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The rapid development and use of artificial intelligence in various industries in recent 

years have markedly improved transportation systems. Automobile collisions can lead 

to numerous fatalities and significant financial losses. Automated vehicles can employ 

road detection as one of their functionalities. Notwithstanding the appalling nature of 

traffic accidents, numerous nations are employing artificial intelligence to create smart 

cities and autonomous vehicles. This research concentrates on traffic sign detection at 

night, building upon significant studies conducted by numerous researchers utilizing 

public road sign data sets. This dataset is essential for training autonomous vehicles to 

recognize traffic signs in low-light conditions. Nighttime object detection has numerous 

problems and is not less difficult than daytime detection. This research employs the 

YOLOv9 algorithm, a state-of-the-art, one-stage object detection model known for its 

speed and accuracy in identifying traffic signs during nighttime. The Contrast Limited 

Adaptive Histogram Equalization (CLAHE) method is evaluated and compared with 

nocturnal road sign detection. This study integrates YOLOv9 and CLAHE to provide 

an ideal model for enhancing nighttime road sign recognition efficiency. Our results 

indicate that the combination of YOLOv9 and CLAHE achieves the highest mean 

Average Precision (mAP) of 76.2%. The suggested model exhibits potential for 

incorporation into autonomous vehicle systems, facilitating real-time identification of 

road objects, pedestrians, and other vehicles, hence enhancing safety and navigation. 
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1. INTRODUCTION

Single Shot Detection (SSD) is an object detection 

methodology that identifies many objects inside a single image 

or video processing instance. This technique differs from 

previous methods that necessitate multi-stage picture 

processing. SSD employs a Convolutional Neural Network 

(CNN) to extract characteristics from images, subsequently 

utilizing several convolutions to generate a collection of 

bounding boxes accompanied by confidence values for various 

item classes.  

Traditional nighttime object recognition methods, like 

Histogram of Oriented Gradient (HOG) and Support Vector 

Machine (SVM), exhibit computational efficiency but lack 

resilience in intricate environments. Recent deep learning 

methodologies, such as Faster R-CNN and YOLO variations, 

provide enhanced accuracy; nonetheless, they frequently 

encounter challenges with elevated noise levels and 

diminished contrast characteristics of nighttime images. 

YOLOv9 represents a recent advancement in the YOLO 

line of models, renowned in the field of object identification 

[1, 2]. YOLOv9 upholds the legacy of YOLO by delivering 

exceptionally rapid detection speeds and a high degree of 

accuracy. YOLOv9 presumably employs more efficient and 

resilient neural network architecture. This may involve 

employing more advanced backbones for feature extraction 

and incorporating cutting-edge technology in machine 

learning, such as transformers or improved CNNs. Detecting 

road markers is the foundation upon which autonomous 

driving and computer vision are built. The objective of these 

responsibilities is to recognize and adhere to road markers, 

including lane lines, and to traverse real-time stop lines as they 

shift positions instantaneously. The use of onboard sensors and 

computers accomplishes this [3]. 

The identification of road signs at night is crucial for 

ensuring safety and efficiency on the road. The following are 

key reasons for the significance of road sign detection during 

nighttime: Driver and Passenger Safety: At night, natural sight 

is markedly diminished, rendering traffic signs less discernible 

for drivers. Accurate and clear identification of these signals 
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enables drivers to make suitable and safe judgments when 

operating a vehicle, therefore diminishing the likelihood of 

accidents. Adhere to road sign Regulations: Road signs convey 

essential information concerning speed limits, limitations, and 

additional directives. Effective nighttime detection will 

enhance driver compliance with traffic regulations, 

consequently decreasing violations and improving traffic 

order. Mitigates Driver Fatigue: Nighttime driving can be 

more exhausting as the eyes exert greater effort to perceive 

signs and the roadway. A proficient traffic sign-detecting 

system can alleviate this load by delivering explicit warnings 

and information to motorists. Support for Autonomous 

Vehicle Technology: Autonomous cars depend on precise 

detection systems to identify traffic signs and other roadway 

components. Accurate nighttime detection is essential for the 

safe and reliable operation of autonomous vehicles without 

human oversight. Enhanced Advanced Driver Assistance 

Systems (ADAS) technology: Advanced driver assistance 

systems, such as traffic sign recognition, utilize detection 

technologies to aid drivers by delivering real-time information 

regarding road conditions and traffic signage. Enhanced 

nocturnal detection augments the efficacy of this ADAS 

system [4, 5]. 

Driving at night presents considerable hazards to road safety 

owing to diminished visibility, glare from artificial 

illumination, and heightened dependence on driver perception. 

The World Health Organization (WHO) reports that road 

traffic injuries are a predominant source of global mortality, 

with nocturnal incidents contributing significantly to the death 

toll. Approximately 1.19 million individuals perish annually 

due to road traffic collisions. Road traffic injuries constitute 

the primary cause of mortality among children and young 

adults aged 5 to 29 years [6]. 

The hazards of nocturnal driving are exacerbated by 

inadequate illumination, which hinders the prompt recognition 

of pedestrians, bicycles, and other vehicles. This is especially 

crucial in low-resource environments and rural regions, where 

the infrastructure for sufficient street lighting is frequently 

deficient. Tackling this issue is crucial for enhancing driver 

safety and for the progression of technologies such as 

autonomous vehicles and intelligent transportation systems 

that depend on precise and reliable object detection 

algorithms.  

Current object detection frameworks, although proficient in 

well-lit settings, frequently encounter difficulties in low-light 

scenarios due to issues like low contrast, glare, and 

inconsistent lighting. This paper introduces an innovative 

amalgamation of CLAHE with the YOLOv9 detection 

framework to mitigate these constraints. The objective is to 

augment object visibility and enhance detection precision in 

difficult nocturnal settings, consequently fostering safer 

roadways and more intelligent urban systems. CLAHE is an 

image processing approach employed to enhance image 

contrast in a more adaptive and regulated manner than 

conventional histogram equalization methods [7]. CLAHE is 

crucial in data preparation due to its capacity to enhance image 

quality, hence augmenting the efficacy of numerous computer 

vision and image processing applications [8]. CLAHE is 

proficient at enhancing visual contrast, particularly in photos 

characterized by low contrast or extreme brightness or 

darkness. Enhancing contrast facilitates the recognition and 

analysis of significant components within a picture. This 

research will detect road signs, especially at night, using the 

SSD model, namely YOLOv9 combined with CLAHE. This 

research can have a significant impact on researchers in the 

same field. 

The suggested YOLOv9 framework utilizes CLAHE to 

improve image quality, guaranteeing strong performance in 

low-light environments. This combination rectifies the 

deficiencies of previous approaches by sustaining elevated 

detection accuracy while attaining real-time processing 

velocities. Our method establishes a new standard for 

nighttime object detection by combining state-of-the-art 

detection algorithms with advanced preprocessing techniques. 

This has implications for applications in surveillance systems 

and autonomous vehicles. 

The following section is a succinct summary of the study's 

principal contributions: This study gathers videos of real 

drivers maneuvering autos. This creates the Taiwan Road 

Marking Sign Dataset at Night (TRMSDN), encompassing 

road markings. (2) A variety of YOLO models are evaluated 

to ascertain which one is the most effective in identifying 

Taiwan's road signs. (3) The study analyzes and contrasts the 

differences among these three methods, examining the impact 

of CLAHE on photos acquired in nighttime driving conditions. 

(4) The identification algorithm that was developed in this 
work is currently being implemented in a variety of YOLOv9c 
versions to assess its ability to accurately identify road 
markings in Taiwan. (5) Experiments indicate that CLAHE 
has the potential to improve the efficacy of all models.

The subsequent sections will delineate the development of 

this work. In Section II, we examine some comparable works. 

Our proposed methodology is comprehensively explained 

in Section III. Section IV delineates the methodology 

and outcomes. Our findings are thoroughly examined 

and discussed in Section V. In Section VI, we report our 

results and propose possible directions for future research. 

2. RELATED WORK

2.1 Road marking sign identification 

The identification of road signs is an essential component 

of both the management of road safety and the automotive 

insurance contracting process. The process entails the 

detection and analysis of traffic signs to supply motorists with 

vital information regarding routes, directions, and warnings. 

An example of a system that has been put into place to 

guarantee the safety of drivers is the Road Safety Audit 

guideline [9]. The process of detecting and recognizing the 

many sorts of markings that are painted on roadways to 

communicate information, enforce laws, or provide direction 

to vehicles and pedestrians is referred to as road marking sign 

identification. 

Tai et al. [10] utilized techniques such as DCGAN, LSGAN, 

and WGAN in their research project to produce high-fidelity 

images of prohibited traffic signs. The improvement of the 

intersection over union (IoU) and the performance of road sign 

detection are both essential components of road safety 

management and automotive insurance contracting. The 

process involves recognizing and evaluating traffic signs to 

provide motorists with vital information on routes, directions, 

and warnings. Road Safety Audit guidelines employ YOLOv3 

and YOLOv4 models that make use of synthetic photographs 

to ensure road safety. 

Chen et al. [11] used the YOLO model to identify road signs 

in Taiwan. They compared the original image captured at night 
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with Contrast Stretching (CS), Histogram Equalization (HE), 

and CLAHE techniques in a nighttime setting. Shahbaz et al. 

[12] aimed to assess the efficacy of the image processing 

technique in identifying road signs and to determine the most 

suitable threshold value range for this purpose. They evaluated 

the cascade object detector's ability to detect road signs in 

relation to threshold values and speed. Mijic et al. [13] 

proposed a solution for vehicle control using detected traffic 

signs. They investigated the feasibility of employing cutting-

edge machine learning algorithms, specifically YOLOv3 and 

YOLOv4, for traffic sign detection. The vehicle control 

solution is designed using the Robot Operating System (ROS) 

and thoroughly evaluated in the CARLA open-source 

simulator. Traffic sign (TS) detectors are assessed using both 

real-world and synthetic datasets, followed by testing the 

suggested solution across various scenarios generated in the 

CARLA simulator under diverse weather conditions (sunny, 

wet, foggy, night). 

 

2.2 Contrast Limited Adaptive Histogram Equalization  

 

A technique employed in image processing to enhance the 

contrast of an image and mitigate noise amplification is known 

as image enhancement [14, 15]. Histogram Equalization is a 

method utilized to improve image contrast by reallocating 

intensity values. It functions by distributing the prevalent 

intensity values to comprehensively utilize the complete 

spectrum of intensity values.  

Adaptive Histogram Equalization (AHE) is a technique that 

overcomes the constraints of conventional histogram 

equalization by accounting for the fluctuating illumination 

conditions inside an image. AHE processes distinct segments 

of the image independently, facilitating enhanced accuracy in 

image enhancement compared to conventional approaches. 

The image is segmented into smaller sections by AHE, and 

histogram equalization is executed on each region 

independently [16]. This approach mitigates excessive noise 

amplification but may lead to increased noise in reasonably 

uniform regions. Contrast Limitation: To address the issue of 

excessive noise amplification in AHE, CLAHE integrates a 

restriction on contrast [17]. The technique constrains the 

histogram of each region to ensure that no pixel intensity 

surpasses a designated threshold. This facilitates the 

modulation of noise amplification while concurrently 

improving contrast. Interpolation is commonly utilized in 

CLAHE to efficiently reduce abrupt transitions between 

neighboring areas, ensuring the lack of noticeable 

abnormalities at the boundaries of these areas [18]. CLAHE 

effectively enhances the contrast of images with varying 

lighting circumstances while minimizing the risk of noise 

amplification. It is commonly employed in medical image 

processing, satellite images, and other areas where picture 

contrast enhancement is critical [19]. 

 

2.3 YOLOv9 

 

YOLOv9 represents the most recent advancement in the 

YOLO line of real-time object detection systems. It enhances 

prior iterations by integrating breakthroughs in deep learning 

methodologies and architectural design to attain greater 

efficacy in object-detecting tasks. The integration of the 

Generalized ELAN (GELAN) architecture with the 

Programmable Gradient Information (PGI) concept resulted in 

the development of YOLOv9, which represents a significant 

improvement in efficiency, speed, and accuracy. 

The following are the key features of YOLOv9: 

(1) Real-Time Object Detection: YOLOv9 preserves the 

defining characteristic of the YOLO series by offering real-

time object detection capabilities. This refers to its ability to 

rapidly process input images or video streams and precisely 

identify objects within them without sacrificing speed [20, 21]. 

(2) PGI Integration: YOLOv9 implements the 

Programmable Gradient Information (PGI) concept, which 

enables the production of dependable gradients through an 

auxiliary reversible branch. This guarantees that deep features 

maintain essential characteristics that are essential for the 

execution of target tasks, thereby resolving the issue of 

information loss during the feedforward process in deep neural 

networks [22]. 

(3) Generalized ELAN (GELAN) Architecture: YOLOv9 

employs the Generalized ELAN (GELAN) architecture, which 

is intended to enhance inference speed, accuracy, 

computational complexity, and parameters. GELAN improves 

the efficacy and adaptability of YOLOv9 by enabling users to 

choose the most suitable computational blocks for various 

inference devices [11]. 

(4) Enhanced Performance: Experimental results indicate 

that YOLOv9 achieves optimal performance in object 

detection tasks on benchmark datasets such as MS COCO [23, 

24]. 

Single Shot Detection (SSD) frameworks, exemplified by 

YOLO, execute object detection by forecasting bounding 

boxes and class probabilities in a singular traversal of the 

network. This method obviates the necessity for region 

proposal phases included in two-stage detectors such as Faster 

R-CNN, markedly diminishing computer complexity and 

facilitating real-time processing. In applications such as 

autonomous vehicles and surveillance, where judgments must 

be made quickly, the performance advantage of SSD-based 

models is essential. Moreover, SSD frameworks demonstrate 

superior capabilities in identifying objects of diverse scales, 

which is especially advantageous in nocturnal conditions 

where the perceived size and contrast of objects can fluctuate 

due to uneven illumination. 

YOLOv9 signifies the most recent progress in the YOLO 

series of one-stage object detectors, providing an unparalleled 

amalgamation of speed, precision, and resilience compared to 

earlier iterations. These characteristics render YOLOv9 an 

advantageous option for tackling the difficulties of nocturnal 

object detection, especially in scenarios with constrained 

processing resources. 

Nighttime object detection poses distinct obstacles, 

including low contrast, glare, and inconsistent illumination. To 

mitigate these difficulties, CLAHE was incorporated as a 

preprocessing measure. Preprocessing input photos with 

CLAHE markedly improves object visibility, allowing 

YOLOv9 to extract substantial features even in difficult 

nighttime settings. 

The integration of CLAHE with YOLOv9 in the SSD 

framework establishes a strong and effective pipeline for 

nocturnal object detection. CLAHE optimally enhances input 

images, enabling YOLOv9 to accomplish accurate and swift 

detection. This novel integration of technologies establishes a 

new standard for nocturnal object detection, with considerable 

ramifications for practical applications in driverless vehicles, 

surveillance systems, and other safety-sensitive areas. 
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3. METHODOLOGY 

 

3.1 Taiwan road marking sign dataset at night 

 

Additionally, we executed our experiment using genuine 

traffic signs located on conventional highways in Taiwan. The 

signs included indicators for vehicle turning directions, speed 

limits, pedestrian crossings, and stop lines. Upon recognizing 

these signals, vehicles should either adjust their behavior or 

have their movement restricted. This research sought to tackle 

the challenge of road sign recognition by recording video 

footage from the driver's viewpoint in various Taiwanese cities 

and manually collecting traffic signs to develop a distinctive 

dataset called the TRMSDN dataset [11]. A total of 4,386 

distinct photos were collected for training purposes. The 

photos were classified into 15 distinct categories, with 80% 

designated for the training set and 20% for the testing set. A 

512 by 288-pixel image is utilized. 

 

Table 1. TRMSDN dataset 

 

Class Name Training Testing Total Image 

P1 Turn Right 277 69 405 

P2 Turn Left 301 75 401 

P3 Go Straight 283 71 407 

P4 
Turn Right or 

Go Straight 
307 77 409 

P5 
Turn Left or 

Go Straight 
272 68 403 

P6 
Speed Limit 

(60) 
276 69 400 

P7 
Zebra Crossing 

(Crosswalk) 
327 82 401 

P8 Slow Sign 275 69 399 

P9 
Overtaking 

Prohibited 
310 77 404 

P10 Barrier Line 295 74 409 

P11 Cross Hatch 302 76 398 

P12 Stop Line 283 71 403 

 Total 3509 877 4386 

 

Table 1 and Figure 1 exhibit the training and testing labels 

for each category of road marking sign, respectively. The 

document has both categories of labels. The TRMSDN dataset 

indicates an average of 399 to 409 occurrences per class. 

Access the following URL: 

https://drive.google.com/drive/folders/1e5xbkuqnN2EeoCle

V9JQ3zOTOB8F_YU1?usp=sharing. 

 
 

Figure 1. TRMSDN dataset instances 

 

3.2 Experiment setting 

 

In this experiment, we classify our dataset into two 

categories: Dataset 1 and Dataset 2. Dataset 1 consists of the 

unaltered image without any image enhancement methods 

applied. Dataset 2 is the conclusive set, comprising the 

CLAHE-enhanced original image. Figure 2 exhibits an 

example of the image enhancement method with (a) the 

original image and (b) CLAHE. Moreover, Figure 3 shows our 

research workflow. Our works will implement YOLOv9c to 

train and test our Dataset 1 and Dataset 2. YOLOv9 seeks to 

mitigate information bottlenecks with an auxiliary supervision 

architecture termed Programmable Gradient Information 

(PGI). PGI is primarily intended as a training aid to enhance 

the efficiency and accuracy of gradient backpropagation 

through connections to preceding layers, utilizing a detachable 

branch that allows for the elimination of these supplementary 

computations during inference, hence optimizing model 

compactness and inference speed. To enhance these 

interconnections, it employs multi-level auxiliary information 

with integration networks that aggregate gradients from 

various convolutional stages to combine significant gradients 

for propagation. 

 

  
(a) Original image (b) CLAHE image 

 

Figure 2. Example of the image enhancement methods with (a) Original image, and (b) CLAHE image 
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Figure 3. Research workflow 

 

Table 2. Training result in TRMSDN dataset with YOLOv9c 

 

Class Images Instances 
Original (Dataset 1) CLAHE (Dataset 2) 

P R mAP50 P R mAP50 

P1 877 78 0.39 0.91 0.52 0.403 0.91 0.567 

P2 877 76 0.463 0.803 0.61 0.468 0.868 0.556 

P3 877 85 0.687 0.929 0.835 0.654 0.882 0.797 

P4 877 80 0.594 0.84 0.834 0.596 0.863 0.838 

P5 877 69 0.627 0.928 0.833 0.671 0.913 0.851 

P6 877 73 0.968 0.959 0.988 0.972 0.958 0.988 

P7 877 82 0.478 0.635 0.587 0.543 0.768 0.617 

P8 877 78 0.909 0.974 0.989 0.864 0.987 0.987 

P9 877 79 0.834 0.937 0.972 0.914 0.949 0.984 

P10 877 128 0.638 0.207 0.411 0.629 0.25 0.393 

P11 877 78 0.729 0.949 0.834 0.729 0.949 0.829 

P12 877 71 0.515 0.873 0.573 0.42 0.845 0.589 

All 877 977 0.653 0.829 0.745 0.655 0.845 0.76 
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Figure 4. Training process YOLOv9c with CLAHE dataset 

 

 
 

Figure 5. Validation batch 0 with YOLOv9c and CLAHE dataset 

 

3.3 Training result 

 

Table 2 shows the training result in the TRMSDN dataset 

with YOLOv9c. Among the datasets, Dataset 1 has an average 

accuracy of 74.5 percent, while Dataset 2 demonstrates the 

best accuracy of 76.6 percent. The CLAHE algorithm in 

Dataset 2 earns the highest score and has the potential to 

increase the mAP performance by 2.1% when compared to the 

original images included in Dataset 1.  

Furthermore, Figure 4 explains the training process of 

YOLOv9c with CLAHE (Dataset 2). The results of the 

training for each category are presented in a manner that is 

proportional to the number of times the neural network 

repeated the training process. Following more than thirty 

cycles of training, the various loss functions started to 

decrease, which was an indication that the training of the 

network's parameters had reached a point of convergence. All 

the loss functions moved in the same direction and eventually 

decreased, which is an indication that the parameters of the 

network were trained appropriately.  

YOLOv9 is a substantial advancement in real-time object 

identification, delivering significant advantages in terms of 

efficiency, accuracy, and adaptability. It is a vital development 

in the field. YOLOv9 establishes a new standard for research 

and application that will be conducted in the sector in the 

future by tackling crucial difficulties using innovative 

technologies such as PGI and GELAN. Considering the 

ongoing development of the artificial intelligence community, 

YOLOv9 serves as a powerful illustration of the role that 

collaboration and creativity play in propelling technological 

advancement. YOLOv9c experiment during validation batch 0 

with CLAHE Dataset 2 is shown in Figure 5. In our 

experiment, we just implemented the default configuration 

with YOLOv9 data augmentation approach. The performance 

and robustness of YOLO models can be significantly 

enhanced by incorporating a variety of augmentation methods, 
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including HSV augmentation, image angle/degree, translation, 

perspective transform, image scale, flip up-down, and flip left-

right, as well as more advanced techniques like Mosaic, 

CutMix, and MixUp. 

The Intersection over Union (IoU) quantifies the overlap 

ratio between the predicted bounding box (pred) and ground 

truth (gt), as shown in Eq. (1) [25, 26].  

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑑 ∩ 𝐴𝑟𝑒𝑎𝑔𝑡

𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑑 ∪ 𝐴𝑟𝑒𝑎𝑔𝑡

 (1) 

 

However, the output examples can be categorized into three 

kinds. True positive (TP) refers to accurately identified 

samples, false positive (FP) indicates samples that were 

incorrectly identified, and true negative (TN) represents 

samples that were not recognized. Precision and Recall are 

represented by Yuan et al. [27] in Eqs. (2)-(3). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

Another evaluation index, F1 [28], is shown in Eq. (4). 

 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

Yolo loss function based on Eq. (5) [28]. 

 

𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝑙𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − 𝑥̂𝑖)2 + (𝑦 − 𝑦̂𝑖)2]

𝐵

𝑗=0

𝑠2

𝑖=0

 

+𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝑙𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √𝑤̂𝑖)
2

+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑠2

𝑖=0

 

+ ∑ ∑ 𝑙𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2

𝐵

𝑗=0

𝑠2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝑙𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2

𝐵

𝑗=0

𝑠2

𝑖=0

 

+ ∑ 𝑙𝑖
𝑜𝑏𝑗

𝑠2

𝑖=0

∑ (𝑝𝑖(𝑐) − 𝑝̂𝑖(𝑐))2

𝑐𝜖𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 

(5) 

 

where, 𝑙𝑖𝑗
𝑜𝑏𝑗

 denotes if the object appears in cell i, and 

𝑙𝑖𝑗
𝑜𝑏𝑗

 notes that the 𝑗𝑡ℎ bounding box predictor in cell i is 

responsible for the prediction. Next, (𝑥̂, 𝑦̂, 𝑤̂, ℎ̂, 𝑐̂, 𝑎𝑛𝑑 𝑝̂) are 

represented as the predicted bounding box's center 

coordinates, width, height, confidence, and category 

probability. The symbols lacking the cusp represent authentic 

labeling. Furthermore, our research has determined the λcoord 

value to be 0.5, indicating that the errors in width and height 

are less significant in calculations. A λnoobj value of 0.5 is 

implemented to mitigate the influence of several grids devoid 

of objects on the loss value. 

 

 

4. RESULTS AND DISCUSSIONS 

 

Table 3 displays the results of the testing that was performed 

on the TRMSDN dataset using YOLOv9c. The testing phase 

yields a mean absolute performance (mAP) of 74.9% for 

Original Dataset 1, while CLAHE Dataset 2 achieved a mAP 

of 76.2 %. Considering the findings of the training and testing, 

we can conclude that CLAHE has the potential to enhance the 

performance result of YOLOv9c. 

In addition, the recognition result of YOLOv9c with both 

datasets is displayed in Figure 6. When compared to the 

original datasets, YOLOv9c with the CLAHE dataset 

performs exceptionally well. It can be shown in Figure 6(e) 

that YOLOv9c was unable to identify two of the objects in the 

images using Dataset 1. 

The image enhancement approach, known as CLAHE, is 

quite common and offers several advantages, including the 

following: (1) Improved Contrast: CLAHE improves the 

contrast of an image, which makes it simpler to perceive 

features that may have been difficult to distinguish in the 

original image. (2) Enhancement of Local Contrast: CLAHE 

can maintain local details since it enhances the contrast of an 

image in specific locations rather than on a global scale. (3) 

No Over-enhancement: In contrast to conventional histogram 

equalization, CLAHE employs a limiting function to prevent 

the image from being over-enhanced, which can lead to the 

appearance of artifacts and noise. (4) Modifiable Parameters: 

CLAHE provides some parameters that can be modified to 

fine-tune the enhancement for a specific image. These 

parameters include the block size and the clip limit, among 

others. (5) CLAHE is a well-established method that is 

extensively used in a variety of applications. 

 

Table 3. Testing result in TRMSDN dataset with YOLOv9c 

 

Class Images Instances 
Original Dataset CLAHE Dataset 

P R mAP50 P R mAP50 

P1 877 78 0.39 0.91 0.52 0.403 0.91 0.568 

P2 877 76 0.463 0.803 0.611 0.468 0.868 0.556 

P3 877 85 0.687 0.929 0.834 0.654 0.882 0.797 

P4 877 80 0.594 0.84 0.834 0.596 0.863 0.838 

P5 877 69 0.627 0.928 0.833 0.671 0.913 0.851 

P6 877 73 0.968 0.959 0.988 0.972 0.958 0.988 

P7 877 82 0.478 0.636 0.586 0.543 0.768 0.619 

P8 877 78 0.909 0.974 0.989 0.864 0.987 0.987 

P9 877 79 0.834 0.937 0.972 0.914 0.949 0.984 

P10 877 128 0.638 0.207 0.411 0.629 0.25 0.394 

P11 877 78 0.729 0.949 0.836 0.729 0.949 0.829 

P12 877 71 0.515 0.873 0.573 0.42 0.845 0.591 

All 877 977 0.653 0.829 0.749 0.655 0.845 0.762 
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Figure 6. Recognition result with YOLOv9c 

5. CONCLUSIONS

The primary focus of this research is to examine the ways 

in which image enhancement methods can enhance the 

performance of the original image. Using techniques such as 

CLAHE, our study blends the original image with other 

image-enhancing techniques. To train, we use a variety of 

images, both in terms of quantity and size. As part of our 

research, we study and investigate CNN models that have been 

integrated with a variety of backbone architectures and 

extractor features, notably YOLOv9c, for the purpose of 

identification of road markings during the night.  

Additionally, we derived the subsequent findings from our 

experiments: Experimentally, Dataset 2, which consists of the 

original image augmented by CLAHE, is the most effective 

dataset. This study endorses the utilization of CLAHE's 

YOLOv9c as the superior model, with a mean Average 

Precision (mAP) of 76%. Augmenting the noise during 

training will prolong the training duration and diminish the 

frequency of general errors. Consequently, enhancing item 

recognition efficacy can be achieved by integrating the dataset 

with CLAHE images and the original photographs. The results 

of this study have significant significance for practical 

applications, including autonomous vehicles, which indicates

the improved detection capabilities of the suggested 

framework can boost the reliability of autonomous driving 

systems, especially in nocturnal conditions, hence mitigating 

accident risks and assuring safer navigation. 

In the future, one of our objectives is to enhance the dataset 

that we have in Taiwan, namely by collecting data in a wider 

range of circumstances than merely at night. Because we want 

to emphasize the advantages of image enhancement, we are 

going to analyze it in comparison to other standards for road 

marking signs. Future work will involve extending the dataset 

to include diverse nighttime conditions and urban 

environments across different regions, starting with additional 

data collection in Taiwan. This expansion will enable the 

model to generalize better across varied scenarios. 
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