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This study analyzes the spatial correlation between climate variability and the incidence 

of dengue fever in East Nusa Tenggara (NTT) with 2022 data on 22 districts/cities. The 

climate data (temperature, humidity, and rainfall) and Euclidean distance data were 

obtained from the Meteorological, Climatological, and Geophysical Agency (BMKG), 

and data on dengue fever cases were obtained from the NTT Provincial Health Office. 

The study used the Queen Contiguity spatial weight matrix, Ordinary Least Squares 

(OLS), Moran’s I test, and spatial error model (SEM). SEM was identified as the best 

model: R²=45.38%, AIC=285.235. Temperature was the most significant factor, with a 

coefficient of -75.934, which means a 1℃ decrease in temperature is associated with 

an estimated increase of 75 dengue cases. Though the p-value (0.08927), suggests weak 

statistical significance, this relationship is still relevant for understanding the 

epidemiological picture. Further, the spatial error coefficient (λ=-0.217, p=0.481) 

suggests there are potential spatial dependencies that have not been adequately 

contextualized and could be associated with unobserved mechanisms (e.g., human 

mobility, environmental characteristics of mosquito habitats). This study highlights the 

need to involve spatial analysis in the planning of public health interventions, 

particularly targeted vector control as these can be done in the cooler season. They 

recommend district-level early warning systems utilizing spatial and climate data to 

predict outbreaks. Future studies should incorporate other variables, including socio-

economic factors and climate change projections, to improve the models' accuracy and 

inform health adaptation strategies in the long term. 
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1. INTRODUCTION

The impact that climate change is having on human life in 

general is one of the biggest threats to humankind today, and 

it touches on every aspect of human life, including public 

health. Dengue fever is the most widely distributed mosquito-

borne viral infection, and increased transmission of vector-

borne diseases (VBD) is one of the most disastrous effects of 

climate change. Approximately half of the world population is 

vulnerable to infection with the dengue virus DENV, leading 

to an estimated 50-100 million cases of DENV globally each 

year [1]. This figure has slowly increased from 2.4 million 

cases in 2010 to over 5.2 million cases in 2019, illustrating the 

durability of the global health burden caused by this one 

disease [2]. 

There is great variability in the geography of risk 

perceptions in terms of climate change and vector-borne 

diseases. In tropical and subtropical places where dengue is 

endemic, people tend to have a better sense of the risk because 

there are more frequent outbreaks. Awareness of dengue is 

also on the rise in still unaffected areas, including temperate 

regions, as the environmental conditions that favor the spread 

of the Aedes mosquitoes spread with increasing global 

temperatures [3]. Rising temperatures and changing rainfall 

patterns related to climate change are believed to cause more 

mosquitoes to survive in more humid or stormy regions and to 

expand their transmission season. 

Studying how climate change affects dengue fever is thus 

critical not only for improving predictions of future health 

risks but also to inform responses to current challenges in 

preventing and controlling the disease. More detailed 

knowledge of the association between climate variables and 

dengue transmission is required to guide more effective public 

health interventions that may help prevent future outbreaks. 

This is all the more so in tropical and seasonal climates, as in 

East Nusa Tenggara, Indonesia, a province often affected by 

outbreaks of this disease and exacerbated by unstable weather 

patterns and extreme weather events. 

Dengue fever is a viral disease, primarily passed on to 

humans through the bite of an infected Aedes mosquito, and 

the transmission dynamics of it heavily rely on climatic 

parameters. Climate determinants such as temperature, rainfall, 

and humidity impact the mosquito lifecycle, and there with its 

capacity to transmit the virus. For example, increasing 

temperature can accelerate mosquito development, increase its 

aggressiveness as well as shorten its incubation period in the 

mosquito [4], and rainfall creates breeding spaces for 

mosquitoes. The incidence and severity of dengue cases are 
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highly influenced by these climatic conditions. 

Global epidemiological and ecological theories suggest that 

climate change could modify environmental determinants 

dynamically relevant in disease transmission and, thus, those 

related to spatial distribution and magnitude of dengue 

outbreaks. Earlier studies that used process-based and 

statistical modeling approaches have revealed a strong 

association between increasing temperatures and increased 

dengue incidence, especially in tropical and subtropical areas 

[5]. But other studies have suggested that the association 

between climate change and transmission of dengue is 

nonlinear, with very high temperatures decreasing mosquito 

life span [6], and thus, the effect size on dengue incidence may 

vary by region. 

While many studies have tried to demonstrate the link 

between climate change and dengue, insufficient local-level 

coverage has been done to understand these dynamics. Most 

of the studies have been conducted at the global or continental 

scale and generally have failed to account for local conditions 

(e.g., socioeconomic aspects, microclimates, and geographical 

features) that play a role in dengue transmission [7]. 

In this tropical region with high variability of climatic 

conditions in terms of rainfall and temperature, for instance, 

East Nusa Tenggara, it is vulnerable to the epidemiologic 

threat of dengue. Additionally, climate variability, largely 

driven by the El Niño and La Niña phenomena, has been 

shown to strongly affect the cyclic flow of dengue incidence 

in tropical regions [8]. Nonetheless, certain areas (especially 

rural/remote areas with limited access to health facilities) may 

be especially vulnerable to the effects of outbreaks driven by 

local environmental phenomena and/or limited healthcare 

infrastructure [9]. 

New sectors that are at risk of increased dengue cases, 

overexploitation of healthcare systems, and increased 

mortality rates are likely unless adequately modeled, creating 

opportunities to understand the role climate change plays in 

the transmission of dengue. This type of targeted approach 

requires understanding of high-risk areas, and local methods 

using comparable spatial data as that rudimentarily used in this 

study will be fundamental. Previous studies have 

demonstrated that, in tropical regions, disease transmission is 

also influenced by context characteristics such as urbanization, 

population density, and environmental factors [10]. 

This study intends to present a model to estimate the impact 

of climate change on the incidence of dengue fever in East 

Nusa Tenggara using spatial statistical methods. It hopes to 

determine how climate factors such as temperature, 

precipitation, and humidity are associated with dengue 

transmission, controlling for spatial dependencies among 

regions. Hence, several key approaches used in the spatial 

statistical modeling with strong relevance to the 

epidemiological data characteristics are employed to fulfill 

this objective. 

This is done with the Queen Contiguity method in which a 

spatial weight matrix of W is defined so two regions are 

neighbors if they are adjacent either by border or vertex. 

Incorporating W in the model is crucial for modeling 

incorporated spatial interaction between different regions 

because it is likely to reflect the spatial distribution and 

intensity of the diffusion of the disease better [11, 12]. This is 

crucial in order to aid modeling of how the spatial patterns of 

disease transmission, and contributions of surrounding areas. 

This study aims to find a model of the relationship between 

climate change and the incidence of dengue fever (DBD) in 

East Nusa Tenggara with the spatial statistical method. Such a 

method thus considers that data is not linear but rather relies 

upon spatial weight matrices to investigate assertive 

interregional interaction effects, an approach that has not been 

sufficiently pursued in prior work that instead has tended to 

ignore spatial characteristics. In this context, several research 

needs remain common, specifically the integration of the 

characteristics of climatic data with the epidemiological 

aspects of dengue and better spatial modeling to account for 

interregional interactions. 

Urgent, the absence of context-specific climate data 

characteristics within the East Nusa Tenggara domain, 

suggests a highly relevant gap in this research. With the 

exception of relatively few approaches, most previous studies 

have only explored simple linear relationships between the 

climatic factors and the dengue incidence at specific locations, 

completely disregarding more complex spatial dynamics. The 

present study seeks to address this issue by deploying spatial 

weight matrices on the basis of the Queen Contiguity method, 

which is a more efficient method than the others, for the inter-

regional spatio-temporal marker, as it identifies the 

relationship not only via regional boundaries but also via 

meeting points, and thus affords a more holistic representation 

of spatial interaction [13]. This matrix serves not only as an 

indication of which geographical areas interact directly with 

each other, but also leads to a more accurate description of the 

geographical distribution and intensity of a disease [14, 15]. 

We aim to use Queen County to reflect a high degree of 

relation between entities not yet well studied as in reference [5] 

used a similar approach to investigate the impact of climate on 

dengue dynamics but derived variable conclusions. 

The data characteristics in our study are climatic variables 

with high temporal resolution and geo-climatic dengue 

epidemiological data with spatial granularity at the 

administrative region level. Previous work primarily applied 

climate and epidemiological data with a lower resolution, thus 

missing important aspects of spatial and temporal 

heterogeneity. This seems to extend the data of the study [16], 

who incorporated historical climate data in Brazil to model 

dengue dynamics without representing some spatial variability 

at the local scale [16]. This offers higher precision and 

predictive power, relevant to the actual context of the analysis, 

for instance, by incorporating the data derived from end-of-

satellite high-temporal resolution climate data, such as daily 

rainfall and humidity, which have been proven to be closely 

associated with dengue distribution in similar environments. 

To examine spatial dependencies, this research employs 

Moran's I statistic to assess spatial autocorrelation. This is 

essential to ascertain whether the spatial patterns of dengue 

incidence demonstrate a substantial similarity within certain 

regions. This method is the underlying basis of assumptions 

when using econometric spatial models such as the spatial lag 

model (SAR) and the spatial error model (SEM) [17]. SAR 

models are used to capture the direct effect from neighboring 

regions to dengue incidence, thus facilitating the 

understanding of interregional spatial interactions on the 

pathophysiology of the disease. In contrast, SEM models are 

used to capture spatial constraints in the error components that 

often represent unobservable factors contributing to the 

transmission dynamics. Results: The coupling of these models 

provides the flexibility and accuracy needed to better 

understand the mechanics of dengue transmission in areas with 

heterogeneous spatial attributes. The study [18] showed that 

semi-parametric spatial-based methods were better predictors 
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of dengue distribution in Nepal. 

Moreover, another innovation in this study refers to the use 

of advanced diagnostic strategies for selecting the best model. 

Model selection in many previous studies relied on 

conventional methods that did not account for the inherently 

complex nature of spatial data. This research uses AIC and 

BIC type approaches studying the spatial models. This method 

leads to a more solid basis for the decision in selecting the best 

model based on conditions of data and area of study. Early 

dengue predictions were yielded through integrating 

predictive modeling strategies with climate variables [19]. 

This study fills a gap in the literature on data-driven 

intervention strategies, including therapies that risk areas to 

prioritize where to target resources or designing high health 

campaigns targeting areas of high humidity that speed up the 

cycle of mosquitoes. In sum, findings from this research 

support informed decision-making and data-driven policies to 

implement effective interventions that can improve the health 

of a population with endemic infectious diseases like Chagas 

disease. Another case is the creation of climate-based risk 

maps to help local authorities plan mitigation actions-such as 

improving drainage systems in areas prone to flooding. This 

study highlights the use of spatial models for not only 

detecting high-risk areas but also deriving evidence-informed 

guidelines to assist in more targeted public health intervention 

planning. 

2. METHODS 

 

This study was conducted in the East Nusa Tenggara region. 

The research data consists of secondary data on climate change 

from database of Meteorological, Climatological, and 

Geophysical Agency (BMKG), meanwhile the data of dengue 

fever incidence in the NTT region, obtained from the NTT 

Provincial Health Office. The data collected is from the year 

2022, based on 22 districts/cities. 

Meanwhile, the research variables used in this study are 

detailed in Table 1. 

In this study, the spatial weight matrix W used is the Queen 

Contiguity matrix. This matrix was selected because it 

considers that adjacent regions have a greater influence on 

each other. In the Queen Contiguity matrix, spatial units are 

defined as neighbours if they share a common side or vertex. 

The research was carried out following a series of methodical 

steps. First, exploratory spatial data analysis was applied to the 

research variables to understand the underlying patterns and 

relationships. This initial analysis helps in identifying spatial 

dependencies and distributions within the data. Next, the study 

involved constructing a model for regional investments in 

Indonesia using a spatial panel data approach. Digital map of 

East Nusa Tenggara Province is shown in Figure 1. 

 

 

 
 

Figure 1. Digital map of East Nusa Tenggara Province 

 
Table 1. Research variables 

 
Variable Variable’s Name Unit 

Y Dengue Fever Case 

X1 Temperature ℃ 

X2 Humidity Percentage 

X3 Rainfall Millimeter 
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2.1 Spatial weight matrix W 

 

The spatial weight matrix W | n×n, with n being the number 

of regions or the number of observations that must be defined 

beforehand, is the basis point of the spatial econometric 

analysis as it describes the impact of the spatial interaction 

between the regions. It controls what happens in one area, as 

it is affected by what happens in neighboring areas, so the 

choice of matrix specification is a critical stage; formally, it 

can affect the analysis results. For example, the Queen 

Contiguity uses a matrix where regions that share borders or 

vertices are treated as neighbors, thus providing more 

flexibility for spatial definition. However, this method has 

weaknesses, especially in areas with sparse connections like 

an island area; sometimes, some regions remain unconnected 

[20]. 

The selection of the spatial weight matrix is a crucial aspect, 

as this plays a critical role in how spatial dependence is 

captured and the validity of the model. Although the Queen 

Contiguity matrix is common due to its straightforward 

interpretation, other approaches, such as distance-based or k-

nearest neighbor matrices, may offer greater insights into 

spatial interactions. Distance-based matrices, for instance, 

consider geographical distances between sample points; hence, 

they are very useful in areas where spatial structures are 

unbalanced. Likewise, k-nearest neighbor matrices guarantee 

the number of neighbors for each region is a constant number, 

which is very helpful in solving the problem of isolation in 

sparsely connected or remote places [21]. 

The use of a Queen Contiguity matrix here is justifiable by 

the ability of this type of contiguity to get a direct spatial 

association at borders or the inclusion of either vertices or 

boundaries, whilst matching the administrative limit and 

geographical form of East Nusa Tenggara (NTT). Alternative 

approaches, such as distance-based matrices, were 

contemplated, but ultimately not adopted, as the region has a 

wide geographic scale, and establishing adequate distance 

thresholds in a heterogeneous topography is challenging. 

Also, the selection of the Queen Contiguity matrix bears a 

direct impact on the outcomes of this research. It guarantees 

that spatial dependencies, such as spillover effects of climate 

variables, occur within districts that are close to each other. 

This decision affected how the spatial error model (SEM) 

performed, enabling the SEM to detect spatially correlated 

errors associated with unobserved elements, like endogenous 

population movement or local characteristics of mosquito 

habitat. Nonetheless, it should be noted that this matrix does 

not capture long-distance interactions or spatial dependence 

beyond immediate neighbors, which may result in 

underestimating spatial effects that act more globally. 

The results also suggest the exploration of alternative 

matrices, like hybrid matrices that integrate contiguity and 

distance, in future research to give researchers a more nuanced 

understanding of how spatial relationships interact. The hybrid 

matrices can represent both direct and indirect interactions 

between regions and produce better results in geography that 

is complicated like NTT. This would improve knowledge of 

the local drivers of dengue fever transmission and form a 

robust basis for targeted public health action. 

 

The matrix is defined as: 

 

𝑤𝑖𝑗 = {
1,
0,

    
if regions 𝑖 and 𝑗 are neighbors
otherwise                                        

 

To ensure consistency across regions, w is row-standardized, 

meaning that each row of w sums to one. This standardization 

transforms the weights to: 

 

𝑤𝑖𝑗
∗ =

𝑤𝑖𝑗

∑ 𝑤𝑖𝑗
𝑁
𝑗=1

 (1) 

 

where, 𝑤𝑖𝑗
∗  represents the standardized spatial weight for 

neighboring region pairs. 

 

2.2 Basic regression model 

 

We start with the basic Ordinary Least Squares (OLS) 

model that explains the relationship between the independent 

variables and the dependent variable, ignoring any spatial 

effects. 

 

𝑌𝑖 = 𝛼 + ∑ 𝛽𝑘𝑋𝑖𝑘 + 𝜖𝑖

3

𝑘=1

 (2) 

 

where, 

𝑌𝑖 is the observed value of the dependent variable (dengue 

fever cases) for region 𝑖. 
𝑋𝑖𝑘  represents the independent variables for region 𝑖 , 

including temperature (𝑋1), humidity (𝑋2), and rainfall (𝑋3). 

𝛼 is the intercept term. 

𝛽𝑘 are the coefficients for the independent variables. 

𝜖𝑖 is the error term for region 𝑖. 
 

2.3 Testing for spatial autocorrelation: Moran’s I 

 

To determine whether to accommodate spatial effects in the 

model, we test for spatial autocorrelation in the residuals from 

the OLS model with Moran's I, a common test of spatial 

autocorrelation based upon a statistic that demonstrates 

whether similar values group in the space. A strong Moran's I 

statistic indicates that the residuals are spatially autocorrelated, 

which means that there are significant spatial dependencies in 

the data and the use of standard OLS regression is not an 

appropriate technique. This is illustrated by the presence of 

spatial autocorrelation, whereby not only are observations in 

neighboring regions not independent, but rather the 

relationships between variables may cross spatial boundaries 

[18]. This can be done by incorporating spatial effects in 

traditional econometric models, such as spatial autoregressive 

(SAR) or spatial error models (SEM) [22]. 

 

𝐼 =
𝑁 ∑ ∑ 𝑤𝑖𝑗(𝑌𝑖 − 𝑌̅)(𝑌𝑗 − 𝑌̅)𝑁

𝑗=1
𝑁
𝑖=1

∑ (𝑌𝑖 − 𝑌̅)2 ∑ ∑ 𝑤𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1

𝑁
𝑖=1

 (3) 

 

where, 

𝑁 is the total number of regions. 

𝑌̅ is the mean value of 𝑌. 

𝑤𝑖𝑗  denotes the spatial weight between regions 𝑖 and 𝑗. A 

significant Moran's I statistic indicates spatial autocorrelation 

in the data, suggesting that the standard OLS model is 

inadequate and a spatial econometric model is necessary. 

 

2.4 Spatial econometric model development 

 

Since Moran’s I suggests that there are spatial 

autocorrelations, we extend the OLS model by incorporating 
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spatial effects. The dependence of observations on other 

observations can be included in two main ways, via the spatial 

lag of the dependent variable or the spatial autocorrelation in 

the error term. 

Step 1: Implementing the spatial lag model (SAR) 

The first extension adds a spatially lagged dependent 

variable. This method shows the impact of the other regions 

on the active region. The equation is: 

 

𝑌𝑖 = 𝜌 ∑ 𝑤𝑖𝑗𝑌𝑗 + 𝛼 + ∑ 𝛽𝑘𝑋𝑖𝑘 + 𝜖𝑖

3

𝑘=1

𝑁

𝑗=1

 (4) 

 

where, 

𝜌  is the spatial autoregressive coefficient, indicating the 

strength of the spatial dependence.  

∑ 𝑤𝑖𝑗𝑌𝑗
𝑁
𝑗=1  represents the spatially lagged dependent 

variable that accounts for average values of adjacent areas.  

The SAR model is obtained by incorporating the term ρWY 

into the OLS model, thus making Eq. (1) into Eq. (4), where 

the spatial influence is explicitly involved. 

Step 2: Spatial error model (SEM) 

Or it can be modeled as spatial dependence in the error term. 

In this model, known as the spatial error model (SEM), spatial 

correlation is specified in the residuals, which also means that 

unobserved variables that affect the incidence of dengue fever 

are spatially correlated between regions. The SEM is 

represented as: 

 

𝑌𝑖 = 𝛼 + ∑ 𝛽𝑘𝑋𝑖𝑘 + 𝜖𝑖

3

𝑘=1

 (5) 

 

𝜖𝑖 = 𝜆 ∑ 𝑤𝑖𝑗𝜖𝑗 + 𝑢𝑖

𝑁

𝑗=1

 (6) 

 

where, 

𝜆 is the spatial autoregressive parameter for the error term. 

𝑢𝑖  is an independent error term that follows a normal 

distribution. 

In this model, the error term 𝜖𝑖 is influenced by the spatially 

lagged error from neighboring regions ∑ 𝑤𝑖𝑗𝜖𝑗
𝑁
𝑗=1 . This 

approach assumes that the spatial effects originate from the 

unobserved variables rather than the observed variables. 

 

2.5 Model selection criteria 

 

Selecting the appropriate spatial econometric model (SAR 

vs. SEM) is a key element of spatial data analysis. This choice 

has a major impact on capturing spatial dependencies correctly, 

which ultimately leads to accurate and interpretable 

information about the data. While torque is used by-group in 

almost all statistical models, researchers often test their data 

with a variety of model evaluation criteria to make sure that 

their selection is consistent with their data. 

The most popular tests to achieve this are the Lagrange 

Multiplier (LM) tests, the LM Lag Test, and the LM Error Test. 

Assessment of how the spatial dependencies are embedded in 

the data. The LM Lag Test examines the parameter of nominal 

spatial lag (ρ) to determine if there are direct spatial 

interactions that may influence the dependent variable. A 

substantial result means spatial effects have a direct influence 

on the dependent variable, making the SAR model more 

adequate. Note that the LM Error Test checks the spatial error 

parameter (λ) to determine spatial autocorrelation in the 

residuals. If the result of the LM Error Test is significant, the 

SEM is preferred because it incorporates this type of spatial 

dependency better [14]. 

As a consequence, the results of these tests often seem to 

make the decision cut and dry. If the LM Lag Test is 

significant and the LM Error Test is not, a SAR model better 

captures spatial interdependence since it focuses on such 

interactions in the dependent variable. In contrast, if the LM 

Error Test is significant while the LM Lag Test is not, then 

SEM is more appropriate, since it aims at capturing spatial 

correlations in the residuals. Spationomic models have the 

advantage that researchers can adjust their models to the 

realistic spatial structure of the data [17]. 

Still, ambiguity may arise if both tests yield significant 

results, which indicates spatial dependencies can exist for both 

the dependent variable and residuals. When this is the case, 

researchers frequently resort to robust variants of the LM tests, 

which account for possible overlaps between the two types of 

spatial effects. Also, model selection criteria (e.g., Akaike 

Information Criterion (AIC); Bayesian Information Criterion 

(BIC)) can assist in the decision-making process. These 

criteria are designed to evaluate the fit of the model while 

applying a penalty for developing complex models [23]. 

Finally, the decision of whether to use SAR or SEM 

depends on statistical tests, model fit indices, and the nature of 

spatial dependencies present in the data. Combining these 

techniques gives researchers the ability to have robust results 

while capturing the complexities of the spatial relationships. 

This process is essential for estimating spatial econometric 

models that are explicitly meaningful and practically useful. 

 

2.6 Model estimation techniques 

 

Spatial econometric models, including the spatial 

autoregressive (SAR) and spatial error models (SEM), utilize 

robust estimation techniques to model the spatial 

dependencies inherent in the data. There are two common 

approaches to estimating the model parameters, including the 

spatial autoregressive coefficient (ρ), spatial error coefficient 

(λ), and regression coefficients (βk): Maximum Likelihood 

Estimation (MLE) and Generalized Method of Moments 

(GMM). The choice of method depends on the whisker of the 

data and what the analysis should achieve. MLE is a technique 

that maximizes the likelihood function of the observed data 

conditioned on a certain distribution of the error term. When 

the assumptions of normality and homoscedasticity are 

satisfied, this is a very efficient way of doing it. Under such 

conditions, it yields uniform and efficient estimates of the 

function parameters. However, MLE provides computational 

challenges, specifically with matrix inversion of the form 

(I−ρW), which can be computationally intensive in cases of 

large data set or complex spatial structures. Generally, such 

approaches require sophisticated computational resources to 

guarantee the applicability of the method [22]. GMM is a more 

flexible approach where we do not need strong assumptions on 

the error term distribution. Instead, it uses population moment 

conditions that can be obtained from the model to estimate 

parameters. Its flexibility also makes it particularly 

appropriate for situations where the data exhibits 

heteroskedasticity or departures from normality. In addition, 

GMM has lower computational costs than MLE, since it does 

not require the direct inversion of large spatial matrices. 
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Already established empirical studies have shown that GMM 

offers a stable performance in the spatial econometric context, 

even more with data sets with highly spatially varying data 

[24]. In contrast, MLE's advantage remains for datasets for 

which the error structure conforms to normality assumptions, 

as it yields highly-efficient and accurate parameter estimates 

[25]. When it comes to deciding which estimation technique 

to use, it should be based on the question we want to answer 

and the data we have. MLE, on the other hand, is more suitable 

for applications that emphasize estimation accuracy from 

correctly specified distributions, whereas GMM offers more 

flexibility and resilience when data is problematic, like 

heteroskedasticity or non-standard distributional errors. These 

contrasting properties reflect the complementary functions of 

MLE and GMM within the scope of spatial econometric 

analysis. Both MLE and GMM are critical for SAR and SEM 

models. 

 

2.7 Diagnostic checks and interpretation 

 

Once you fit a spatial econometric model, it is important to 

conduct diagnostic checks for the model and multicollinearity. 

Hence, those checks would also indicate that something went 

wrong-if any were going wrong-e.g., in case of 

multicollinearity, non-normality of the residuals, presence of 

the residuals' spatial autocorrelation, et cetera. These 

diagnostics guarantee the robustness of results when analyzing 

complex phenomena such as dengue fever incidence in East 

Nusa Tenggara. 

The first step in a diagnostic process is to check 

multicollinearity in the independent variables. This 

phenomenon in multiple regression is known as 

multicollinearity, whereby two or more predictors are highly 

correlated, leading to inflated estimates of their coefficients 

and making the causal relationships harder to interpret. Tools 

such as Variance Inflation Factor (VIF) are often used to check 

for this problem. Flagging high VIF scores indicates that some 

collinearity issue exists and that we should prepare to address 

it by either merging correlated variables or dropping the 

redundant ones. This applies to climate variables, like 

temperature and rainfall, that may inherently have 

interdependence. 

Another important diagnostic of whether or not the standard 

linear regression assumptions hold true is checking the 

normality of the residuals. Residual normality is an 

assumption of many spatial econometric models, especially 

those implemented using Maximum Likelihood Estimation. 

Violations of normality can lead to inaccurate parameter 

estimates and invalid tests of inference. Tests such as the 

Shapiro-Wilk test can be conducted to assess residual 

normality, or residuals can be observed graphically with 

quantile-quantile (Q-Q) plots. Transformations or robust 

estimation techniques may be necessary if the residuals do not 

conform strictly to normality [26]. 

The third key diagnostic is used to check for remaining 

spatial autocorrelation in the residuals. Just like in traveling 

salesman problems, if residuals are still spatially correlated, it 

means your solution has not found optimal parameters for your 

model to capture spatial dimensions. Moran’s I statistic is a 

classic tool to investigate the spatial autocorrelation of 

residuals. However, the identification of spatial dependence 

implies the necessity for model improvement, for example, 

through additional spatial lags or error terms. In the context of 

a dengue fever model, for instance, failing to address spatial 

dependencies likely indicates missing factors (e.g., population 

density, healthcare access within the area) affecting the 

distribution of the cases [14]. 

With careful execution of these diagnostic checks and 

addressing any issues, the spatial econometric model is a 

potent vehicle for insight into complex dynamics. In the case 

of dengue fever, such a model could help show how the 

climate factors interact with the spatial dependencies to create 

patterns of disease. For example, increased rainfall may not 

only favor local mosquito breeding but also induce "spillover 

effects" in adjacent regions via human or vector mobility. 

Addressing all diagnostic issues ensures that researchers will 

provide more robust and useful knowledge to shape public 

health efforts. 

Diagnostic checks are critical to validating spatial 

econometric models. Through steps like addressing 

multicollinearity, ensuring the normality of residuals, and 

accounting for spatial autocorrelation, researchers can develop 

more nuanced models and provide findings that accurately 

reflect the spatial dynamics highlighted in their data. 

 

2.8 Latest research in the field of climate change and 

dengue transmission 

 

Climate change has become an increasingly critical factor 

driving the emergence and reemergence of vector-borne 

diseases (VBDs), such as dengue fever, over the past decades. 

The link between climate change and the global proliferation 

of these diseases is well-documented. The study [27] 

emphasizes that global warming, when coupled with 

urbanization and rising greenhouse gas emissions, has 

facilitated the expansion of mosquito populations into regions 

previously unsuitable for their survival. Changing weather 

patterns such as variations in temperature, precipitation, and 

humidity play a pivotal role in shaping the habitats and 

breeding cycles of these vectors, thereby amplifying the risks 

of dengue transmission. 

To address the challenges posed by the spatial and temporal 

dimensions of dengue transmission, researchers have 

employed a variety of modelling techniques. The study [28] 

utilized geostatistical methods, including binomial kriging, to 

map the prevalence of dengue fever in Khyber Pakhtunkhwa, 

Pakistan. Their findings revealed that dengue outbreaks were 

particularly concentrated in low-altitude regions, with 

Peshawar experiencing the highest burden of cases. The study 

identified critical risk factors such as population density, 

proximity to roads, and vector distribution, which provided 

valuable insights for targeted public health interventions in the 

region. 

The relationship between climatic factors and dengue 

incidence has also been explored through geographical 

information system (GIS)-based approaches. For example, the 

study [29] analysed the spatial and temporal distribution of 

dengue cases in Sri Lanka from 2009 to 2014, discovering a 

significant positive correlation between rainfall and dengue 

incidence. Interestingly, their study did not find a similar 

correlation for temperature or humidity. Similarly, the study 

[30] investigated the epidemiology of dengue in Bangkok, 

Thailand, focusing on seasonal patterns and their association 

with climatic factors. Through Spearman correlation and 

multivariate Poisson regression analyses, the study 

demonstrated that humidity and rainfall were significant 

contributors to dengue transmission. A 1% increase in rainfall 

was associated with a 3.3% rise in dengue cases, underscoring 
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the critical role of weather variables in the region's dengue 

dynamics. 

In Pakistan, the study [31] used GIS mapping and 

generalized linear modeling (GLM) to study the spatial 

intensity and significant factors associated with dengue 

outbreaks. The results showed that rainfall, temperature, and 

access to healthcare facilities were significant determinants of 

dengue prevalence. The study also revealed that 2011 was the 

most devastating year during the 2006–2017 study period, 

with 290 fatalities attributed to dengue in Pakistan. This 

highlights the potential of spatial models to identify high-risk 

areas and improve resource allocation for disease control. 

In the meantime, Bayesian approaches have further 

advanced the understanding of dengue fever dynamics by 

incorporating both spatial and temporal autocorrelations. The 

study [32] reviewed the use of Bayesian spatial and spatio-

temporal models for dengue, emphasizing their superiority 

over frequentist methods in handling complex data structures 

and uncertainties. The study [33] applied these methods to 

study dengue risk in Puerto Rico, revealing significant lagged 

effects of temperature and precipitation on dengue incidence, 

with delays of up to four and three months, respectively. Their 

work provided actionable insights for designing targeted 

interventions. Similarly, the study [34] explored the effects of 

forest loss, precipitation, and temperature on dengue in 

Mexico, finding that a 1% decrease in forest cover was linked 

to a 16.9% increase in dengue risk. The study [35] expanded 

this focus by using downscaled climate models to predict 

spatial and temporal shifts in dengue transmission suitability 

under future climate scenarios in Pakistan. Their findings 

highlighted the need for adaptive strategies as climate change 

alters the landscape of dengue risk. 

Expanding the scope of analysis, the study [36] 

incorporated both environmental and socioeconomic factors 

into a generalized additive model (GAM) to examine the 

spatiotemporal patterns of dengue fever. The study 

demonstrated that while environmental factors, such as 

temperature and precipitation, exhibited slight variations 

across regions, socioeconomic variables like population 

density, land use, and road density played a more pronounced 

role in determining the incidence of dengue fever. Zheng et al. 

[36] concluded that resources for prevention and control 

should be allocated based on the spatial patterns of primary 

influencing factors to maximize the effectiveness of 

interventions. 

In the context of East Nusa Tenggara, this study seeks to 

understand the spatial relationship between climatic factors 

and dengue incidence using spatial regression modeling. This 

method provides a simpler yet effective framework for 

analyzing spatial dependencies and understanding how 

climatic factors influence disease transmission. 
 
 

3. RESULT AND DISCUSSION 

 

3.1 Spatial interpolation using universal kriging on climate 

variable data 

 

Universal Kriging is a method of spatial interpolation used 

to predict values at non-measured sites, considering the 

presence of trends or systematic changes in value across the 

measured area. As opposed to Ordinary Kriging, where a 

constant value is assumed across the area, Universal Kriging 

allows for global changes of trends-for example, due to 

geographical or environmental reasons-using polynomial 

functions to describe those global structures. Since in NTT not 

all districts have weather stations, this method is used to obtain 

data for the unmeasured districts, taking into account the 

global spatial trend or variation in areas of research (Figures 

2-4).

 

       
 

Figure 2. Universal Kriging on temperature data              Figure 3. Universal Kriging on humidity data 
 

 
 

Figure 4. Universal Kriging on rainfall data 
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Figure 5. Distribution of dengue fever based on regency in East Nusa Tenggara Province in 2022 

 

 
 

Figure 6. Distribution of temperature based on regency in East Nusa Tenggara Province in 2022 

 

 
 

Figure 7. Distribution of humidity based on regency in East Nusa Tenggara Province in 2022 
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Figure 8. distribution of rainfall based on regency in East Nusa Tenggara Province in 2022 

 

Figures 5-8 show the spread of dengue fever, temperature, 

humidity, and rainfall in the NTT region in 2022. Based on the 

color gradation, the darker the color gradation indicates the 

higher the value of these variables. 

 

 
 

Figure 9. Scatterplot dengue fever vs. temperature 

 

 
 

Figure 10. Scatterplot dengue fever vs. humidity 

 

 
 

Figure 11. Scatterplot dengue fever vs. rainfall 

 

3.2 Characteristics of dengue fever 

 

Increasing temperatures can be associated with increased 

case numbers for Dengue Fever (DBD) cases, as shown in 

Figure 9, which illustrates the relationship between 

temperature and DBD case numbers in the NTT (Nusa 

Tenggara Timur) province. Essentially, colder temperatures 

correlate with a rise in DBD cases for a given area, as 

demonstrated in Figure 10, where humidity levels, which tend 

to be higher at reduced temperatures, create an ideal 

environment for the Aedes aegypti mosquito, the primary 

vector for DBD, to reproduce and live longer. This extended 

lifespan raises the risk of DBD transmission. 

Moreover, Figure 11 depicts the relationship between 

rainfall and DBD cases, suggesting that seasonal rainfall may 

further contribute to creating breeding grounds for 

mosquitoes. Lower temperatures can lengthen the mosquito’s 

life cycle, allowing them more time to transmit the virus before 

dying. The seasonal trends in the NTT region, as evidenced in 

these figures, indicate a direct correlation between 

temperature, humidity, rainfall, and the incidence of DBD 

cases. These findings underscore the importance of 

considering climate conditions in efforts to prevent this 

disease. 
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3.3 Regression spatial analysis 

 

As reported in Table 2, the Moran's I ρ-value (0.08089) 

provides statistical circumspect of H0 (reject H0 at α=10%), 

yielding evidence for spatial dependence in OLS regression 

errors. This is what we mean by spatial dependence: the values 

of neighboring regions are not independent but rather exhibit 

patterns by proximity (residuals in one area depend on 

residuals in neighboring areas). The residuals clearly indicate 

that the model fitted does not suffice to explain the behavior 

of the studied phenomenon as the residuals are not cooperating. 

Moran's I gives only a first hint of the spatial structure in the 

data, but more testing is needed to determine the exact form of 

this spatial dependence. 

Besides detecting spatial dependence by means of Moran’s 

I, we use the Lagrange Multiplier (LM) test to determine more 

specific types of spatial dependence (lag, error, or both (lag 

and error). ‘lag’ refers to the influence of dengue incidence in 

surroundings on a region’s dengue rates, and ‘error’ captures 

spatial correlation in unobserved processes affecting dengue 

incidence across regions. Table 2 displays the results of these 

tests, which underscore through p-values the degree of 

importance of different spatial dependency tests and their 

respective interpretations. 

For the Lagrange Multiplier-error test, p-value obtained 

=0.059768<α=10%, which leads to rejection of H0. This 

finding indicates spatial error dependence, meaning that 

factors not captured by this model that affect dengue incidence 

are correlated over spatial proximity. Potential examples of 

these unobserved factors may include variations in access to 

healthcare that are only relevant at the individual care level, 

unrecognized environmental variables (e.g., within a city: 

microclimates), or behavioral variations (e.g., community-

wide adherence to mosquito control measures). This result 

requires immediate attention via the spatial error model (SEM), 

which caters to the spatial correlation between the error terms, 

subsequently having the likelihood of increasing the 

explanatory strength and infallibility of the model. 

Also, the Robust LM-lag test provides ρ-value=0.047827, 

which is significant at α=10% (ρ-value <α=10%). This reflects 

H0 rejection while indicating the existence of spatial lag 

dependence. Spatial lag dependence means that the incidence 

of dengue in a given area is affected by that in the neighboring 

sectors. An example of one is high incidence in one city may 

expose nearby areas to risk as infected individuals or 

mosquitoes cross borders, also showing how interconnected 

disease people are. This outcome suggests analyzing the 

results further with the Spatial Autoregressive Model (SAR), 

which incorporates space interaction effect explicitly in the 

dependent variable. 

On the other hand, the Lagrange Multiplier (lag) test and 

Robust LM-error test show p-values 0.759683 and 0.406930, 

which are not significant at α=10% level. These results reflect 

the non-rejection of H0 in the sense of no spatial lag or spatial 

error dependence (in these tests). In addition, the Lagrange 

Multiplier (SARMA) test to check simultaneously for spatial 

lag and error has a p-value of 0.676611, which also confirms 

there exists not so dominant form of spatial dependence in the 

data in the context of spatial lag and error combined. 

From the analysis in Table 2, the significant spatial lag and 

spatial error found under certain conditions indicate that 

differing spatial dependency structure is present in the data. 

Together, these results underscore the need to utilize both SAR 

and SEM models in subsequent analyses to better capture the 

spatial dynamics that drive dengue incidence. Since the 

incidence of dengue in one area can directly affect the 

neighboring areas, the SAR model highlights the transmission 

effect through the spatial interaction. On the other hand, the 

SEM model aims at adjusting for unobserved factors that are 

spatio-temporally correlated and contained in the error term, 

thus preventing external factors such as unobserved 

environmental or socio-economic factors from biasing the 

results. By using both models together, we get a more holistic 

view of the mechanics behind how spatial patterns as well as 

externalities influence disease transmission. The models 

attempted to be generated by taking care of both spatial lag 

and spatial error effects are expected to shed light on a more 

nuanced perspective regarding the spatial mechanism at work 

regarding disease transmission, thus allowing for better-

guided targeted public health interventions. 

Thereby, according to Table 3, the lag parameter coefficient 

(ρ) p-value shows p-value >α=10% (p-value=0.742). It means 

that the spatial lag parameter is non-significant in the spatial 

autoregressive model. This also implies that due to the small 

value of the spatial lag coefficient, one can say that it had little 

or no effect on the model, indicating that the lag effect on the 

spatial relationship of regions is not significant in explaining 

dengue variation. This suggests the spread of dengue is driven 

more directly by local factors, including environmental 

context and direct human-mosquito interactions, than 

transmission between adjacent areas. There was no significant 

lag effect, indicating that these interventions should be of local 

level control measures and not of interactions between regions. 

Similarly, the constant term has a p-value (0.029) 

significant at α=5%, suggesting that even in the absence of the 

explanatory variables, there is a "base incidence" of dengue 

(possibly linked with factors other than β). For meteorological 

variables, temperature has a negative coefficient (-67.801), but 

it was not statistically significant (p-value=0.130). So, it 

means that higher temperatures may have some capacity to 

reduce the incidence of dengue, but not enough to be 

conclusive. Scientifically, this may mean that temperature 

effects on vector competency and virus spread may also 

interact with other unmeasured factors, such as population 

density or mosquito control efforts, which may weaken its sole 

effect. For instance, temperatures may facilitate mosquito 

activity, but this could be neutralized in densely inhabited 

urban regions where vector control programs, such as fogging 

or larvicidal administration, are more robust. On the contrary, 

such effects could be pronounced in rural areas with low 

control measures, showing a space questioning on localized 

interactions into the observations. 

Likewise, for humidity (17.7414, p-value=0.354) and 

rainfall (0.11539, p-value=0.649), the coefficients are positive, 

but they are not statistically significant. These findings are 

congruous with the results of some previous studies in which 

climatic variables such as humidity and rainfall showed weak 

or non-significant associations with dengue incidence when 

analyzed at aggregated spatial scales. Does this mean that 

these variables do not matter for arboviral transmission and/or 

breeding habitats for mosquitoes? However, research has 

recently demonstrated that these variables also play an 

important role in arboviral transmission dynamics, suggesting 

localized or seasonal variation might be important in 

understanding transmission and its impact on mosquito 

breeding habitats. Thus, after carrying out multicollinearity 

diagnostics, we found that humidity and rainfall do not 

significantly influence incidence in the present spatial 
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autoregressive model. The absence of significance may thus 

also be explained in terms of scale, as microclimatic 

differences or other local environmental factors may affect 

these variables in ways that the model does not convey. 

The R²=0.4193 indicates that 0.42 of the variances in 

dengue incidence is explained by the model. The unexplained 

58% presumably incorporates microclimatic variation, 

unobserved demographic effects, or aspects of behavior like 

the community-level adherence to mosquito control efforts. 

Also, social or economic factors such as health care 

infrastructure or urbanization may be very influential. These 

include aspects like improved treatment of input features, 

interaction terms, or using additional features that the model 

can build on to provide better interpretations of the results. 

This average R² indicates that while the model captures some 

of the dynamics, a large part of the variability is not captured 

by the model. Statistically, this would indicate possible 

multicollinearity or omitted variable bias. Furthermore, the 

moderate Akaike Information Criterion (AIC) value of 294.52 

reflects this need for model improvement. 

Adding new variables that might be relevant to the disease, 

such as socioeconomic factors (e.g., access to healthcare, 

tropo-urban environments), vector control measures, or even 

more fine-resolution climate data (e.g., daily or weekly) could 

lead to improvements, both statistically and scientifically, in 

the model. Alternatively, exploring different modeling 

strategies, such as the spatial error model (SEM), may help 

account for unobserved spatial effects, as the model presented 

here may not adequately model for correlated errors that could 

be impacting dengue transmission patterns. The SEM is 

particularly useful for correcting for spatially correlated error 

terms that can occur from omitted variables that correlate with 

the regions, such as variations in health infrastructure or 

localized mosquito control efforts. Climate variables would 

also provide opportunities for exploring interactions between 

climate variables (for instance, those of temperature and 

humidity) to understand the overall influence on vector 

ecology and disease dynamics. 

 

Table 2. Results of spatial effect testing with Queen Contiguity 

 
No. Spatial Dependency Test Value p-value Result 

1 Moran’s I (error) 0.1498 0.08089 Reject 𝐻0 

2 Lagrange Multiplier (lag) 0.0936 0.759683 Failed to reject 𝐻0 

 Robust LM (lag) 0.5028 0.047827 Reject 𝐻0 

3 Lagrange Multiplier (error) 0.2785 0.059768 Reject 𝐻0 

4 Robust LM (error) 0.6877 0.406930 Failed to reject 𝐻0 

5 Lagrange Multiplier (SARMA) 0.7813 0.676611 Failed to reject 𝐻0 

 

Table 3. Parameter estimation using spatial autoregressive model with Queen Contiguity 

 
Parameter Coefficient Std. Error z-value Probability 

𝜌 -0.0950 0.2893 -0.328 0.742 

Constant 206.011 94.769 2.173 0.029 

Temperature -67.801 44.835 -1.512 0.130 

Humidity 17.7414 19.160 0.925 0.354 

Rainfall 0.11539 0.2539 0.454 0.649 

R2
 0,4193 

AIC 294.52 

 

Table 4. Parameter estimation using spatial error model with Queen Contiguity 

 

Parameter Coefficients Std. Error z-value Probability 

𝜆 -0.217 0.308 -0.704 0.481 

Constant  186.8 72.167 2.588 0.00964 

Temperature  -75.934 44.687 -1.699 0.08927 

Humidity 21.235 18.859 1.125 0.26017 

Rainfall 0.0867 0.240 0.361 0.71806 

R2
 0,4538 

AIC 285.235 

 

Table 5. Comparison of R2 and AIC values from several models 

 
No. Model R2 AIC 

1 Classical regression (OLS) 0.3572 294.623 

2 Spatial Autoregressive Model (SAR) 0.4193 294.52 

3 Spatial Error Model (SEM) 0.4538 285.235 

 

Result α=10% level (p-value=0.08927), only the 

temperature variable has a significant result on the spread of 

dengue fever in the NTT region as presented in Table 4. This 

may imply a target on temperature-associated interventions, 

such as targeted climate adaptation policies or localized 

systems for temperature adjustments. This knowledge could 

inform mitigation efforts during the transmission season; for 

example, reductions in mosquito populations through targeted 

habitat modification or increased larval control during periods 

of increased temperature could be effective at reducing 

transmission rates. This indicates that temperature 

significantly influences the transmission dynamics of dengue 

fever, probably because temperature affects the breeding, 

activity, and survival of the vector (Aedes mosquitoes) of the 
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disease. In particular, increased (or reduced) temperatures can 

directly influence the mosquito life cycle, as well as the 

extrinsic incubation period of the dengue virus in the vector. 

The spatial error dependence coefficient (λ) is not 

significant (p=0.481). Because of the lack of significance of 

the Gaussian Process term, this indicates that unmeasured 

spatially correlated variables do not explain any large portion 

of the uncertainty in dengue cases in this analysis. This 

research may be consistent with findings in other areas where 

local environmental or socioeconomic factors drive dengue 

transmission more strongly than broader spatial patterns. On 

the other hand, it may simply mean that the spatial structure in 

this dataset is captured better by other variables or models, 

which would deserve investigation. These results indicate that 

unobserved spatial factors do not account for much of the 

residual variation in the number of dengue cases from the SEM. 

As a result, the model's explanatory power mainly arises from 

climate variables rather than unmeasured spatially correlated 

factors. 

Humidity (p-value=0.26017) and rainfall (p-value=0.71806) 

coefficients are positive but not statistically significant. 

However, these factors can still affect dengue transmission 

because they affect mosquito breeding and the conditions for 

their survival. The absence of them in the model could be 

explained by the pooled nature, which could dampen local 

variations in these climatic variables or in time. Moreover, 

interactions with other unmeasured factors, including 

vegetation density, water storage habits, or drainage 

infrastructure, could dilute the direct effect of climate 

variables on dengue incidence. This is congruent with the 

results of the Spatial Autoregressive Model (SAR), where it 

suggests that these variables have little effect on the incidence 

of dengue in this specific context or are subject to other 

mediating factors that we do not have the data for in this model. 

This means that with an R² of 0.4538, the SEM explains 

around 45% of the variability of dengue incidence. The 

remaining 55% of unexplained variation might be explained 

by unmeasurable factors such as local socioeconomic 

conditions, heterogeneous healthcare infrastructure, human 

behavioral alterations limiting mosquito exposure, and 

microclimates not measured in the dataset. There may also be 

the influence of undocumented interventions, like 

unsupervised vector control initiatives: community action 

could come into play. Future models should consider the 

incorporation of these drivers, as they influence dynamics and 

may enhance our understanding of dengue transmission. This 

shows an improvement from the SAR model and suggests that 

accounting for spatial error improves the fit for the data. Also, 

the value of AIC for the SEM (285.235<SAR=294.52) shows 

that the SEM represents the data better, making it a 

parsimonious and statistically sound explanation of the 

underlying factors. 

These findings underscore the environmental temperature 

as a major driver of dengue transmission, but also expose the 

necessity for further model refinements to include more 

explanatory variables or different choices of spatial driver 

structure. Future studies might also investigate interactions of 

climatic and socioeconomic variables or higher spatial 

resolution data to improve model performance and predictive 

power. In particular, socioeconomic factors such as income, 

health service coverage, level of urbanization, and knowledge 

about vector control strategies can also be incorporated. 

National health surveys, census data, and geospatial databases 

related to infrastructure and land use, for example, could be 

used as inputs to improve the accuracy and relevance of these 

models. The results can be seen in Table 5. 

Based on Table 5, the smaller the AIC values, the better the 

modeling that has been carried out. The SEM model is the best 

model when compared to the classical regression and SAR 

models because it has a larger 𝑅2 , namely 0.4538 and the 

smallest AIC, namely 285.235. The spatial error model means 

that for every onedegree Celsius decrease in temperature 

where other variables are considered constant, the spread of 

dengue fever will increase by 75 cases. The general SEM 

model is as follows: 

 

𝑦̂𝑖 = 186.8 − 75.935𝑋1𝑖 + 𝑢𝑖 (7) 

 

𝑢𝑖 = −0.217 ∑ 𝑤𝑖𝑗𝑢𝑗 + 𝜀𝑖  

𝑛

𝑗=1,𝑖≠𝑗

 

 

where, 

𝑦̂𝑖: the 𝑖 -th number of dengue fever of districts/cities. 

𝑋1𝑖: the 𝑖 -th temperature of districts/cities of districts/cities. 

𝑊𝑖𝑗: the spatial weighting matrix element at the 𝑖 -th row 

and 𝑗 -th column. 

𝑢𝑖: spatial residual of the 𝑖-th district/city. 

𝜀𝑖: residual of the 𝑖-th district/city. 

It should be noted that each district and city have a different 

form of spatial error model (SEM) because it is influenced by 

the Queen Contiguity weighting matrix that is adjacent to one 

region and another region as the object of observation. The 

spatial regression modeling that is formed will consist of a 

number of n observations, namely SEM models. The 

following is an example of a spatial error model for TTS 

district where the location of this district intersects with 

Kupang, TTU and Malaka districts. 

 
𝑦̂𝐾𝑎𝑏𝑇𝑇𝑆 = 186.8 − 0.217(𝑤𝑇𝑇𝑆𝐾𝑎𝑏𝐾𝑢𝑝𝑎𝑛𝑔 ∗ 𝑢𝑘𝑎𝑏𝑘𝑢𝑝𝑎𝑛𝑔

+ 𝑤𝑇𝑇𝑆𝑇𝑇𝑈 ∗ 𝑢𝑇𝑇𝑈 + 𝑤𝑇𝑇𝑆𝑀𝑎𝑙𝑎𝑘𝑎

∗ 𝑤𝑀𝑎𝑙𝑎𝑘𝑎) − 75.935𝑋1𝑖 
(8) 

 

The Spatial Error Model (SEM) is a sophisticated approach 

used to understand the spatial relationships and dependencies 

inherent in regional data. The SEM employed here provides a 

structured framework for analyzing the spread of dengue fever 

across districts, with specific emphasis on the influence of 

temperature and the residual spatial interactions between 

neighboring districts. The model consists of two main 

components: the structural equation for the predicted outcome 

(dengue fever cases) 𝑦̂𝑖 , and the spatial error equation (ui), 

which accounts for unobserved spatial influences. By 

incorporating spatial residuals weighted by the Queen 

Contiguity matrix, the model provides an advanced means to 

capture both observed and latent spatial effects. 

The first component of the model 𝑦̂𝑖 = 186.8 −
75.935𝑋1𝑖 + 𝑢𝑖 , quantifies the relationship between 

temperature 𝑋1𝑖  and the number of dengue cases in a given 

district. The negative coefficient (−75.935) indicates that a 

unit decrease in temperature correlates with an increase of 

approximately 75 dengue cases, holding other factors constant. 

This finding underscores the significant role of temperature in 

dengue dynamics, consistent with known biological 

mechanisms: mosquito activity, breeding rates, and virus 

replication are temperature-dependent. Lower temperatures 

within a suitable range can prolong mosquito survival and 

increase the extrinsic incubation period, thereby facilitating 
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disease transmission. 

The second component of the SEM is the spatial error term, 

𝑢𝑖 = −0.217 ∑ 𝑊𝑖𝑗
𝑛
𝑗=1,𝑖≠𝑗 𝑢𝑗 + 𝜀𝑖. The first equation includes 

the spatial residuals (uj) of the neighboring districts, weighted 

by the Queen Contiguity matrix (Wij). A coefficient (−0.217-

0.217) indicates excess residuals in adjacent districts 

correspond to fewer predicted dengue cases in the district itself. 

Spatial dynamics have been demonstrated as interconnected 

up until now, as the negative effects on unobserved elements 

in one area might even affect the neighboring regions due to 

the network of spatial associations. For example, the actual 

risk of transmission may be lessened due to effective public 

health interventions in a neighboring district, while 

underreporting or different surveillance systems may distort 

observed spatial patterns. Wij is the spatial weights matrix, a 

central element of the SEM that shows how much the example 

from district interacts with the sample from district A, 

additionally shows how much sample A interacts with sample 

amount based on geographical proximity. The Queen 

Contiguity matrix assumes all directly neighboring districts 

are equally influential. This is a good first approach but can be 

an oversimplification of real-world interactions. As an 

illustrative example, if distance decay with respect to the 

influence of specific features is not uniformly distributed (e.g., 

travel patterns, population density, environmental constraints, 

etc.), our current understanding of spatial interaction may not 

be truly reflective of underlying processes. Furthermore, 

incorporating other spatial weighting schemes alternative to 

Queen Contiguity weights, such as based on distance or on 

travel networks, may allow for a more nuanced interpretation 

of these spatial dependencies. 

The SEM applied specifically to the TTS district provides 

additional insights into localized dynamics. The spatial error 

term for TTS includes contributions from neighboring 

districts-Kupang, TTU, and Malaka-weighted by their spatial 

relationships. The model, 𝑦̂𝐾𝑎𝑏𝑇𝑇𝑆 = 186.8 −
0.217(𝑤𝑇𝑇𝑆𝐾𝑎𝑏𝐾𝑢𝑝𝑎𝑛𝑔 ∗ 𝑢𝑘𝑎𝑏𝑘𝑢𝑝𝑎𝑛𝑔 + 𝑤𝑇𝑇𝑆𝑇𝑇𝑈 ∗ 𝑢𝑇𝑇𝑈 +

𝑤𝑇𝑇𝑆𝑀𝑎𝑙𝑎𝑘𝑎 ∗ 𝑤𝑀𝑎𝑙𝑎𝑘𝑎) − 75.935𝑋1𝑖, how the interactions of 

spatial residuals and temperature affect dengue incidence. This 

negative coefficient for spatial residuals (−0.217) implies that 

unaccounted influences in the Kupang, TTU, and Malaka 

regions reduce the number of predicted cases in TTS. This may 

result from differences in intervention effectiveness, access to 

health care, or accuracy of reporting. SEM is concerned in that, 

from a modeling perspective, it enables the effects that can be 

observed (e.g., temperature) to be deconstructed from 

unobserved spatial processes. 

The residual spatial autocorrelation captured by the model 

indicates that there are other factors, not captured within the 

model, that are significant predictors of the density of dengue 

cases, going above and beyond temperature as a predictor. 

This implies that other unmeasured factors, like 

socioeconomic circumstances, vector control strategies, or 

climate-outliers, could be contributing to the trends seen. 

Future iterations may use more variables or non-linear 

relationships to fill in these gaps. 

The meaning of the temperature coefficient (−75.935) also 

has to be based on a balance of the potential limitations of the 

assumption of linearity. Dengue transmission is characterized 

by threshold effects, such that both very low and high 

temperatures suppress mosquito cathexis and virus survival. 

The negative coefficient here likely indicates low range 

condition. Adding nonlinear terms or piecewise regression 

models may result in a more accurate representation of the 

relationship between temperature and dengue cases, especially 

in areas with high climate variation. 

Yet another reason for the caveat is the model's use of the 

Queen Contiguity matrix. Although it reflects direct adjacency, 

it does not consider differences in connectivity between 

districts. For example, towns that have frequent human 

exchange of people or the use of infrastructure may have 

stronger spatial dependencies than towns that are close by. 

Adopting a hybrid spatial weights matrix based on 

socioeconomic and geographic interactions might increase the 

explanatory power of the model. 

The negative residual spatial effects (−0.217) are 

counterintuitive and warrant further investigation. It might be 

a result of exposure to external interventions, such as targeted 

efforts to control vector-borne diseases or locally delivered 

healthcare, that lower dengue in one district and have 

perceived spillover effects on nearby locations. Or it might 

reflect differences in data reporting or rate any underreporting 

of cases in some districts. This trend emphasizes the 

importance of strong data collection and surveillance systems 

to inform models. 

Estimation of the spatial and climatic drivers of dengue 

fever. The model illustrates how temperature impacts this type 

of data while also highlighting complex spatial dependencies 

that need to be investigated further. Further studies are needed 

to enhance these models by overcoming the limitations of 

existing spatial weights, nonlinear relationships, and 

unobserved variables to better understand the 

multidimensional nature of the drivers of dengue transmission. 

These results highlight the need for spatial analysis to be 

included in public health strategies that pave the way for local 

strategies to control diseases in specific areas. 

 

 

4. DISCUSSION OF RESEARCH FINDINGS 

 

The Universal Kriging method employed in this study 

enables the estimation of climate variables in Nusa Tenggara 

Timur (NTT) at a given location based on observations from 

surrounding locations while accounting for global trends or 

systematic variations. Universal Kriging explicitly accounts 

for spatial trends, allowing it to estimate for unmeasured 

districts in a region with extensive gaps in weather stations. 

Studies in mountain areas found Universal Kriging to improve 

significantly upon the interpolation of temperature and rainfall 

data and allow for more accurate assessments of climatic 

effects on the local ecosystem. This is important in areas with 

heterogeneous climate conditions, where localized 

microclimates can have a large impact on disease transmission 

dynamics [37]. The consideration of spatial variability and 

trend in the summary of climate data is more meaningful to 

represent whether climatic conditions are related to the spread 

of DBD compared with simple interpolation methods that 

would fail to capture such a relationship. 

Example or evidence, in a study comparing Universal 

Kriging with other interpolation methods [38-40] the authors 

reported that Universal Kriging performed better both in terms 

of minimizing interpolation errors and capturing the spatial 

trends, especially in regions where the topography is complex 

or the climate is heterogeneous. Differences in temperature, 

humidity, and rainfall throughout NTT are correlated to the 

diversity of dengue fever cases found across the region, the 

study found. Other studies reported that there is a negative 

correlation between temperature and incidence of dengue. 
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This mirrors patterns of dengue globally, in other tropical 

regions where cooler temperatures are associated with 

extended mosquito life cycles as well as greater virus 

survivability. Yet the study did not establish precise 

temperature thresholds, suggesting one potential direction for 

future studies would be to delineate specific ranges that have 

substantial effects on transmission dynamics. 

This is in line with findings in other tropical areas, in which 

decreased temperature has been associated with increased 

incidence of dengue due to prolonged longevity of mosquitoes 

and higher survival. Lower temperatures, however, may also 

result in higher humidity, leading to ideal breeding conditions 

for the Aedes mosquito. Similar results have been observed in 

studies conducted in Thailand and Brazil, indicating that the 

relative humidity and temperature should be cool and wet for 

better survival and reproduction of mosquitoes [41].  

The sensitivity of the study between humidity and dengue 

incidence is weak, due to the impact of other environmental 

factors, that hit harder than humidity. Although high humidity 

is often understood to correlate to optimal conditions for 

mosquitoes, temperature fluctuations, rainfall variability, and 

socio-environmental dynamics (e.g., urban density, water 

management practices, and waste disposal systems) might 

exert a stronger influence on dengue transmission. However, 

poor water storage and drainage lead to abundant ideal 

breeding conditions resulting in increased mosquito 

populations irrespective of humidity level. Studies in Malaysia 

and Singapore indicate that while humidity facilitates 

mosquito life cycle development, temperature and rainfall 

patterns exert a larger influence on mosquito population 

dynamics and transmission rates of the virus itself. Socio-

economic factors like urban planning and housing density are 

also crucial in this aspect. Poor waste disposal and a lack of 

proper urban drainage can worsen conditions for mosquito 

breeding, even in humid highland areas. Thus, although 

humidity is conducive to mosquito propagation, it might not 

be the most important factor associated with dengue incidence 

in NTT. 

In contrast, rainfall did not correlate well with the 

distribution of dengue cases. Another interesting note about 

why these areas may not face such high mosquito breeding 

rates could be related to better drainage systems or local 

practices related to vector control aimed at limiting standing 

water that leads to elevated breeding rates of mosquitoes. 

Moreover, heterogeneities in infrastructure and public health 

interventions may mask the expected impact of rainfall on 

dengue transmission. 

Several previous studies reported that rainfall contributes to 

breeding sites for mosquitoes, but the overall spatial 

distribution of dengue cases may correlate with other factors 

better than rainfall, such as temperature, population density, 

and local environmental conditions. Similar observations have 

been made in Colombia [42], where areas with higher rainfall 

were not necessarily places with a higher number of dengue 

cases, possibly as a result of differences in vector control 

strategies and local environmental determinants. Particular 

approaches like the frequent application of larvicide, desirable 

drainage maintenance, and the implementation of community-

based mosquito source reduction programs could determine 

whether high rainfalls can be avoided, increasing the risk of 

dengue transmission. 

Results of our spatial regression analysis, which included 

Moran's I and Lagrange Multiplier tests, showed that we had 

spatial dependencies in our data that called for the use of 

spatial econometric models. The strong spatial error 

dependence indicates that unobserved factors that influence 

dengue cases have spatial dependence. Unmeasured covariates 

may include sociodemographic conditions, such as income 

levels and housing quality, accessibility to health services, or 

undocumented local measures such as community-led vector 

control programs or environmental management practices. 

Incorporating and recognizing such variables could help 

improve the strength of spatial models. As derived from the 

Akaike Information Criterion (AIC) value and R² statistics, the 

well-performing model was the spatial error model (SEM) 

over Ordinary Least Squares (OLS) and Spatial 

Autoregressive Model (SAR). The comparative AIC and R² 

values for each of the four models are summarized in visual 

representation of the analytical data from Table 1, which was 

drawn from using R. This finding is consistent with other 

studies that have preferred to use SEM for modeling health 

outcomes influenced by environmental exposures where 

residual spatial autocorrelation needs to be taken into account 

[43]. 

Temperature was negatively associated with dengue 

incidence, meaning that dengue incidence in NTT increased as 

temperatures decreased. This conclusion fits with the 

observations from other tropical regions with cooler 

temperatures, which also elongate the lifespans of mosquitoes 

and also lengthen the period between infection and 

transmission of a virus. The specific geographic and climatic 

traits in NTT with its numerous microclimates and large 

climatic oscillation may enhance this relationship differently 

compared to other places. Although this relationship was noted 

in other studies, which find that cooler temperatures extend 

mosquito life expectancy and therefore also the extrinsic 

incubation period of the virus, thus increasing potential for 

transmission [44]. Our findings are in line with these 

observations and indicate that effective temperature control 

measures would likely be central to break dengue transmission 

in the cooler regions of NTT. 

The low value of the spatial lag parameter in the SAR model 

indicates that the impact of cases in neighboring districts on 

those in a given district is small. The unique geographical 

characteristics of NTT islands, the distance between islands, 

and their diverse topography, could be one of the contributing 

factors to the continuity of its decentralized development as 

this led to limited connectivity and human mobility between 

districts. Moreover, socio-political aspects such as differing 

levels of expenditure for vector control and public health 

measures may indirectly lead to this lack of effective influence 

by fostering discrepancies in dengue prevention between 

districts. These findings suggest that dengue transmission may 

be more spatially localized and driven by predictors unique to 

the level of querying districts (local environmental conditions, 

population density, and health interventions) than those from 

neighboring districts. Similar conclusions have been drawn 

from studies conducted in Mexico and Vietnam, where 

localized factors had a greater influence on dengue 

transmission than spatial spillover effects. 

We conclude that based on this study's results that the SEM 

is the most appropriate model used to obtain spatial 

distribution on dengue cases in NTT. From the comparison of 

the OLS, SAR, and SEM models, it was proven that SEM is 

the model that best suits the analysis of the spatial distribution 

of dengue cases in East Nusa Tenggara (NTT) proven by the 

lowest AIC value and the highest R². Table 2 provides a 

summary of the comparative AIC and R² values across the 
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models, visually reaffirming the superior performance and 

applicability of SEM to spatial analysis for this study. Thus, 

the minimum AIC value points out that SEM fitted best to the 

data without being overfitted while maximum R² shows its 

superior capability of explaining the variance of dengue cases 

by some climatic and spatial factors. This indicates the ability 

of SEM to handle cross-spatial relations that are missed by 

simpler models like Ordinary Least Squares (OLS) and even 

the Spatial Autoregressive Model (SAR). 

This field relevance may also be supported by the spatial 

autocorrelation of the OLS model residual spatial analysis and 

the results of the Moran’s I test. This suggests that unobserved 

factors such as breeding habitat, population density, or 

environmental management may not be accounted for with 

OLS or SAR. This spatial dependency is accommodated in a 

spatial error component model (SEM), which thus provides for 

superior robustness and accuracy of the estimates [43]. This 

result is consistent with earlier studies highlighting the utility 

of SEMs for modeling spatially autocorrelated 

environmentally mediated health outcomes [14, 43]. 

The results of the comparison between OLS and the two 

spatial regression models (SAR and SEM) also showed that 

the SEM was the most appropriate model to assess the spatial 

distribution of cases in NTT, as reflected in the lowest AIC 

and the highest R². Additionally, the SEM model, due to this 

spatial error dependence, indicates that dengue management 

would need to be tailored around the peculiarities of those 

specific districts. In this study, for example, low temperatures 

were positively significantly associated with dengue cases. 

The association underscores the importance of implementing 

targeted interventions in districts with low temperatures 

during the colder months, where the conditions prolong 

mosquito lifespan and prolong the extrinsic incubation period 

of the virus [44]. Along the same lines, cooler and wetter 

climate conditions clinically increased dengue transmission in 

Thailand and Brazil as increased Aedes aegypti mosquito 

survival and proliferation [41]. 

On the contrary, the performance of the SAR model is not 

better than SEM in this study. In contrast, the spatial lag 

parameter in SAR had a minuscule effect, indicating that the 

distribution of dengue cases is less dependent on direct 

spillover effects of dengue from neighboring districts and 

more dependent on local factors. This pattern indicates that 

dengue transmission in NTT is more influenced by local 

processes (i.e., microclimatic differences and water 

management practices) than by regional-level scatterings and 

interaction. Interestingly, in studies from Vietnam and Mexico, 

local socio-economic and environmental characteristics were 

found to be more influential in shaping patterns of dengue 

transmission than effects of spatial spillover [42]. 

Thus, the implementation of SEM within this work has 

important implications for public health approaches. The SEM 

model's capacity to control for spatial error dependence 

underscores the importance of targeting interventions based on 

district-specific features that increase the risk of dengue. Some 

types of interventions include the targeted delivery of vector 

control, including insecticide spraying and larvicide 

application in high-risk districts, or social sector 

interventions/health infrastructure improvements, such as 

drainage enhancement to mitigate standing water. These 

measures can be adapted depending on the specific 

environmental and socio-economic conditions of each district. 

Districts with lower temperatures, for instance, need to ramp 

up vector control activities during cooler months. Localized 

interventions are crucial in breaking the transmission cycle 

and limiting the potential for dengue outbreaks. These 

recommendations are consistent with those from other studies 

in Southeast Asia, which highlight the need for localized 

dengue control strategies based on district-specific conditions 

[45]. 

This study shows that the SEM model is the best choice for 

modeling the spatial pattern of NTT dengue cases. Based on 

the AIC effect and R² comparison of OLS, SAR, and SEM, it 

was found that SEM is the most appropriate model to see the 

spatial distribution of dengue cases in NTT. SEM reveals 

additional localized insights into dengue transmission drivers, 

pointing towards the necessity of district-specific 

interventions as it accurately captures spatial error dependence. 

These results are consistent with more extensive investigations 

that highlight the importance of spatial models for elucidating 

the role of climatic, spatial, and socio-environmental 

parameters in determining the risk of diseases [14]. This use 

of SEM not only deepens the understanding of the complex 

dynamics of dengue fever transmission in geographically 

diverse regions such as NTT but also provides a framework 

for guiding public health interventions at local, provincial, and 

national levels. 

The spatial error model (SEM) is a statistical model that is 

used to analyze spatial dependencies between regions in a 

dataset. This method was applied in this study to analyze 

directly and indirectly how temperature affects the 

transmission of dengue fever in East Nusa Tenggara (NTT). 

While the p-value for temperature (0.08927) indicates that 

temperature is weakly statistically significant, it is the practical 

significance of temperature that should not be neglected. For 

the primary vector of dengue fever, the Aedes aegypti 

mosquito, temperature is an important determinant of its 

lifecycle. It also affects how mosquitoes reproduce and how 

the virus develops inside a mosquito. Temperature is a key 

predictor of disease risk in a context like NTT with high 

climate variability. 

The coefficient for spatial error (λ=−0.217, p=0.481) in 

SEM indicates the absence of statistically significant spatial 

dependencies. This indicates that the regional interconnections 

that previously facilitated the spread of dengue cases, as 

measured using this model, do not have a significant impact 

on those previously observed data, or that other factors not 

measured were influencing the spread. Spatial dependencies 

may account for factors such as human movement between 

districts or differences in environmental characteristics such as 

open pools of stagnant water or amounts of vegetation, both of 

which are critical for mosquito breeding. Due to the diverse 

landscape and unequal infrastructure crisis in NTT, the risk of 

disease is usually unequal in the region. 

The poor model temperature-case relationship might also 

suggest that the model is missing important variables, such as 

rainfall, humidity, or socio-economic variables. NTT has 

seasonal rainfall patterns which lead to formations of breeding 

sites for mosquitoes. And, in cooler times, the mosquito 

lifecycle may slow but the efficiency with which the virus 

spreads in the mosquito may actually increase, highlighting the 

complexity of the temperature-disease relationship. Even with 

weak statistical significance aside, temperature is an important 

consideration in assessing the risk of dengue in the region. 

The study underlines the need for the use of data in making 

decisions that work towards averting the risks of dengue with 

district-level early warning systems that involve climate and 

spatial data. For instance, in cooler or wetter times, aerosol 
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insecticide spraying or source reduction campaigns could be 

emphasized in high-risk areas. Future studies should also 

include variables such as poverty levels, population density, 

and access to clean water in order to increase model accuracy. 

Including projections of climate change could also help to 

understand how the risks of dengue may change over time. 

This will not only provide a depth of analysis but also an 

actionable insight that can feed into planning for health on the 

ground to formulate a mechanism to live up to vector-borne 

diseases in NTT more dynamically. 

The results of this study highlight the importance of 

temperature in the determination of dengue incidence in NTT. 

This is especially important as climate change has been 

predicted to amplify temperature fluctuations, potentially 

leading to more days of vulnerability and more instances of 

dengue outbreaks. This finding helps to explain the observed 

association between cooler temperatures and greater dengue 

incidence and suggests that health authorities should consider 

implementing targeted interventions during cooler periods to 

reduce dengue risk. This method could, for example, facilitate 

enhanced vector control measures in the lead-up to and 

throughout the cooler months to reduce the abundance of 

mosquitoes and interrupt the transmission cycle. 

The weak correlation of humidity and rainfall and 

distribution of dengue case in the current study indicates that 

while those factors help to create breeding grounds, the two 

variables may not act as good predictors for outbreaks, which 

is also true in the case of a previous study conducted in NTT 

[46]. These results are consistent with findings from tropical 

areas such as Colombia and India, showing that rainfall did not 

predict outbreaks alone, as drainage systems, and locally 

delineated vector control measures were effective. Yet, the 

distinctive climatic and geographic characteristics of NTT, 

including its marked microclimates and uneven infrastructure, 

may further modulate the influence of these factors, 

necessitating region-specific analysis. This result aligns with 

previous analyses that have found temperature to be a more 

significant driver of dengue risk than humidity and 

precipitation. Thus, the monitoring and controlling of 

temperature should be a priority of public health interventions 

so that the changes in dengue risk could be predicted and 

properly addressed. 

While these findings offer valuable insights into the spatial 

dynamics of dengue fever in NTT, there are some limitations 

that need to be acknowledged. The interpolation of climate 

data could be affected by the scarcity of weather stations, thus 

influencing the accuracy of the Universal Kriging method. In 

order to overcome this limitation, additional data sources, such 

as satellite-based calculated climate data or reanalysis datasets, 

could be incorporated. These sources provide higher spatial 

and temporal resolution to better interpolate climate variables 

and assess their influence on dengue transmission. In addition, 

these findings must be interpreted carefully as they represent 

probabilistic and not deterministic relations. This level was 

statistically significant but may not sufficiently describe the 

relationships between the many factors that drive dengue 

incidence. The use of incomplete or incomplete spatial data is 

also known to influence the prediction accuracy of climate-

influenced diseases [47]. 

Socio-economic factors (such as income level, housing 

conditions, and access to healthcare services) and 

mobility/migration patterns can be potential confounders. 

They are considered to influence the vulnerability and 

exposure of populations to vector-borne diseases. For example, 

one study shows that areas with limited access to healthcare 

facilities and congested living conditions have a high 

vulnerability to dengue fever offenses [48]. Furthermore, high 

mobility results in the potential dispersal of infected 

individuals or vectors between areas [49]. Furthermore, 

inequitable socio-economic factors also affect the utility of 

vector control programs, and it is shown that under-resourced 

communities are less likely to benefit from interventions. 

Local vector control practices, which were not accounted 

for in this analysis, are also a key factor that modulates the 

dynamics of dengue transmission. Community engagement 

has also shown to be beneficial for vector control programs 

with a case study in the developing world exemplifying that 

there is a reliance on community support for vector control 

efforts and the sustainability of interventions [50]. 

Further studies should have more holistic and robust spatial 

models by incorporating socio-economic factors, mobility 

trends, and local actions. Potential data sources may include 

census data with data on socio-economic variables such as 

income and housing quality, health facility access records, 

migration measures from transport or cellphone network data. 

Integrating these data would greatly improve the predictive 

power and contextual relevance of the models. Such analysis 

would not only improve our predictive models but also better 

inform the drivers of dengue disease burden in this location. 

These results reinforce the importance of a multidimensional 

approach to studying vector-borne diseases in tropical regions 

[23]. Additionally, future research could delve into the 

application of other spatial econometric frameworks, 

including Geographically Weighted Regression (GWRs), to 

acknowledge potential non-stationary spatial 

interdependencies across diverse administrative units. GWR 

could say more about the socio-environmental variables that 

contribute to dengue transmission that are specific to a given 

dataset, and therefore help direct more localized interventions. 

In addition, the incorporation of climate projections into the 

models can help inform our understanding of how climate 

change can impact dengue transmission and support longer-

term public health planning. 

Results showed that temperature is the main weather 

determinant of dengue transmission in NTT, while humidity 

and rainfall have minimal variable significance. These results 

signify the necessity of place-specific interventions and 

suggest that spatial dependencies could be captured using a 

spatial error model, which was found to be the best performing 

model in this context. These results help to better explain 

dengue dynamics in the region and ensure that spatial 

heterogeneity is better accounted for in disease prevention 

strategies. 

This study's findings indicate that climate change, 

especially temperature and precipitation changes, have a 

significant effect on the spread of dengue fever in East Nusa 

Tenggara (NTT). These environmental factors affect the 

lifecycle of the Aedes aegypti mosquito, including its 

reproduction rate and the ability for the virus to thrive in the 

mosquito. Considering these results, community-based public 

health approaches are vital in mitigating the effects of climate 

change on dengue fever. Such strategies must prioritize early 

warning systems, environmental management, and 

community awareness to build understanding of the links 

between climate change and health risks. 

Perhaps the most effective one is to establish a climatically 

based early warning system to alert when dengue fever is 

likely to outbreak. Using data about temperature, precipitation, 
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and humidity, the authorities can now identify periods of 

heightened risk in advance, enabling them to take preventive 

measures. For instance, such an information system can help 

guide the timing of insecticide spraying campaigns, 

community clean-up drives, or the distribution of protective 

measures such as mosquito nets in areas at risk for an outbreak. 

Early warning also helps disseminate information to the public 

on measures they can take to prevent mosquito breeding, such 

as covering containers where water is stored or clearing 

stagnant water near their households. 

Another preventive strategy is environmental management 

to minimize the risk of dengue as more rain and stagnant water 

rise due to climate change. Building an efficient drainage 

system and improving waste management infrastructure can 

help eliminate potential mosquito breeding sites. Community 

participation is critical in this initiative, which includes 

periodic clean-up drives to remove potential breeding habitats 

such as used containers and to desilt blocked drains. Ensuring 

that communities are empowered to manage and monitor their 

environments means that efforts to control mosquito habitats 

will be sustainable and effective. 

Public awareness is essential for the success of these 

strategies. Teaching communities how climate change 

worsens dengue outbreaks can help them understand the need 

for preventive measures. Health education campaigns in 

culturally diverse areas such as NTT should be adapted to local 

practices and traditions. Using community leaders, health 

volunteers, and women’s groups, the messaging will reach all 

levels of society. Practical tips, including the use of natural 

larvicides, covering water tanks, mosquito screens, etc., can be 

localized and presented on platforms where people can relate 

to them and adapt them easily. 

Lastly, a long-term method is required to react to the 

evolving dangers of climate change. The strategy is to draft 

risk maps by integrating climate and environmental data into 

epidemiological data to gain insight into the areas in NTT that 

are at highest risk. There are already tools in place to assist in 

the integration and visualization of these data layers, such as 

Geographic Information System (GIS) platforms, which can 

assist in more accurately targeting and allocating meaningful 

interventions and resources. These maps can help 

policymakers decide where resources or funds flow to where 

they are needed most. Incorporating climate projections into 

the health planning process also enables authorities to forecast 

future patterns of disease spread and develop adaptive 

strategies accordingly. Combining both these approaches 

helps mitigate immediate harm and simultaneously builds the 

capacity of communities in NTT to withstand the health 

consequences of climate change. 

 

 

5. CONCLUSIONS 

 

Based on these results, this study concludes that the Spatial 

Error Model (SEM) provides the most appropriate spatial 

regression model to analyze climate variables and DBD cases 

in NTT because, compared with OLS or SAR, which ignore 

strict spatial correlations, SEM is able to consider spatial 

dependence in the residuals or unobserved occurrence factors 

that might include dengue dynamic factors in NTT. The SEM 

provides the best fit to the data, according to an R² statistic of 

0.4538 and an Akaike Information Criterion (AIC) statistic of 

285.235, the latter being the lowest of those compared. Only 

temperature is statistically significant (coefficient=-75.934, p-

value=0.08927 at α=0.10), indicating that for a 1℃ decrease 

in temperature, the average number of dengue cases increases 

by 75. These results highlight the critical need for tailored 

interventions in the cooler districts during peak seasons for 

high-prevalence arboviruses, such as the scale-up of vector 

control measures (e.g., fogging, larvicide application) and 

public education campaigns to minimize mosquito breeding 

sites in these micro-climatic settings. The model's lambda (λ=-

0.217, p-value =0.481) suggests spatial dependencies in the 

residuals, implying that there are spatial patterns in the 

distribution of DBD that are not solely attributable to 

temperature effects. 

The results suggest that cooler temperatures provide 

favorable conditions for mosquito survival and transmission of 

the pathogens they carry, possibly because longer mosquito 

lifespans and higher humidity are seen with cooler weather. 

The observation suggests potential for targeted vector control 

measures during cooler periods when the risks of dengue 

transmission are greater. The SEM identified commonalities 

in the spatial dependencies of the districts, which highlights 

that localized contributors to dengue dynamics offer an 

essential layer of insights for the effective design of district-

specific interventions in areas such as comprehensive and 

targeted fogging operations, improved drainage systems to 

mitigate mosquito breeding sites, and community-led clean-up 

activities to remove standing water sources. Using 

organizations that monitor the climate in real-time combined 

with predictive modeling, early warning systems could issue 

real-time alerts for when and where cycling is riskier. 

More parameters to be added to future analyses include 

socio-economic and ecological variables. Some of these 

features may be mobility data to capture how humans move 

around, housing conditions to measure vulnerability to 

exposure to mosquitoes, and sites of healthcare services to see 

how quickly people can react. These environmental variables 

would greatly improve the model's predictive performance and 

their ability to be contextualized. Although temperature is 

important, factors such as urbanization, access to health care, 

and social conditions may improve the model's explanatory 

power. Alternatives such as Geographically Weighted 

Regression (GWR) when used as spatial modeling tools can 

also be beneficial to explore spatial heterogeneity in each 

district. 

Since East Nusa Tenggara (NTT) has different climatic and 

socio-environmental challenges, particular public health 

strategies need to be taken by each region to reduce climate 

change's influence on dengue fever (DBD) incidence. One 

important aspect is the strengthening of locally adapted vector 

control programs that target the local drivers of DBD 

transmission. That includes larviciding and fogging 

campaigns during peak mosquito breeding seasons, mapped 

out with predictive climate models. In high-risk areas, these 

interventions can be scaled up to directly reduce the 

populations of the vector mosquitoes and break the 

transmission cycle. 

Another common approach is the development of early 

warning systems targeting DBD outbreaks. These systems can 

combine real-time climate data-including temperature, rainfall, 

and humidity-with spatial regression models to predict times 

and places of increased risk. By spreading this information 

through community health networks, mobile apps, and local 

media, it helps ensure both the public and health authorities 

can respond in a timely manner. Not only do such systems 

allow action to be taken pre-emptively to keep the mosquito 
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population under control, they also allow medical resources to 

be allocated to those districts where outbreaks are most likely. 

The third aspect is infrastructure development, which is a 

vital part of the war on DBD in NTT. Water stagnation is a 

prime breeding ground for Aedes mosquitoes, especially 

during downpours, and building or improving drainage 

systems can prevent this. Moreover, these measures can 

reduce discarded containers and other man-made areas that 

provide ideal breeding conditions for mosquitoes through 

efficient waste management systems. These improvements in 

infrastructure are interactive, addressing the root causes of 

mosquito proliferation, thus reducing the risk of DBD 

outbreaks. 

The DBD mitigation strategies also hinge on public 

knowledge regarding DBDs as well as community 

involvement. Dengue education campaigns are culturally 

tailored and promote preventive practices, including covering 

water storage containers, using insecticide-treated bed nets, 

and aiding in the recognition of initial dengue symptoms. 

Training and resourcing community health workers to monitor 

and respond to climate-driven DBD risks will ensure that 

interventions are sustainable and suitable to the local context. 

Another essential approach is the allocation of resources 

according to detailed DBD risk maps. Spatial modeling and 

climate data can help pinpoint districts with the greatest 

disease burden, allowing for targeted interventions like 

specific vector control measures, increased access to 

healthcare, and enhanced emergency preparedness for high-

risk periods. These maps could also assist in long-term 

planning and allocation of supplies to regions experiencing 

recurrent DBD hotspots. 

Lastly, the integration of climate change projections into 

public health planning remains crucial to ensure we effectively 

tackle the evolving epidemiology of DBD transmission. 

Climate change could reshape the spatial layout of dengue by 

expanding mosquito habitat or extending transmission seasons 

into cooler areas. For example, adaptive vector control 

programs and seasonal interventions during cooler months are 

proactive strategies that can mitigate changes to the 

entomological setting. This simulation helps capture the 

evolutionary dynamics of DBD in NTT and keep public health 

planning on the right path through a secure mechanism of 

connecting climate data to public health planning. These 

public health strategies combined can form a multi-faceted 

approach in reducing the increasing impact of climate change 

on this disease in the region. 

The major challenge of this study is the quality of data used 

for climate variables and dengue fever cases. In the case of 

East Nusa Tenggara (NTT), where the number of available 

weather stations is limited, the climate people used 

interpolation methods, like Universal Kriging, for estimating 

the effective climate data in these unmeasured regions. Even 

though this method contributes to closing data gaps, it has 

some assumed biases that can result in actual inaccuracies in 

areas where climatic conditions are highly heterogeneous. 

Additionally, the dengue fever case data used may not 

completely reflect the actual burden of disease considering 

potential under-reporting or misdiagnosis, especially within 

remote areas where healthcare access is constrained. Such 

limitations could be addressed in future work by integrating 

high-resolution climate information (e.g., derived from 

satellite observations), along with enhanced disease 

surveillance systems that provide increasingly accurate and 

insightful data. 

Diffusion of interview bias, another important limitation is 

unmeasured factors that can also affect the transmission of 

dengue fever. Socioeconomic conditions, population density, 

migration patterns, and access to healthcare services (all 

known to have a significant impact) were not considered in 

this analysis. As a result, the study may overstate climatic 

influences and overlook the social and environmental 

determinants. Future studies should consider these variables in 

concert to more fully elucidate dengue transmission dynamics, 

thereby allowing for more integrative public health efforts. 

Another limitation with regard to methodology includes the 

statistical models used. Although the SEM worked well to 

account for spatial dependencies, it might not fully explain 

nonlinear relationships or complex interactions between 

climatic and social factors. Furthermore, the model ignores 

spatial relationships that vary regionally. In the future, explore 

advanced GWR based on the above model that can analyze 

highly localized spatial relationships. Implementing time-

series analysis techniques may also uncover seasonal patterns 

and lagged relationships, providing more nuanced insight into 

how climate variables drive dengue incidences temporally. 

For future research, a multi-scale analysis that combines 

investigations at local, district, and regional levels should be 

considered whenever possible. This would allow the 

determination of key drivers of dengue fever transmission at 

multiple scales. Moreover, incorporating climate change 

projections and consideration of microclimate data could 

improve prediction, informing long-term public health 

planning. However, some limitations must be addressed in 

future studies, and studies along these lines will further 

strengthen the findings of this study along with other findings 

by contributing to robust strategies to mitigate the impacts of 

climate change on dengue fever in East Nusa Tenggara. 
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