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Modern wireless communication systems have recently proposed massive MIMO-

OFDM (Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing) 

as a promising technology for achieving high data rates, low latency, and energy-

efficient communications. Nevertheless, pilot contamination and suboptimal channel 

estimation still pose major problems, specifically in multi-user scenarios. This paper 

addresses these issues and presents a deep learning-based pilot allocation scheme that 

enhances channel estimation accuracy, minimizes pilot contamination, and enhances 

beamforming gain. The proposed technique is based on a fully connected feed-forward 

neural network (FNN) with two hidden layers that learn interference patterns and user 

characteristics for better optimization of pilot assignment compared to traditional 

random and greedy approaches. We evaluate the system's performance using 

simulations under various SNRs, focusing on objective metrics such as mean square 

error (MSE), bit error rate (BER), pilot contamination, and channel estimation accuracy. 

We show that the deep-learning-based approach consistently outperforms baseline 

methods in MSE and BER reductions, along with increased beamforming gain and 

reduced pilot contamination. Specifically, deep learning consistently delivers high-

quality channel estimation for large SNR values, proving to be a stable and reliable 

method across all SNR ranges, potentially serving as a solid solution to address pilot 

contamination in massive MIMO-OFDM systems. This result demonstrates that the 

application of machine learning to pilot allocation can significantly improve the 

performance and reliability in future densely deployed communication networks. The 

new model, scalable and flexible, caters to the dynamic and complex nature of 5G and 

beyond communication systems. Intelligent resource management in wireless 

communications greatly benefits from this work, supporting new paths for solving old 

problems on massive MIMO-OFDM systems. 
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1. INTRODUCTION

To accommodate the increased complexity of next-

generation communication systems, massive Multiple-Input 

Multiple-Output (MIMO) technology using Orthogonal 

Frequency Division Multiplexing (OFDM) has become a 

promising solution to provide higher data rates and lower 

latency while enhancing energy efficiency. To do this, 

Massive MIMO uses large antenna arrays at the base station, 

allowing it to serve multiple users simultaneously and 

increasing the spectral efficiency of the system. Nevertheless, 

numerous challenges such as pilot contamination and 

suboptimal channel estimation present significant barriers to 

the levering of massive MIMO potential, which restrains the 

benefits [1, 2]. 

A serious problem is pilot contamination, where the 

trafficking of pilot signals occurs among users in different 

cells, thus interfering with channel estimation, especially in 

multiuser scenarios. Note that this contamination introduces a 

significant degradation to the performance of massive MIMO 

systems and restricts their ability to scale with high potential 

in dense environments [3]. The precision of beamforming is 

essential for massive MIMO systems, and losing the accuracy 

due to pilot contamination resulted in a poor channel 

estimation. Compared to methods of random or greedy 

allocation attempting stochastically, a novel methodology has 

been proposed for designing pilot-based signal transmission 

strategies to alleviate the effects of pilot contamination. 

However, these methods have limitations in different signal-

to-noise ratio (SNR) regimes and complex interference due to 

practical deployment scenarios [4]. One of the most widely 

explored trade-offs is between greedy methods, which try to 

optimize pilot allocation based on channel strength 

immediately but do not consider interference dynamics, and 

random allocation, which does not adapt itself to changing 

environments. 

Machine learning, particularly deep learning, has recently 

demonstrated enormous potential in solving challenging 

resource management problems associated with wireless 

communications [5, 6]. An intriguing ingredient of deep 
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learning is its ability to learn complex patterns in data where 

traditional mathematical formulations fail. As a result, there 

has been growing interest in using deep learning approaches 

to optimize pilot assignment for massive MIMO systems, 

where the model will be able to adapt with respect to user 

mobility, changing interference level, and complex channel 

conditions [7]. A deep learning-based pilot allocation scheme 

can dynamically adapt pilot allocation based on the learned 

interference characteristics, therefore being more generic and 

efficient than static or heuristic methodologies. 

In this paper, we propose a novel deep learning-based pilot 

allocation scheme to improve channel estimation and reduce 

pilot contamination in massive MIMO-OFDM systems. It will 

be using a fully connected FNN for the allocation of pilots, 

while other conventional methods of random and greedy 

pilots' allocation cannot adapt to the dynamic interference and 

user’s behaviours. The proposed network not only learns the 

correlation information from interference patterns and channel 

characteristics but also dynamically adapts to changing 

network conditions, thus enabling efficient and robust pilot 

allocation. The core novelty of this approach that distinguishes 

it is its aim jointly to optimize the method of pilot assignment 

in a way that it minimizes pilot contamination by modelling 

interference dynamics with deep learning—a challenge that 

clearly goes beyond the capability of traditional methods. 

Unlike existing approaches, which either rely on fixed 

heuristics or computation-intensive optimization, the proposed 

methodology achieves higher scalability and better 

computational efficiency, hence making it suitable for large-

scale 5G and beyond systems operating under strong 

interference conditions. 

Recent developments in deep learning for resource 

optimization in communication systems have markedly 

improved performance in power allocation, user scheduling, 

and channel estimation [8, 9]. Previous work has indeed 

provided insightful contributions to coping with pilot 

contamination. Pilot decontamination through interference 

cancellation [10], the optimization of pilot reuse schemes [11], 

and hybrid strategies that use channel estimation in 

conjunction with pilot allocation [12]. Nonetheless, these 

approaches tend to utilize predetermined models or impose a 

high computational cost, hampering their scalability in large-

scale deployments [13]. Deep learning approaches provide a 

new paradigm for system data-driven modelling and control 

by replacing many scenario-based explicit models with 

machine learning models that can learn and adapt to system 

dynamics. 

Over the past few years, a growing literature has taken 

advantage of recent advances in deep learning to embrace 

machine learning tools to address fundamental resource 

management problems in wireless communications. For 

example, deep learning has been successfully employed to 

optimize pilot deployment for spectral and energy efficiency 

improvements in massive MIMO systems [14]. Recently, a 

new study presented deep learning-based joint pilot design and 

channel estimation for MIMO systems, offering significant 

performance gains with respect to accurate channel estimation 

through varying SNR levels [15]. Deep learning is used in 

these systems for hybrid beamforming applications to reduce 

interferences and improve the signal quality [16]. 

Reinforcement learning-based methods for dynamic resource 

allocation have shown to hold practical significance in 

adaptive and real-time wireless networks [17]. This progress 

shows the promise of using learning techniques for dealing 

with common wireless problems, such as pilot contamination 

and suboptimal channel estimation. A thorough review of deep 

learning-based channel estimation is detailed in studies [18, 

19]. Deep learning-based approaches have been considered for 

massive MIMO channel state information (CSI) acquisition 

and shown significant improvements compared to their 

sparsity and compressive sensing-based counterparts. In 

particular, neural network architectures are trained over large 

CSI datasets with the goal of learning complex distributions, 

structures, and correlations, which are subsequently used for 

powerful data-driven pilot design, channel estimation, 

compression, and feedback [20, 21]. Reconfigurable 

intelligent surface (RIS) technology has emerged with 

unprecedented features that can fundamentally change how 

future wireless communication networks will be deployed and 

operated. RIS improves the link quality between 

communicating devices by dynamically altering the properties 

of impinging waves, especially when the direct link is weak, 

which is critical in extending coverage under challenging 

scenarios such as high-frequency bands [22]. Recent works in 

deep learning for resource optimization in wireless 

communication systems have demonstrated unprecedented 

performance gains on key problems such as power allocation, 

user scheduling, and channel estimation. However, only a few 

of these works have attacked the joint problem of pilot 

contamination and quality allocation that has great 

importance. Despite remarkable developments in the pilot 

allocation technique for massive MIMO-OFDM systems, 

some of the key challenges remain unsolved. Precisely, under 

highly dense multi-user scenarios with dynamic and 

unpredictable interference variances, the existing random and 

greedy-based pilot allocation techniques fail to mitigate pilot 

contamination. That is, either they are non-adaptive to 

dynamic network conditions or computationally expensive, 

which limits scalability toward practical deployments. The 

proposal of our method bridges this gap by combining 

intelligent resource allocation with adaptive learning. 

We extensively compare the performance of conventional 

random and greedy pilot allocation schemes with a proposed 

deep learning-based pilot allocation method via simulations 

under a variety of SNR conditions in this study. Usually, the 

performance is tested in terms of MSE, BER, beamforming 

gain, and pilot contamination. The findings of this study 

demonstrate that the deep learning-based method can achieve 

better channel estimation accuracy, is less subject to pilot 

contamination, and results in enhanced beamforming 

performance when compared with conventional techniques. 

Results as shown demonstrate that deep learning can address 

crucial technical hurdles of massive MIMO systems, which 

recommends the capability to not just improve the 

performance but also to scale up better in 5G and beyond 

networks. 

Adding value from this research is derived from how it will 

integrate strengths from deep learning into the practical needs 

of massive MIMO-OFDM systems. Simulation results 

indicating significant gains compared to baseline methods will 

therefore set the pace for intelligent resource management 

driven by data insights in the next-generation networks. This 

approach has been demonstrated to be feasible for real-world 

implementation with superior scalability, adaptability, and 

computational efficiency, with high mobility 5G and beyond 

communication systems in particular moving towards a 

densely urban environment. 

The rest of this paper is composed with the following 
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structure: Section 2 describes the proposed methodology for a 

deep learning-based pilot allocation scheme, which includes 

the neural network model architecture and a simulator for 

simulation and evaluation performance metrics. It describes 

the simulation environment and presents key parameters, 

including system configuration, SNR levels, and channel 

conditions. Section 3 describes the outcomes of the simulation 

experiments in Results and Discussion, which presents a 

comparison of our deep learning-based approach to 

randomized pilot allocation strategies and greedy-based ones 

for different SNR values. In terms of the MSE, BER, 

beamforming gain, and pilot contamination results are shown, 

followed by their analysis to validate our proposed method. 

Finally, Section 4 contains the summaries of our main results 

and the discussion on how deep learning can be used to solve 

pilot contamination and channel estimation problems in large 

MIMO-OFDM systems. Finally, the paper addresses some 

possible directions for future work. One possibility is to use 

more advanced machine learning models and integrate the 

scheme into current communication systems. 

 
 

2. METHODOLOGY 
 

2.1 System model 

 

Consider a massive MIMO-OFDM system in which a base 

station (BS) with 𝑁𝑎  antennas serve 𝐾  single-antenna users 

over 𝑁𝑠 OFDM subcarriers. The communication link between 

the base station and the users is characterized as a frequency-

selective fading channel exhibiting spatial correlation. The 

channel between the BS and the 𝑘-th user at the 𝑛-th subcarrier 

is denoted by 𝒉𝑘(𝑛) ∈ ℂ𝑁𝑎×1, modelled as a Rayleigh fading 

channel: 

 

( ) ( ) ( )
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k k kn n j n
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where, 𝛽𝑘  is the large-scale fading coefficient and 

𝒉𝑘
𝑅(𝑛), 𝒉𝑘

𝐼 (𝑛) ∼ 𝛮(0,1) are independent real and imaginary 

components, representing the small-scale fading. To estimate 

the channel, each user transmits a known set of pilot symbols. 

The received pilot signal at the base station, denoted by 

𝒀(𝑛) = ℂ𝑁𝑎×𝑃 , where 𝑃  is the number of pilot symbols, is 

given by: 
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where, 𝒑𝑘 ∈ ℂ𝑁𝑎×1  is the pilot vector of the 𝑘-th user, and 

𝑵(𝑛) ∈ ℂ𝑁𝑎×𝑃 is additive white Gaussian noise with variance 

𝜎2 . When two users, 𝑖  and 𝑗 , share the same pilot and 

experience pilot contamination, their signals interfere with 

each other, resulting in a significant decline in channel 

estimation. This problem is exacerbated in dense networks, 

where neighbouring cell users often reuse the same pilots. 

Consequently, the objective is to allocate pilots efficiently for 

users to avoid contamination as well as gain channel 

estimation accuracy via these pilots. Figure 1 represents the 

network architecture of massive MIMO-OFDM system. 

 

 
 

Figure 1. Communication link of a downlink massive MIMO-OFDM channel 

 

2.2 Random and greedy pilot allocation method 

 

In random pilot allocation, every user gets a pilot sequence 

from the available pool of pilots randomly. This method lacks 

the ability to adapt to interference or channel conditions, 

providing inferior performance, with the worst evaluation 

being in high-density networks where pilot contamination is 

much more prevalent. This is the baseline method used for 

comparisons. Meanwhile, greedy pilot allocation essentially 

tries to mitigate inter-user interference by always allocating 
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pilots to the next-to-be-scheduled user based on the so-called 

promise channel state. The algorithm then sorts users 

according to their channel norms and opens pilots for the 

strongest channel first. Although this technique performs 

better in a static environment, it does not work well when 

interference patterns change or network conditions are 

complex. 

 

2.3 Proposed deep learning-based method 

 

The proposed deep learning-based pilot allocation scheme 

adopts the view of treating the pilot assignment problem as a 

learning task. A neural network is trained to induce 

interference patterns, user movements, or channel conditions 

that are stochastic and then allocates the pilots to users so that 

contamination is minimized and the channel estimation 

capabilities are maximized. Figure 2 represents the 

architecture of the proposed neural network. 

 

2.3.1 Neural network architecture 

The neural network selected for this study is a fully 

connected FNN, which models the correlation information and 

interference pattern in the pilot allocation process. The 

architectural details are given below: 

Input layer: The input to the neural model is interference 

levels and channel statistics for each user, including absolute 

value of the channel gain |𝒉𝑘| and interference power, which 

have been measured at the base station. 

 

,k k k=   X h I  (3) 

 

where, for a user 𝑘, 𝑰𝑘 is the interference power interfered at 

user k by the neighbouring users. 

Hidden layer: The architecture includes two hidden layers: 

• Hidden Layer 1: Consists of 64 neurons with a Rectified 

Linear Unit (ReLU) activation function. ReLU is chosen 

for its ability to handle non-linearity and prevent gradient 

vanishing issues. 

• Hidden Layer 2: Consists of 128 neurons, also with a 

ReLU activation function. This layer further refines the 

learned representations of the interference and channel 

characteristics. 

Output layer: The output layer contains P neurons, where, 

P means the total number of pilot sequences available. This 

layer is then passed through a SoftMax activation function. 

The result of the neural network is a probability distribution 

over sets of pilots amongst the entire set of pilot sequences 

from which each individual user's pilot is chosen. 

The neural network is then trained with categorical cross-

entropy loss and Adam optimizer. The training data is channel 

realizations and the level of interference for different SNR. 

In this work, the FNN architecture is adopted due to its 

simplicity, computational efficiency, and ability of good 

generalization for this very task. Besides, unlike CNNs or 

RNNs, which are correspondingly tailored for spatial and 

temporal data, the problem of pilot allocation does not involve 

any particular relationship either in space or time between 

channel characteristics and interference pattern. Hence, FNN 

will be able to capture the underlying relationship; this avoids 

extra complexity in CNNs and RNNs, with hardly any 

improvement in performance for this problem. Its lightweight 

architecture further ensures low inference latency for the FNN; 

hence, the proposed FNN is quite suitable for real-time 

deployment on base stations. 

 

 
 

Figure 2. Proposed neural network architecture for pilot allocation 

 

2.3.2 System parameters for training the neural network 

The deep learning-based pilot allocation scheme proposed 

in this paper highly relies on the quality and diversity of the 

dataset that is used for neural network training. This 

subsection highlights the generation process of the dataset, 

pre-processing steps, and the data division strategy. 

(1) Data generation: This generation consists of creating a 

training dataset through the simulation of the massive MIMO 

system for different SNR levels and channel conditions. More 

specifically, a single training instance is constituted by channel 

gains and interference levels as input features with a 

corresponding label of the pilot allocation whose 
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contamination is minimal. 

(2) SNR variations: The channel realizations were 

simulated for SNR values starting from 0dB up to 20dB, with 

a step of 5dB to include different communication scenarios. In 

order to make the training more robust, the dataset also 

included different levels of pilot contamination by overlapping 

the pilot sequences among users in neighbouring cells. 

• Preprocessing steps 

(1). Normalization: All channel gains |𝒉𝑘| and interference 

power values 𝑰𝑘  were normalized in the range of [0, 1] to 

provide better convergence in a neural network while training. 

(2). Feature engineering: 

The input features were identified to represent the combined 

normalized channel gain and interference level of each user. 

Labels are created as the optimal pilot sequence assignments 

obtained by minimizing pilot contamination using heuristics. 

(3). Data augmentation and division: 

The channel gains and interference levels were added with 

random noise to simulate more real-world variation and also 

to make the model more robust. Afterwards, the dataset was 

divided into three subsets. 

1) Training set (80%): This will be used as a set to tune 

the neural network parameters. 

2) Validation set (10%): This is used during training to 

monitor model performance and prevent overfitting. 

3) Test set (10%): This is used to evaluate the 

performance of the final model on unseen data. 

At last, the final dataset is characterised over a size of 

50,000 samples to ensure sufficient diversity in both 

conditions of channels and pilot contamination scenarios. Full 

representation of low, medium, and high SNR conditions was 

made to avoid any bias toward certain scenarios. 

 

2.3.3 Training 

The whole process of training is aimed at minimizing pilot 

contamination while ensuring good channel estimation. This 

can be summarized in steps as under: 

(1). Data generation: This generation consists of creating 

a training dataset through the simulation of the massive MIMO 

system for different SNR levels and channel conditions. More 

specifically, a single training instance is constituted by channel 

gains and interference levels as input features with a 

corresponding label of the pilot allocation whose 

contamination is minimal. 

(2) Loss function: The categorical cross-entropy loss 

function is used to train the model, which measures a 

difference between predicted pilot assignment probabilities 

and the optimum assignment. 

(3) Optimizer: The used optimizer is of the Adam type, 

which works efficiently with big datasets using dynamic 

learning rates. Initial learning rate: 0.001, decaying during 

training for optimal performance. 

(4) Training configuration: 

• Batch size: The batch size is 32 to balance the 

computational efficiency and stability of convergence. 

• Epochs: This model will train up to 100 epochs. So early 

stopping will be implemented in order to avoid overfitting. An 

early stop will monitor validation loss, stopping the training if 

there hasn't been an improvement during a period of 10 

consecutive epochs. 

(5) Validation: The dataset is split into 20% used for 

validation, monitoring the generalization capability of a model 

in training. 

(6) Evaluation: After training is done, the model is tested 

on test data, never seen, with the help of metrics such as model 

performance based on MSE, BER, and pilot contamination 

levels. 

 

2.4 Performance parameters 

 

MSE, BER, pilot contamination and beamforming gain are 

the key parameters used to evaluate the performance of the 

proposed deep learning-based pilot allocation scheme 

comparing with the random and greedy pilot allocation 

scheme. Accuracy of the channel estimation obtained from 

pilot allocation using proposed deep learning-based pilot 

allocation scheme is evaluated using MSE. 
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where, for user 𝑘, 𝒉̂𝑘(𝑛) is the estimated channel and 𝒉𝑘(𝑛) 

is the true channel. The ratio of incorrectly decoded bits to the 

total number of transmitted bits is computed as BER and 

defined as: 
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where, 𝑁𝑏  is the total number of transmitted bits, 𝑏𝑖  is the 

transmitted bit and 𝑏̂𝑖 is the estimated bit. Pilot contamination 

is quantified as the interference due to non-orthogonal users 

sharing the same pilot sequences. The measure of 

contamination is given as the average interference power 

among users that share a common pilot: 
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where, 𝑝𝑖  and 𝑝𝑗  are the assigned pilots to users 𝑖  and 𝑗 

respectively. After employing the weights using beamforming, 

received signal power at an intended user is the beamforming 

gain and is defined as: 

 
2

Beamforming Gain H

k k= w h  (7) 

 

where, 𝒘𝑘  are the beamforming weights applied to user 𝑘’s 

signal. 

 

2.5 Simulation setup 

 

The performance of the proposed scheme is simulated in a 

massive MIMO-OFDM system. We set the number of base 

station antennas 𝑁𝑎 to be 64 for massive MIMO systems to 

achieve high spatial diversity, while 𝑘  represents the user 

amount and is assigned a value of 10, and the total number of 

pilot sequences 𝑃 is 16. The number of users and pilot reflect 

scenarios where pilot contamination is a critical issue due to 

insufficient pilot sequences relative to the number of users. 

The 𝑁𝑠 parameter is 128, which gives the amount of OFDM 

subcarriers. This is a standard number of subcarriers in OFDM 

systems, thus providing sufficient frequency diversity for the 

analysis. The SNR varies from 0dB to 20dB, by a step of 5dB. 

This range is sufficient to ensure that the proposed method is 

tested under conditions for both poor and favourable signals 
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and assess its robustness to noise. The parameters chosen for 

simulation are presented in Table 1. 

These are selected to represent the typical deployment 

scenarios that will face in 5G and beyond communication 

systems. The range from low to high SNR values allows 

studying the performance in both high and low noise 

conditions, hence in different environments. The large number 

of base station antennas and subcarriers is representative of 

typical massive MIMO-OFDM system configurations. The 

number of users and pilot sequences gives a good trade-off 

between the simulation complexity and real-world feasibility. 

In the simulation, we measure the performance of our deep 

learning pilot allocation scheme compared to random and 

greedy allocation methods traditionally used. To be specific, 

we consider the metrics of MSE and BER from four different 

communication simulators that validate optimized overhead 

and beamforming design under various SNR levels. 

 

Table 1. Parameters chosen for simulation 

 
Parameter Value Description 

Number of Base 

Station Antennas (Na) 
64 

The base station is 

equipped with 64 antennas 

to serve multiple users 

simultaneously. 

Number of Users (k) 10 

A total of 10 single-

antenna users were 

considered in the system. 

Number of OFDM 

Subcarriers (Ns) 
128 

Communication was 

carried out over 128 

subcarriers. 

Number of Pilot 

Sequences (P) 
16 

A total of 16 unique pilot 

sequences were available 

for allocation. 

SNR Range 

0 to 20dB  

(in steps of 

5dB) 

SNR was varied to 

evaluate performance 

under different noise 

conditions. 

Interference Scenarios 
Overlapping 

pilots 

Simulated interference due 

to users in neighbouring 

cells sharing the same pilot 

sequences. 

 

 

3. RESULTS AND DISCUSSION 
 

Below are the four important metrics-MSE, BER, Pilot 

Contamination, and Beamforming Gain-used to assess the 

performance of the proposed deep learning-based pilot 

allocation scheme, each chosen for relevance to the challenges 

in massive MIMO-OFDM systems. MSE describes the 

accuracy of channel estimation, which is a critical ingredient 

in optimizing beamforming and mitigating interference. The 

smaller the value of MSE, the higher the accuracy and 

efficiency. The BER, which shows the signal transmission 

reliability, expresses the possibility of the system's ability to 

minimize those errors due to interference or poor channel 

conditions during communication. Reduction of pilot 

contamination in a massive MIMO system contributes directly 

to the estimation of channels and scalability of a system; 

hence, this is an important metric in proving the robustness of 

the proposed method. Lastly, the beamforming gains primarily 

tells about the power enhancement of the signal at an intended 

user and therefore becomes an important metric for system 

spectral efficiency and interference management. These 

together give a viewpoint of the proposed method's 

performance in improving channel estimation, reducing 

interference, and overall system performance, hence ensuring 

its practical applicability in next-generation wireless 

communication systems. 

 

3.1 MSE analysis 

 

In a massive MIMO system, MSE is an important metric to 

assess the precision of channel estimation. The MSE values in 

Figure 3 show the differences between deep learning-based 

schemes and random and ready pilot allocation schemes for 

SNR levels ranging from 0 to 20dB. 

The deep learning-based approach always performed better 

than the random and greedy scheme allocations, more 

significantly at lower SNR values of 0dB to 10dB. At 0dB, the 

deep learning method reduced the MSE by approximately 35% 

compared to random allocation and 20% compared to greedy 

allocation. These results are taken to indicate the resilience of 

the neural network model in capturing interference patterns 

and adaptively assigning pilots to reduce contamination, even 

in scenarios with low-SNR properties. At 15dB and 20dB 

SNR, all methods worked better because the signal quality was 

better, but the deep learning model still showed a big 

improvement of up to 10% in lowering the MSE compared to 

the greedy method. 

The reason that this MSE falls is due to the neural network 

making better pilot-allocation decisions across different 

channel conditions and interference scenarios by genericizing 

the problem more than conventional approaches. Reduction of 

MSE in large-scale MIMO systems has already become an 

important phase since it can directly impact the accuracy of 

channel estimation [1, 2, 6], which is essential to ensure the 

whole system's performance. This line of work advances this 

direction by adding machine learning to the static allocation 

design shortcoming. 

 

 
 

Figure 3. Comparison of MSE values of deep learning-

based, random and greedy pilot allocation methods vs. SNR 

range of 0dB to 20dB 
 

3.2 BER comparison 
 

The BER performance over different SNR values of the 

three pilot allocation methods is shown in Figure 4. This is 

expected, and of course that the deep learning-based method 

shows improved results over random and greedy allocation 

strategies. For instance, at 0dB SNR, the BER of the proposed 

deep learning model was approximately half that of the 

random assignment and about 30% lower than the greedy 
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approach. Based on measurements that were not abused, the 

results show that intuitively better pilot allocation leads to 

more total power and a lot fewer wrong bit decisions during 

transmission. When SNR values increased, all methods 

demonstrated lower BERs; however, the deep learning method 

still provided a big advantage over other strategies. The fact 

that the deep learning model is able to alleviate pilot 

contamination means it generates a channel even with higher-

quality atomic coefficients, which leads to better overall 

system down sampling performance than others. Prior work 

has demonstrated the importance of minimizing BER for 

improved system reliability, especially at high-density 

deployments where interference can be a key limiting factor 

[3]. The results show that deep learning can lead to significant 

gains in this context. 

 

 
 

Figure 4. BER performance of the three pilot allocation 

methods over varying SNR values 

 

3.3 Beamforming gain 

 

Beamforming gain is an important indication of how 

effectively the system can concentrate transmitted energy to 

users. Figure 5 illustrates the comparison of beamforming gain 

between the three methods at various SNR levels. The deep 

learning-based pilot allocation obtained better beamforming 

gains than both random and greedy methods, especially at low 

SNR values. 

 

 
 

Figure 5. Comparison of beamforming gain across the three 

methods at different SNR levels 

 

For the deep learning-based scheme, at 0dB, the 

beamforming gain was statistically about 25% and 15% larger 

than its periodically alternating counterpart and greedy 

method. This implies that an improved pilot allocation results 

in better beamforming focus and hence a higher signal-to-

interference-plus-noise ratio (SINR) observed at the user. At 

higher SNRs, the difference decreases, but there are still better 

beamforming gains using deep learning for accurate channel 

estimation. 

This kind of improvement is important for modern wireless 

systems that need to use beamforming gain to improve both 

spectral efficiency and support for multiple users at the same 

time [4]. These results show that the new approach can offer 

significant gains, especially in high-density networks where 

successful beamforming depends on accurate knowledge of 

the channel state. 

 

3.4 Pilot contamination 

 

One of the most challenging factors in massive MIMO 

systems is the pilot contamination, which has a direct impact 

on both channel estimation accuracy and system performance 

in general. The level of pilot contamination across the three 

methods is shown in Figure 6. The effect of pilot 

contamination is significantly reduced for the deep learning-

based method at all SNR values, especially for smaller SNR 

levels, which are known to exhibit higher degradation due to 

pilot contamination effects. 

The pilot contamination for the deep learning method was 

decreased by over 40% compared to the random method and 

25% compared to the greedy method at 0dB. The neural 

network-aided interference pattern-learning and pilot 

switching on a per-user basis optimized the pilots to 

significantly reduce interferences during channel estimation 

by ensuring minimal pilot cross-users. 

The large decrease in pilot contamination is consistent with 

our intuition that deep learning might yield a more intelligent 

and adaptive scheme for pilot assignment. This justifies recent 

research and its conclusion that the elimination of pilot 

contamination is necessary to fully realize the benefits of 

massive MIMO systems [11]. The proposed method helps to 

increase the total system capacity by mitigating pilot 

contamination and increasing reliability in channel estimates. 

 

 
 

Figure 6. Level of pilot contamination across the three 

methods at different SNR levels 

 

335



 

The results show that the deep learning-based pilot 

allocation scheme can outperform existing approaches by 

dynamically making decisions on interference patterns and 

channel conditions, which corroborates the working 

hypothesis when designing it. Unlike the static or heuristic 

strategies as used in previous studies, the suggested technique 

presents a learned and dynamic framework for pilot allocation 

that reduces the MSE and BER and significantly mitigates 

pilot contamination. 

Static pilot allocation methods have been proven to work 

effectively under certain conditions, but they fail when the 

network environment changes on the fly [1, 3]. Using deep 

learning, this study extends previous work and overcomes the 

limitations of classical methodology. This extreme gain in 

performance is due to the ability of the neural network to 

generalize across different SNR levels and interference 

conditions. 

In addition to this, broader implications for the future of 

wireless communication systems can be drawn from the 

results found in this study. With densification and increasing 

complexity of networks, traditional resource management 

approaches fail to meet the dynamic user behaviour and 

interference patterns. The findings from the work indicate that 

machine learning can bolster solutions to these problems as 

deep-learning-based approaches turned out to be successful, 

foregrounding a plethora of more intelligent 5G and even 

beyond-grade communication systems. 

In the case of massive MIMO-OFDM systems, the proposed 

deep learning-based pilot allocation scheme provides several 

practical benefits. The method decreases pilot contamination 

through more accurate channel estimation, increasing the 

overall performance and reliability of the system, supporting 

higher data rates and lower latency required in next-generation 

networks. These enhancements make the presented method 

especially well-suited for dense deployment in urban areas, 

where interference and pilot contamination are serious issues. 

In addition, the scalability of the deep-learning tool allows 

it to be applied for larger systems with a higher number of 

users and antennas, making this an adaptable solution for next-

generation wireless networks. Its inclusion in pilot assignment 

schemes is an indication of a move towards intelligent 

resource management in communication systems that could 

potentially change the way network’s function. 
 

3.5 Computational complexity analysis 
 

Computational complexity is one of the critical factors for 

feasibility in real-world deployments of the proposed deep 

learning-based pilot allocation scheme. This subsection is 

devoted to an analysis of its complexity with regard to training 

and inference phases, drawing a comparison with the classic 

random and greedy methods. 
 

3.5.1 Training complexity 

The deep learning model optimizes a two-hidden-layer fully 

connected feedforward neural network in the process of 

training. It should be noted that computational complexity for 

training can be stated as: 
 

𝑂(epochs×samples per epochs × (𝐾 × 𝐻1

+ 𝐻1 × 𝐻2 + 𝐻2 × 𝑃)) 
(8) 

 

where, 𝐾 is number of input neurons and is equal to twice the 

users. The number of neurons in first and second hidden layers 

are represented by 𝐻1  and 𝐻2 . P is the number of output 

neurons. While traditional methods require much lesser 

computational resources, the training phase requires more 

computational resources. However, the training is an offline 

process: it is performed once and then used for inference. 

Therefore, higher complexities during the training stage do not 

influence the real-time operation of the system. 

 

3.5.2 Inference complexity 

In the inference phase, the model predicts pilot assignments 

for a given input is much less complex. The forward pass 

through the network is given by: 

 

1 1 2 2( + )O K H H H H P  +   (9) 

 

For the proposed architecture, where the number of input 

neurons 𝐾  is 20, the number of neurons in the first hidden 

layer 𝐻1  is 64, the number of neurons in the second hidden 

layer 𝐻2 is 128, and the number of neurons in the output layer 

𝑃  is 16, the inference complexity is computationally 

lightweight, making it suitable for real-time applications. 

 

3.5.3 Comparison with traditional methods 

• Random allocation: The complexity of random 

allocation is given by 𝑂(1) . The random allocation 

simply assigns the pilots in any arbitrary fashion without 

considering interference or channel conditions. It has a 

very low computational cost but shows very poor system 

performance since it leads to high pilot contamination. 

• Greedy allocation: The complexity of greedy allocation 

is given by 𝑂(𝐾2) . This greedy approach iteratively 

assigns the pilots by checking all combinations of users 

and the pilot matrix, which gets computationally 

expensive as the systems get larger by increasing the 

number of users and pilot sequences. 

• Proposed deep learning method: Complexity of the 

proposed algorithm for training and inference is given by 

Eq. (8), and Eq. (9) respectively. 

The scalability of the deep learning training process with 

increasing user count is illustrated in Figure 7. This figure 

gives the training time of the deep learning model as a function 

of the number of users. As intuitively expected, the training 

complexity grows linearly with the input size. This plot 

illustrates the offline nature of the training in that, although the 

computational cost is high, it does not affect real-time 

operations. As a matter of fact, the training process scalability 

can be observed; hence, feasibility for systems with a large 

number of users can be attained. 

Comparison of the inference time for the proposed method 

with the execution times of random and greedy methods is 

illustrated in Figure 8. This figure compares the inference time 

of the proposed deep learning-based pilot allocation scheme 

against that of the traditional methods, namely, random and 

greedy. The inference complexity of the deep learning model 

scales linearly with the number of users, while the greedy 

method grows quadratically owing to its iterative process in 

assigning pilots. The random allocation has a constant time 

complexity and thus is trivial in computation but is devoid of 

any performance improvement. These results show the 

lightweight inference complexity of the proposed method, 

hence making it suitable for real-time deployment. 

This paper develops the scalability and adaptability of the 

proposed deep learning-based pilot allocation scheme to suit 

various network sizes and configurations. For instance, the 

model architecture can be much easier to adjust according to 
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various network parameters, such as the number of users, 

antennas, or pilot sequences. For instance, the increased size 

of the input layer, possibly due to changes in user density, can 

be achieved by adding more neurons corresponding to new 

users, while the output layer can be scaled up by including 

more neurons to represent many more pilot sequences. The 

lightweight inference complexity of the model, like scaling 

linearly with respect to both the number of users and pilot 

sequences, allows it to be computationally efficient under 

dense network deployment. 

Perhaps the most salient advantage of the model is its 

adaptability in dynamically changing network conditions, 

such as user mobility. In that respect, training this model on 

various datasets that include a wide range of possible channel 

conditions, interference patterns, and mobility scenarios 

enforces general patterns onto the model since it enables it to 

perform more universally across various configurations. This 

feature becomes particularly valuable in 5G and beyond 

networks, where user mobility and densely deployed 

environments introduce variability. The model can further be 

refined to adapt to new scenarios by retraining it periodically 

with fresh datasets for continuous improvement in 

performance. 

 

 
 

Figure 7. Representation of training time vs. number of users 

 

 
 

Figure 8. Representation of inference time vs. number of 

users 

 

In comparison to the standard methods, like greedy 

allocation, which has poor scalability due to its quadratic 

computational complexity, the proposed deep learning model 

scales well and sustains high performance across different 

network configurations, making it robust and future-proof for 

addressing the challenges of pilot allocation in next-generation 

wireless systems. 

 

3.6 Comparison with additional baselines 

 

Following that, a qualitative comparison is made, for 

completeness in the assessment, between the deep learning-

based pilot allocation scheme developed, the optimization-

based, and the one based on game theory-both considered 

advanced methodologies to handle pilot contamination in 

massive MIMO systems. 

 

3.6.1 Comparison with optimization-based methods 

Other approaches based on optimization seek to perform a 

joint optimization of pilot allocation and power control in 

massive MIMO systems with device-to-device (D2D) 

underlay systems toward performance enhancement [23]. 

While these methods are usually quite effective in their 

mitigation of pilot contamination, hence improving spectral 

efficiency, the computational complexity of such methods 

remains a severe drawback. The optimization typically 

involves iterative solvers and is thus computationally 

expensive, hence not very well-suited for real-time 

implementation or large-scale systems under dynamic 

conditions. 

In contrast, the proposed deep learning model can handle 

these limitations by pre-training on diverse datasets to learn 

the inference patterns. In deployment, lightweight inference 

complexity in the model ensures that the decision can be made 

in real time with no iterative overhead that is involved with the 

optimization-based schemes. This makes the proposed 

approach more scalable and adaptable for real-world scenarios 

with high user density and mobility. 

 

3.6.2 Comparison with game theory-based methods 

Game-theoretic approaches rely on strategic interactions 

between users to ensure minimum interference: methods that 

offer robust solutions for pilot contamination against 

predictable-structured network conditions, but most of them 

require multi-iteration convergence to a Nash equilibrium, and 

hence latency and extra computational overhead may be 

introduced, particularly in dense or dynamic network 

scenarios [24]. 

Compared with the proposed deep learning method, it 

enjoys the advantage of not needing iterative convergence by 

dynamically allocating pilots with the aid of pre-trained 

knowledge for real-time input, while achieving comparable or 

better performances in terms of MSE and BER. Besides, its 

adaptability to dynamic environments, including time-varying 

user mobility and interference patterns, ensures reliable 

operation in scenarios where game theory-based methods may 

struggle. 

 

3.6.3 Key advantages of the proposed method 

Scalability: Unlike methods based on optimization and 

game theory, which suffer from the computational bottleneck 

when the users increase along with the pilot sequences, the 

scalability of the deep learning model proposed increases 

linearly. 
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Real-time deployment: This is because the lightweight 

deep learning model has an inference phase that allows real-

time deploying for pilots, which can be availed in base stations 

whose computational resources are limited. 

Dynamic adaptability: The model is trained on datasets 

that capture diverse conditions of the network and is 

dynamically adapted to changes in user density, mobility, and 

interference, hence outperforming static approaches. 

Performance gains: Simulation results show high 

reductions in MSE, BER, and pilot contamination, hence 

indicating the real losses that the proposed method incurs 

compared to optimization-based and game-theoretic baselines. 

 
 

4. CONCLUSIONS 

 

In this paper, we introduced a new deep learning-based pilot 

assignment scheme that is able to deal with the important 

issues of pilot contamination and underperforming channel 

estimates in massive MIMO-OFDM systems. The proposed 

method takes advantage of deep learning to adaptively re-

allocate pilots according to instantaneous interference and user 

behaviours, yielding much better performance than random 

and greedy algorithms as the solution is tailored on given data. 

Simulation results showed that the deep learning-based 

method provided gains over conventional methods in terms of 

MSE, BER, and pilot contamination and overall beamforming 

gain throughout different SNR levels. 

The deep learning model showed effectiveness and 

efficiency in learning how to avoid pilot contamination by 

only needing a few samples, significantly improving channel 

estimation and system performance. More specifically, this 

framework executed 35% cheaper in MSE at low SNR than 

random allocation and 25% inexpensive in pilot contamination 

than the greedy technique. These improvements are translated 

into enhanced spectral efficiency, lower error rates, and higher 

signal quality for users, which is the most crucial aspect for 

high-density scenarios suffering from pilot contamination. 

Furthermore, the generalization capability in terms of different 

SNR levels and interference conditions between the deep 

learning model proves its robustness to environmental 

changes, making this technology a good candidate for future 

communication systems. 
 

4.1 Future directions and improvements 
 

Interference patterns and user mobility have spatial and 

temporal correlations that could be picked up by convolutional 

neural networks (CNNs) or recurrent neural networks (RNNs), 

among other architectures in deep learning. Also, 

reinforcement learning may be used in order to make possible 

pilot allocation decisions in real-time over dynamically 

changing network states. Another promising avenue for future 

work is the integration of the pilot allocation scheme with 

advanced beamforming techniques, such as hybrid or dynamic 

beamforming. 

Other techniques that could be explored further to get better 

scalability and efficiency of the model include model pruning 

and quantization. Such methods will decrease computational 

complexity at inference time and thus will be able to deploy 

the proposed model on resource-constrained edge devices in 

reality. Furthermore, incorporation of federated learning 

allows the distributed training at the base station, enabling 

collaborative optimizations without any collection of data at 

any central location. 

4.2 Real-world implications and challenges 

 

In fact, during the real-life application of the system under 

variable channel conditions, user mobility, and hardware 

limitations, it will have to be challenged with a few difficult 

barriers. The periodic retraining using real-time data from live 

networks would be continuously keeping the model tuned to 

the evolving network conditions. Furthermore, deploying the 

system in dense urban environments with high user density 

may need hybrid approaches that merge deep learning with 

heuristic methods in order to balance computational efficiency 

with performance. 

In view of such challenges, the proposed scheme's ability to 

mitigate pilot contamination and improve channel estimation 

provides a worthy tool for next-generation wireless networks. 

This paper thus provides a good basis for the integration of 

deep learning into other key enabling technologies like 

massive MIMO and beamforming for realizing intelligence in 

future resource management in more dynamic and complex 

communication systems. 
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