifies the process of preparing the input 

data for the neural network as well as the way of initialization 

and training of ANN model. All the input variables are factors 

that describe the data Set, which in most cases refers to the 

independent variables. All these inputs are forwarded into the 

neurons in the input layer of the devised neural network. 

Before we begin the training process, we have to set the 

weights and biases of the neural network. This is normally 

done at random and can be from a uniform distribution as well 

select (random), here this needs to be done randomly normally 

distribution Weights denote the connection of neurons in 

different layers and bias brings for each neuron a new internal 
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parameter for regulating the output [36].  

After the weights and the bias are initialized, the data is 

passed forward through to the network. In this case, the 

weights are in the range of 0.001 to 0.009 while the bias is 

always greater than 0. In the hidden layer, each neuron 

processes input from the input layer in the manner mentioned 

above where the weighted sum is calculated using the weight 

factor and additional bias factor accompanied by the activation 

function to generate an output. After that, we chose a 

multilayer FFNN that contains two hidden layers: one input 

and one output. The first hidden layer is comprised of six nods 

and the second one is comprised of nine nods. These 

experiments showed us that the network topology with two 

hidden layers produces better results than with one and three 

hidden layers. In particular, when using 6 nodes in the first 

hidden layer and 9 nodes in the second hidden layer, this 

configuration showed statistically significant superiority; the 

output of the neural network is then tested against the actual 

target values using a loss function.  

For example, in this case, the most widely used measure is 

the root mean squared error (RMSE). Thus, it can be 

concluded that lower MSE means that the shown model and 

structure of the neural network correspond to the described 

task of approximating the target values as much as possible. 

This process has to be carried out until the model returns a 

satisfactory performance or until a predefined stop has been 

reached. Theis’s process is summarized by the following steps 

[37]:  

Step 1. Initialize ANN 

•Initialize an Artificial Neural Network with a specified 

number of hidden layers, neurons, and weights. 

•The ANN is used to model the system or predict the output. 

Step 2. Initialize ABC 

•Initialize the ABC algorithm with a population of artificial 

bees and the number of iterations with 𝑖𝑚𝑎𝑥 = 100, where 

each bee represents a potential solution to the optimization 

problem. 

•Each bee is assigned a random position X in the search 

space, which corresponds to the weights and biases of the 

ANN. 

•Determine the objective function that represents the Eq. 

(17) & Fitness function is 𝑆𝐸 = √
∑ (𝛾𝑖̂−𝛾)2𝑄

𝑖=1

𝑄
 . 

Step 3. Evaluate ANN 

•Evaluate the fitness of each bee (solution) using the ANN. 

•The fitness function is defined as the negative of the root 

mean squared error (RMSE) between the predicted output of 

the ANN and the target output. 

Step 4. Employed bees phase  

Each employed bee searches for a new food source 

(solution) in the neighborhood of its current position using the 

following equation: 

 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝜋𝑖𝑗 ∗ (𝑥𝑖𝑗 − 𝑥𝑘𝑗) (20) 

 

where, 

𝑣𝑖𝑗  is the new food source (solution). 

𝑥𝑖𝑗  is the current position of the employed bee.  

𝜋𝑖𝑗  is a random number between -1 and 1.  

𝑥𝑘𝑗  is the position of a randomly selected bee 𝑘. 

Step 5. Onlooker bees phase 

Each onlooker bee selects a food source (solution) from the 

employed bees based on the probability. 

Step 6. Scout bees phase 

If a food source (solution) is abandoned, a scout bee is sent 

to search for a new food source using the following equation: 

 

𝑥𝑖𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗) (21) 

 

where, 

𝑥𝑖𝑗  is the new food source (solution). 

𝑥𝑚𝑎𝑥,𝑗 and 𝑥𝑚𝑖𝑛,𝑗 are the minimum and maximum bounds 

of the 𝑗𝑡ℎ. 

Step 7. Once the weights and biases have been updated, 

check the mean square error. If 𝑀𝑆𝐸𝑛𝑒𝑤 ≤ 𝑀𝑆𝐸𝑜𝑙𝑑 , then 

choose 𝑀𝑛𝑒𝑤 = 𝑀𝑜𝑙𝑑/𝐵 and go to step 2. Otherwise choose 

𝑀𝑛𝑒𝑤 = 𝑀𝑜𝑙𝑑 ∗ 𝐵 and go to step 3. 

Step 8. Iteration 

Repeat steps 3-7 until a stopping criterion is reached. Then 

a flowchart of ANN training with the ABC algorithm is given 

in Figure 1 [38]. 

 

 

5. CONCEPT OF SIMULATION 

 

Simulation is a scenario designed to compare any system 

with the real world, and is defined as the attempt to simulate a 

particular process under specific circumstances using artificial 

methods that resemble natural conditions. This includes 

building a smaller model that is an identical copy of the real 

model and performing tests on the miniature model examining 

the results and generalizing them to the original model, or 

computer simulation by writing a program for the methods to 

be chosen under realistic programming conditions and then 

observing the results obtained with the program and drawing 

a conclusion based on them [37, 39]. 

There are different simulation methods, namely the (analog 

method), the (mixed method) and the (Monte Carlo method). 

The Monte Carlo method is one of the most important and 

widely used simulation methods, in which a random sample of 

the phenomenon is generated, that corresponds to the behavior 

of a certain probability distribution that the phenomenon has. 

To achieve this, the probability distribution of the 

phenomenon it has (CDF) it is known that the set of samples 

random in this way possesses the property of independence 

because random samples in this method are by applying the 

mathematical method to each sample separately [38-40]. 

To put the previously discussed ideas into practice, the 

practical part of the research focused on the estimators of the 

suggested model for both of the approaches used, utilizing a 

simulation method. The objective was to apply the RMSE 

statistical criteria to various sample sizes in order to assess the 

optimality of these estimators. The purpose of the simulation 

model was to provide a comparison study of the approaches 

that were evaluated. By showing how the estimate techniques 

affect the following variables, this strategy seeks to determine 

the best technique for estimating parameters inside the interval 

of the new process distribution [39]. 

• Change in sample size. 

• Change in model parameter values. 

 

5.1 Stages of building a simulation experience   

 

First stage: Parameter value selection: Many of the default 

values were selected based on prior studies and experimental 

tests ( 𝑎 = 1.9; 0.9; 1.2; 1.1 and 𝑏 = 0.9; 1.2; 1.1; 1.9 ),  with 

statistical methods such as modified maximum likelihood 
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estimation and an enhanced neural network optimized using 

the ABC algorithm employed to determine the optimal 

parameter values. It is the most important stage on which the 

program’s steps and procedures depend. Below are the steps 

for this stage: 

Choose default values for the parameters of the new 

process. Several default values were chosen for the failures 

expected parameter a and the scale parameter b for the new 

process by reviewing previous studies and experimenting with 

many default values for the parameters, which led us to choose 

the best of these values, as follows above. 

Second stage: Choose sample sizes: Several different 

sample sizes (small, medium, large) were chosen as follows: 

(𝑛 = 20; 50). 

Third stage: Number of replications: The simulation was 

repeated 1000 times to obtain reliable estimates and to account 

for the variability in the data to achieve a balance between 

computational efficiency and statistical reliability. 

Fourth stage: Performance metrics: Root Mean Square 

Error (RMSE) measure was used. To evaluate the accuracy of 

parameter estimates. It is calculated as  

 

𝑅𝑀𝑆𝐸 = √
∑ (𝛾𝑖̂ − 𝛾)2𝑄

𝑖=1

𝑄
 

where, 

𝛾𝑖̂ ∶ represents value of the parameter estimated in iteration 

𝑖. 
𝛾 ∶ represents the real parameter value. 

𝑄 ∶ represents number of iterations. 

In the context of the study, RMSE quantifies the difference 

between the observed software failure data and the values 

predicted by the proposed model. The smaller the 𝑅𝑀𝑆𝐸, the 

closer the predictions are to the actual data, indicating better 

model performance. 

Fifth stage: Data generation: At this stage, random data is 

generated using the inverse transformation method and 

according to the new process, as follows: 

Generating a random variable 𝑢𝑖  that follows a uniform 

distribution with the interval (0,1) using the cumulative 

distribution function with the help of the Rand. 

 

𝑢𝑖~𝑈(0,1), 𝑖 = 0,1,2, … . . , 𝑛 (22) 

 

where, 𝑢𝑖  represents a continuous random variable that 

follows a uniform distribution. 

Convert the data generated in step (first) that follows a 

uniform distribution into data that follows a new mixed 

distribution using the inverse function (CDF) transformation 

method and according to Eq. (17) and as in the following 

formula. 

 

𝑡𝑖 = √2𝑏2 ∗ ln(1 −
𝑢

𝑎
),𝑖 = 0, 1, 2, … , 𝑛 (23) 

 

Sixth stage: At this stage, parameters are estimated over the 

period for the new process and for all methods, which are 

MMLE, and ANN-ABC. 

Seventh stage: The experiment is repeated (1000) times. 

 

5.2 Simulation result 

 

After conducting the simulation experiment by 

implementing the program in the electronic calculator, the 

results of the parameter estimate for the new mixed Rayleigh 

distribution were obtained using the two estimation methods 

described in the above sections and the RMSE. The results of 

the simulation estimations were presented in Table 1 in order 

to reach the best estimate. Comparison between the studied 

estimation methods. In simulating the proposed model, 

parameters 𝑎 and 𝑏 were chosen based on empirical evidence 

from prior studies and sensitivity analysis to balance model 

accuracy and computational efficiency. The values different a, 

and b were selected for their effectiveness in minimizing 

RMSE and capturing observed failure characteristics.  

 

Table 1. Simulated RMSE comparison of MMLE and ANN-

ABC estimates for new process parameters 

 

𝒏 Parameters Methods 𝑹𝑴𝑺𝑬(𝛌𝟏̂(𝒙)) 

20 

{𝑎 = 0.5; 𝑏 = 0.6} 
MMLE 0.0843 

ANN-ABC 0.0765 

{𝑎 = 0.6; 𝑏 = 0.5} 
MMLE 0.0664 

ANN-ABC 0.0096 

{𝑎 = 0.6; 𝑏 = 0.7} 
MMLE 0.1339 

ANN-ABC 0.0549 

50 

{𝑎 = 0.5; 𝑏 = 0.6} 
MMLE 0.0836 

ANN-ABC 0.0738 

{𝑎 = 0.6; 𝑏 = 0.5} 
MMLE 0.0848 

ANN-ABC 0.0778 

{𝑎 = 0.6; 𝑏 = 0.7} 
MMLE 0.0847 

ANN-ABC 0.0779 

 

 

6. APPLICATION WITH A REAL DATA  

 

The real-world dataset we use is derived from reference [21] 

and represents failure attributes including failure time stamp, 

failure type, and operational conditions, which truly 

demonstrate various failure characteristics and are suitable for 

model testing. When the produced model is checked against 

this dataset,  

The real-world dataset we use is derived from reference [21] 

and represents failure attributes including failure time stamp, 

failure type, and operational conditions, which truly 

demonstrate various failure characteristics and are suitable for 

model testing. When the produced model is checked against 

this dataset, one can determine how well it performs on real-

world software reliability and failure patterns hence making it 

quite practical on software quality enhancement. 

Forming a dataset originating from the software system, 

Table 2 shows a time split-up of failure intervals and their 

cumulative time [22]. This information is essential for 

detecting and assessing system efficiency and reliability issues 

while offering statistics describing previous failures. In 

particular, it is possible to observe that some measured failure 

intervals are rather long – 125.67 CPU units between the 17 

and 18th failures – while others are short, meaning that the 

tested software can be characterized by different levels of 

reliability in the course of its functions. These datasets can be 

used to prove the adequacy of the SRGM models based on the 

proposed NHPP model through graphical analysis. 

Besides providing insights into the software’s operational 

characteristics, this dataset has been used to proffer 

recommendations that may be useful in tuning the software 

further in the future. These include the following: The best of 

these insights is to improve software dependability, lessen the 

frequency of outages, and advance development and 

maintenance practices [22].  

31



 

Secondly, the datasets are graphically examined to 

investigate their suitability for the new process in SRGM. This 

is achieved by plotting the distribution using an Artificial 

Neural Network, as shown in Figure 2. 

The histogram of cumulative failures at day of the specific 

dataset under analysis is represented in the form of the 

graphical logarithmic function in Figure 2. The scatter diagram 

shows an obvious positive linearity; this is good evidence for 

utilizing a mean value function to model this data. To 

strengthen this modeling, a novel data analysis model based 

on an Artificial Neural Network optimized through an 

Artificial Bee Colony algorithm (ANN-ABC) has been used to 

improve the predictive accuracy of the proposed model [41-

44]. 
 

Table 2. The cumulative time between failures 
 

Failure 

Number 

Time Between Failure 

Times in CPU Units 

Cumulative Time 

Between Failures 

1 5.5 5.5 

2 1.83 7.33 

3 2.75 10.08 

4 70.89 80.97 

5 3.94 84.91 

6 14.98 99.89 

7 3.47 103.36 

8 9.96 113.32 

9 11.39 124.71 

10 19.88 144.59 

11 7.81 152.4 

12 14.59 166.99 

13 11.42 178.41 

14 18.94 197.35 

15 65.3 262.65 

16 0.04 262.69 

17 125.67 388.36 

18 82.69 471.05 

19 0.45 471.5 

20 31.61 503.11 

21 129.31 632.42 

22 47.6 680.02 

 

Table 3. Models t-test 
 

Models t 𝐝. 𝐟. 
Mean 

Difference 

Std. Error 

Difference 

Weibull model 3.284 108 0.533 0.166 

Suggested 

model 
3.217 107.817 0.533 0.162 

 

 
 

Figure 2. Target vs. predicted output 

The t-test of comparing the proposed model with the 

Weibull model is presented in Table 3, where t-value is 

compared with degrees of freedom, mean difference, and 

standard errors. The t-value of the proposed model is 3.217 

with 107.817 degree of freedoms and there is t-value 3.284 

with 108 degrees of freedoms of Weibull model. The models 

indicate a mean difference of 0.533 with the proposed model 

having slightly higher standard error of 0.162 and the Weibull 

model having a standard error of 0.166. These results verify 

the proposed model is appropriate and comparable to the 

Weibull model for estimation of software reliability, though 

has lesser standard error, making it more precise and suitable 

for conduct of reliability growth models. 
 

 

7. RESULTS AND DISCUSSION 
 

The first differences of the mean value function are 

presented in Tables 4 and 5, 𝑚(𝑥) of the model suggested in 

this paper well compared with the Weibull model [21], 

estimated based on the ANN-ABC. Table 3 illustrates the 

effectiveness of the proposed model compared to Table 4 and 

the Weibull model that can unavailable failure numbers Table 

4 shows the comparison of the proposed model in terms of the 

average time length with the result presented in Table 5 and 

Figure 3. This is because the mean value function rises with 

failure and this indicates huge differences. For example, the 

mean value function increases from 1.0604 when the system 

fails number 3 to 6.0667 when the system fails number 4 

suggesting that the system can have multiple failures as a 

result of perhaps inherent software flaws. On the other hand, 

the latter failures possess more stable values of the successive 

differences which indicates a possibility of the reliability 

growth curve flattening which should be studied further [45]. 

This analysis therefore supports the utility of advanced 

modeling methods like ANN-ABC in developing greater 

insights or otherwise, of the patterns of software reliability and 

to assist in the formulation of good approaches towards 

improving the performance of software systems and systems. 
 

Table 4. Successive differences of the mean value function 

for the new model obtained using ANN-ABC optimization 

based on mean square error 
 

Failure 

Number 

Mean Value 

Function 𝒎(𝒙) 

Successive 

Differences of 𝒎(𝒙) 

1 0.5633 0.1016 

2 0.7551 0.1832 

3 1.0604 4.8063 

4 6.0667 0.1557 

5 6.2334 0.8587 

6 7.2132 0.1050 

7 7.4182 0.4895 

8 8.0278 0.5519 

9 8.6698 0.0613 

10 9.7311 0.2811 

11 10.1221 0.5870 

12 10.8312 0.4155 

13 11.3378 0.7025 

14 12.1513 1.2219 

15 14.4722 0.0011 

16 14.4877 2.0681 

17 17.5524 0.2316 

18 19.0030 0.0022 

19 19.0012 0.3101 

20 19.3112 1.1403 

21 20.5606 0.2172 

22 21 20 

32



 

Table 5. Successive differences of the mean value function 

for the Weibull model obtained using ANN-ABC 

optimization based on mean square error 

 

Failure 

Number 

Mean Value 

Function 𝒎(𝒙) 

Successive 

Differences of 𝒎(𝒙) 

1 0.6644 0.2017 

2 0.8661 0.2943 

3 1.1604 5.9173 

4 7.0777 0.2668 

5 7.3445 0.9698 

6 8.3143 0.2151 

7 8.5293 0.5985 

8 9.1278 0.6519 

9 9.7798 1.0613 

10 10.8411 0.3922 

11 11.2332 0.6980 

12 11.9312 0.5155 

13 12.3378 0.8025 

14 13.1513 2.2219 

15 15.4722 0.0012 

16 15.4877 3.0681 

17 18.5524 1.2316 

18 20.0030 0.0072 

19 20.0012 0.4101 

20 20.3112 1.2403 

21 21.5606 0.3172 

22 22 ---- 

 

 
 

Figure 3. Histogram of cumulative failures with 

logarithmic function representation 

 

Table 6. RMSE comparison of estimation methods for the 

proposed order statistics growth model and the Weibull 

model 

 

Methods 
Suggested Model 

𝑹𝑴𝑺𝑬(𝛌𝟏̂(𝒙)) 

Weibull Model 

𝑹𝑴𝑺𝑬(𝛌̂(𝒙)) 

MMLE 0.1943 0.2854 

ANN-ABC 0.1755* 0.2856 

 

As shown in Table 6, ANN trained using ABC algorithm 

outperformed the MMLE method, achieving the lowest RMSE 

for the proposed model compared to the Weibull model. 

 

7.1 Accuracy evaluation 

 

The comparison of the execution time of the ANN 

combined with the ABC algorithm with the MMLE method is 

likewise dependent on the size of data set, the complexity of 

the developed model, and the procedure of algorithm 

implementation. ANN-ABC, despite being potentially more 

accurate because of high flexibility due to non-parametric 

belonging, trained iteratively and optimized, highly 

computational and slower in large data mining exercises. On 

the other hand, MMLE is more efficient and the method which 

goes straight to calculate the maxima of the likelihood 

function, but it is not suitable for complex and non-linear data 

forms [46]. Deciding between these is a function of the user’s 

particular needs when it comes to maximizing accuracy versus 

computational time with ANN-ABC scaling in favor of 

accuracy over speed and MMLE appropriate for the speed it 

offers over other methods. 

 

7.2 Discussion 

 

This paper presents the incorporation of Rayleigh Order 

Statistics distribution into a new service time distribution 

model anchored on NHPP. This approach allows for a more 

reactive approach to different failure rates, thus coping with 

the unbounded failure of real-life software systems. This 

incorporation of Artificial Neural Networks is in combination 

with optimization methods such as the ABC algorithm that 

leads to more precise identification of parameters which in 

turn provides much more likelihood of correct predictions 

regarding the performance of the given software. These 

contributions have real-world relevance for software 

developers and engineers because the model proposed in this 

paper can enhance quality control processes and extend the 

deployment time of software solutions. Thus, given the higher 

understanding of failure patterns and reliability growth, the 

model helps make successful maintenance decisions and avoid 

resource wastage. However, the study has its shortcomings, 

which include the quality and quantity of failure data, failure 

of the method to represent real-world system complexity, and 

computational difficulty in the implementation of this method.  

Regarding its originality, additional focus should be made 

on comparing the paper’s proposed methodologies to the 

traditional NHPP models or other statistical methods to 

achieve a clearer perspective of the strengths and the 

weaknesses of the proposed work as a contribution to the state 

of the art in software reliability analysis. Perhaps the 

deconstruction of these aspects would add more depth to these 

arguments, and, therefore, the study; more so, because the 

research findings appear to have applicability for both 

researchers and practitioners. 

 

 
8. FUTURE WORK 

 
The extension of the use of the ABC algorithm in fine-

tuning ANNs is a milestone in machine learning as well as 

optimization. This approach enhances the capabilities of 

ANNs in several ways: 

Global optimization: The best global optimization is 

provided by the ABC algorithm which was derived by mimic 

identification of honeybees. While gradient descent may 

converge to local minima, the overall performance of the 

proposed ABC algorithm is broader in the parameter space to 

obtain more weight and bias optimization in ANNs. 

Robustness to initial conditions: Another advantage of the 

formulated ABC algorithm is that it evades the premature 

convergence problem owing to the population-based strategy 

where in a number of solutions are considered at a time. This 
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diversity reduces the probability of poor convergence due to 

the initial weights assumptive of being adverse. 

Adaptability to complex problems: As seen before, the 

ABC algorithm is best used in high dimensions and 

optimization problems with high complexities. This versatility 

can be employed across practically all distinct ANN 

topographies while being capable of supporting simple 

regression analysis all the way to advanced pattern 

identification. 

Improved convergence speed: The ABC algorithm utilizes 

the population of the bees to enhance the solution search and 

is most of the time faster than other methods when fixed time 

is required. 

Integration potential: The described above ABC 

algorithm can be easily combined with other optimization 

methods or machine learning algorithms. ABC also 

demonstrates good results if integrated with other swarm 

intelligence methods, which improves the efficiency of 

training. 

Enhanced predictive accuracy: The proposed ABC 

algorithm fine-tunes ANN parameters better than the 

traditional approach, which enhances its accuracy in capturing 

data patterns hence better prediction. 

Broad applicability: It is flexible, and therefore can solve 

different problems in various sectors, such as software 

reliability modeling, financial forecasting, and even diagnosis 

of diseases. The versatility reveals the ability to address other 

domain optimization problems with suitable levels of 

efficiency. 

In conclusion, improving ANNs by the ABC algorithm not 

only put higher performance and stability for the model but 

also contributes to develop the optimization field with 

optimize, flexible and effective method than original 

approach. This contribution enhances the body of knowledge 

regarding the applicability of ANN to various tasks, in making 

it a useful instrument towards solving large, real life problems 

robustness.  

 

 

9. CONCLUSIONS 

 

This article is a major breakthrough in software reliability 

modeling owing to the development of the growth model 

formulated from the Rayleigh Order Statistics distribution 

within the context of the NHPP model. This approach 

improves the feasibility of modeling various failure rates of 

software systems since failure rates differ from one project to 

another. The feature of the proposed model presents clear 

advantages in reliability assessment over conventional 

techniques since it can provide more reliable estimation of 

failure behavior and other crucial measures affecting 

reliability to enhance the objectives of quality in software 

engineering disciplines. 

In addition, the use of ANN together with optimization 

algorithms like ABC algorithm opens another prospect for 

improvement in parameters identification as well as prediction 

accuracy especially in regard to large and intricate datasets 

characteristic of software systems. This paper also puts 

forward the direction for the future empirical research with 

reference to the proposed methodologies for the software 

systems and industries after establishing the effectiveness of 

the proposed measures through quantitative analysis the 

proposed measures should also incorporate other qualitative 

measures such as the satisfaction level of the end user for the 

proposed measures for the software systems. 

The experimental results indicated and have clearly proved 

that the proposed model enhanced the reliability of the 

software. Thus, by presenting the results for increased 

reliability indicators, the work meets the goal of improving the 

software reliability growth model. Just as in the integration of 

ANNs and swarm intelligence through the use of the ABC 

algorithm, the optimization of parameter estimation and 

enhancement of predictive error can be revealed. This research 

also enhances knowledge in software reliability modeling and 

emphasizes a more pragmatic facet of employing new 

computation approaches to deal with complicated failure data 

in enhancing software systems dependency. 
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