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In this work, we used the Legendre operational differential matrix method based on Tau 

method to obtain the fuzzy approximate-analytical solutions of the fuzzy differential 

equations in which the coefficients are triangular fuzzy functions. This method allows 

for the fuzzy solution of the fuzzy initial (or boundary) value problems to be computed 

in the form of an infinite fuzzy series. Also, this method enables to approximate the 

fuzzy exact-analytical solutions with high efficiency, as these solutions can be resorted 

to if it is not possible to find the exact solutions of these fuzzy problems. We introduced 

a comparison between the approximate solutions that we computed and the exact 

solutions of the chosen problem, as we found the absolute error. According to the 

numerical results, the series solutions that we found are accurate solutions and very 

close to the exact solutions. 
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1. INTRODUCTION

In fuzzy differential equations (FDEs), the coefficients may 

be non-fuzzy variable coefficients or fuzzy variable 

coefficients. The first type means that the coefficients are real-

valued functions while the second type means that the 

coefficients are fuzzy-valued functions. There are many 

different types of the fuzzy variable coefficients, the most 

important of which are  the  triangular fuzzy function 

coefficients and the trapezoidal fuzzy function coefficients. 

In 2012, the researchers  Gasilov et al. [1] introduced a new 

concept in the fuzzy functions called the triangular fuzzy 

functions (TFFs). The aforementioned researchers used fuzzy 

linear transformations method to find the fuzzy exact-

analytical solution (FEAS) of the second order linear  FDE  in 

which the coefficients are TFF. The researchers continued to 

study the subject of  TFFs  and presented different fuzzy 

methods for solving linear FDE with TFF coefficients, among 

them we mention: Mondal and Roy [2] used fuzzy Lagrange 

multiplier method for solving first order linear FDE with TFF 

coefficients. Eljaoui et al. [3], Patel and Desai [4] and Citil [5] 

all used fuzzy Laplace transform method to solve different 

types of second order linear FDE with TFF coefficients. 

Alikhani and Mostafazadeh [6] added some important 

observations to the topic of TFFs and then solved first order 

linear FDE with TFF coefficients using fuzzy cross product 

method. Jamal et al. [7] studied the existence and the 

uniqueness results for  the  fuzzy  solution of  the  first order 

linear FDE with TFF coefficients, they introduced some 

important theorems that ensure the fuzzy solution is exist and 

unique. Moreover, they used fuzzy linear correlated method 

for solving first order linear FDE.  

The above-mentioned methods dealt with the linear case of 

the FDE  with TFF coefficients and did not address the non-

linear FDE. Moreover, the fuzzy solutions that have been 

obtained are exact-analytical solutions, as is well known, the 

exact-analytical solutions are not always found and sometimes 

may be difficult. From the above, we can conclude that the 

current existing methods that use to solve the FDE with TFF 

coefficients are exact-analytical methods that solve linear 

equations, as the non-linear FDEs with TFF coefficients have 

not been solved, moreover, the numerical solutions and the 

approximate-analytical solutions of these equations have not 

been obtained. Thus, finding the fuzzy approximate-analytical 

solution (FAAS) of the FDEs with TFF coefficients is 

necessary. Therefore, in this work we will search on finding 

the FAAS of the FDE in which the coefficients are TFF. Also, 

the FDE that we will deal with will be linear and non-linear, 

as well as these equations will be with fuzzy initial conditions 

and fuzzy boundary conditions. The method that we will use 

is the fuzzy function of Legendre operational differential 

matrix method (LODMM) based on Tau method. 

The beginning of using LODMM based on Tau method 

dates back to 2014, when the researchers Jung et al. [8] used 

this method to obtain the approximate-analytical solutions of 

the second order non-fuzzy differential equations (NFDDs) 

with initial conditions. Also, in 2019, the researcher Edeo used 

the same method to obtain the approximate-analytical 

solutions of the second order NFDDs with boundary 

conditions [9]. Therefore, during this research, we will expand 

this method to the fuzzy case so that we can solve the FDEs. 

The importance of this method lies in that it enables us to find 

the FAAS with high accuracy and in simple and clear steps. 

Therefore, the solutions resulting from this method can be an 

efficient alternative to the exact solutions in case it does not 

exist. 
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2. FUNDAMENTAL CONCEPTS IN FUZZY SET 

THEORY 

 

The fundamental definitions in the fuzzy set theory, which 

are: fuzzy set, α − level set, fuzzy number, ...etc. can be found 

in details in studies [9-12]. In this section, we will touch on 

definitions that are directly related to our work. 

 

Definition (2.1) Triangular Fuzzy Number 

Let u1, u2 and u3 are real numbers with u1≤ u2 ≤ u3. Then 

the triangular fuzzy number (TFN) can be written as ũ =
(u1, u2, u3) and it is a fuzzy number with membership function 

[1]: 
 

μũ(x) =

{
 
 

 
 
(x − u1) (u2 − u1)    if u1 ≤ x ≤ u2⁄

(u3 − x) (u3 − u2)    if u2 ≤ x ≤ u3⁄

0                 otherwise

 (1) 

 

Remark (2.2) 

The parametric form of the TFN ũ = (u1, u2, u3)  can be 

defined as [1]: 
 

[ũ]α = [[u]α
L , [u]α

U] = [(u2 − u1)α+ u1, (u2 −
u3)α+ u3]; ∀ α ∈ [0,1] 

(2) 

 

Example (2.3) 

The parametric form of the TFN ũ = (5, 7, 10)  can be 

written as: 
 

[ũ]α = [[u]α
L , [u]α

U] = [2α + 5,−3α+ 10] 
 

Then, we get:  

 

[u]α
L = 2α+ 5 

[u]α
U = −3α+ 10 

 

The functions [u]α
L and [u]α

U represents the lower bound and 

the upper bound of parametric form of ũ, respectively. 

 

Definition (2.4) Triangular Fuzzy Function 

Let Fa, Fb and Fc ∶ I → R  for some interval I ⊆ R are 

continuous real-valued functions such that: 

 

Fa(t) ≤ Fb(t) ≤ Fc(t) , ∀ t ∈ I 
 

We call the fuzzy set F̃(t), determined by the membership 

function [1]: 

 

μF̃(t)(x) =

{
 
 

 
 
(x − Fa(t)) (Fb(t) − Fa(t)) if Fa(t) ≤ x ≤ Fb(t)⁄

(Fc(t) − x) (Fc(t) − Fb(t)) if Fb(t) ≤ x ≤ Fc(t)⁄

0                    otherwise

 (3) 

 

as TFF for all x, t ∈ I,  and it is denoted by: F̃(t) =
(Fa(t), Fb(t), Fc(t)).  

From the above definition, we can conclude that any fuzzy 

function produces a TFN for any real input can be described 

as TFF. 

 

Example (2.5) 

The function: F̃(t) = (−16t2 − 21t − 8,−6t2 + 15t −
6, 12t2 + 63t + 2), t ∈ (0,1) is a TFF. Since: 

If we assume that Fa(t) = −16t2 − 21t − 8 , Fb(t) =
−6t2 + 15t − 6 and Fc(t) = 12t2 + 63t + 2. 

Then, it is clear that the functions Fa, Fb and Fc  are 

continuous real-valued functions and Fa(t) ≤ Fb(t) ≤
Fc(t), ∀ t ∈ (0,1). 

This means that F̃(t) produces a TFN for any t ∈ (0,1). 
Thus, F̃(t) is TFF. 

 

Remark (2.6) 

The parametric form of the TFF F̃(t) =
(Fa(t) , Fb(t) , Fc(t)) can be defined as [1]: 

 

[F̃(t)]α=[[F(t)]α
L , [F(t)]α

U]=[(Fb(t) − Fa(t))α +
Fa(t), (Fb(t) − Fc(t))α + Fc(t)]; 

∀ α ∈ [0,1] and ∀ t ∈ I 
(4) 

 

Example (2.7) 

The parametric form of the TFF F̃(t) in the Example (2.5) 

can be written as: 

 

[F̃(t)]α=[[F(t)]α
L , [F(t)]α

U] = [(10t2 + 36t + 2)α − 16t2 −
21t − 8, (−18t2 − 48t − 8)α + 12t2 + 63t + 2] 

 

Then, we get: 

 

[F(t)]α
L = (10t2 + 36t + 2)α− 16t2 − 21t − 8 

[F(t)]α
U = (−18t2 − 48t − 8)α+ 12t2 + 63t + 2 

 

The functions [F(t)]α
L  and [F(t)]α

U  represents the lower 

bound and the upper bound of parametric form of F̃(t) , 

respectively. For more details, see studies [1, 2]. 

 

 

3. SHIFTED LEGENDRE POLYNOMIALS 

 

The Legendre polynomials of order r are defined on the 

interval [-1, 1] and are denoted by Lr(z). These polynomials 

can be described as [8]: 

 

L0(z) = 1 (5) 

 

L1(z) = z (6) 

 

L2(z) =
3

2
z2 −

1

2
 (7) 

 

L3(z) =
5 

2
z3 −

3 

2
𝑧 (8) 

 

L4(z) =
35 

8
z4 −

15 

4
z2 +

3 

8
 (9) 

⋮ 

Lr+1(z) =
2r + 1 

r + 1
zLr(z) −

r 

r + 1
Lr−1(z);  

r = 1,2, 3, … 

(10) 

 

In order to use the Legendre polynomials on the interval [0, 

1], the so-called shifted Legendre polynomials (SLPs) are 

defined by introducing z=2t-1. 

Let the SLPs Lr(2t − 1) be denoted by pr(t) , then pr(t) 
can be obtained as follows: 

 

p0(t) = 1 (11) 
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p1(t) = 2t − 1 (12) 
 

p2(t) = 6t2 − 6t + 1 (13) 
 

p3(t) = 20t
3 − 30t2 + 12t − 1 (14) 

 

p4(t) = 70t
4 − 140t3 + 90t2 − 20t + 1 (15) 

⋮ 

pr+1(t) =
2r + 1

r + 1
(2t − 1)pr(t) −

r

r + 1
pr−1(t);  

r = 1,2, 3, … 

(16) 

 

In this work, we will use the SLPs as a prime factor to get 

the FAAS of the FDE. And this will be done based on Tau 

method, since the basis of Tau method is a definite integral 

with in the period [0, 1], which is the same period for which 

the SLPs are defined. 

Finding the FAAS of the FDE is based on an infinite fuzzy 

series. This series is called the solution series, which is a 

convergent series from which the first terms are taken to 

approximate the FEAS of FDE. The mathematical formula for 

this series consists of SLPs and shifted Legendre coefficients 

(SLCs), which means that the SLP constitute the basic element 

in finding the desired approximate solution, as we will notice 

in the next section. 
 

 

4. DESCRIPTION OF LEGENDRE OPERATIONAL 

DIFFERENTIAL MATRIX METHOD 
 

To describe LODMM in a simple way, we will consider the 

following general form of the second order NFDD: 
 

x′′(t) = f(t, x(t),  x′(t)), t ≥ 0 (17) 

 

With: 
 

x(0) = a, x′(0) = b (18) 
 

The solution x(t) of problem (17) can be approximated as [8, 

13]: 
 

x(t) =∑cr pr(t)

∞

r=0

 (19) 

 

where, 

pr(t) are SLPs, 

cr are SLCs. 

The coefficients cr are given by: 
 

cr = (2r + 1)∫ x(t) pr(t) dt; r = 0,1,2, …
1

0

 (20) 

 

Finding the approximate solution x(t) depends mainly on 

finding the constants cr as we will notice later. 

By considering only the first (m+1) terms of the series 

solution in Eq. (19), we have: 
 

(t) ≈ ∑crpr(t)

m

r=0

 (21) 

 

This means that: 

 

x(t) ≈ c0 p0(t) + c1 p1(t) + c2 p2(t) + ⋯+ cm pm(t) (22) 

 

In matrix form, we get: 

 

x(t) ≈ CTW(t) (23) 

 

where, 

CT = [c0, c1, c2, … , cm] is SLCs vector, 

W(t) = [p0(t),  p1(t),  p2(t), … ,  pm(t)]
T is SLPs vector. 

The derivative of W(t) is: 

 

d(W(t))

dt
= D(1)W(t) (24) 

 

where, 

D(1) is (m + 1) × (m + 1) operational differential matrix, 

which is given by: 

 

D(1) = (dij) = {
4j − 2, if j = i − k
0,          otherwise

 (25) 

 

where, 

 

k = {
1,3,5, …m   , if m is odd

1,3,5, …m − 1, if m is even
 (26) 

 

In this work, based on many applied problems that we 

solved by using different values of m, we will consider m = 4, 

since this value of m is suitable for the approximation. 

Therefore, form = 4, we get:  

 

D(1) = (dij) = {
4j − 2, if j = i − 1 or j = i − 3

0,        otherwise
 (27) 

 

Thus, the operational differential matrix will be: 

 

D(1) =

[
 
 
 
 
0 0 0
2 0 0
0
2
0

6
0
6

0
10
0

  0 
  0 

  
0
0
14

 

0
0
0
0
0]
 
 
 
 

 (28) 

 

For the nth order derivative, we obtain: 
 

dn(W(t))

dtn
= (D(1))

n
W(t) = D(n)W(t);  

n = 1, 2,3, … 

(29) 

 

where, (D(1))
n
denotes the matrix powers. 

Thus, we find: 
 

D(2) = D(1) × D(1) =

[
 
 
 
 
0 0 0  
0 0 0  
12
0
40

0
60
0

0
0
140

  

0
0
0
0
0

   0
   0

   
0
0
0]
 
 
 
 

 (30) 

 

Therefore, we get: 
 

x(t) = CTW(t) (31) 
 

This means that: 

 

x′(t) =
d(x(t))

dt
=
d(CTW(t))

dt
= CT 

d(W(t))

dt
 (32) 
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This gives: 

 

x′(t) = CT D(1) W(t) (33) 

 

Also, we have: 

 

x′′(t) =
d(x′(t))

dt
=
d (CT D(1) W(t))

dt
= CT 

d (D(1) W(t))

dt
 (34) 

 

This gives: 

 

x′′(t) = CT D(2)W(t) (35) 

 

where, 

 

CT = [c0, c1, c2, c3, c4] (36) 

 

W(t) = [p0(t),  p1(t),  p2(t),  p3(t),  p4(t)]
T (37) 

 

Therefore, from the above description, we will conclude the 

following: 

 

• From Eq. (31), we find: 

 

x(t) = CT W(t)
= [c0, c1, c2, c3, c4][p0(t), p1(t),  p2(t),  p3(t), p4(t)]

T 
(38) 

 

This gives: 

 

x(t) = c0 p0(t) + c1 p1(t) + c2 p2(t) + c3 p3(t)
+ c4 p4(t) 

(39) 

 

• From Eq. (33), we find: 

x′(t) = CT D(1) W(t) = [c0, c1, c2, c3, c4]

[
 
 
 
 
0 0 0
2 0 0
0
2
0

6
0
6

0
10
0

 0  
 0  

  
0
0
14
  

0
0
0
0
0]
 
 
 
 

[p0(t), p1(t), p2(t), p3(t), p4(t)]
T (40) 

 
This gives: 

 

x′(t) = 2c1p0(t) + 2c3p0(t) + 6c2p1(t) + 6c4p1(t)
+ 10c3p2(t) + 14c4p3(t) 

(41) 

• From Eq. (35), we find: 

 

x′′(t) = CT D(2) W(t) = [c0, c1, c2, c3, c4]

[
 
 
 
 
0 0 0
0 0 0
12
0
40

0
60
0

0
0
140

0
0
0
0
0

0
0
0
0
0]
 
 
 
 

[p0(t), p1(t), p2(t), p3(t), p4(t)]
T (42) 

 

This gives: 

 

x′′(t) = 12c2p0(t) + 40c4p0(t) + 60c3p1(t)
+ 140c4p2(t) 

(43) 

 

Now, by using the Eqs. (39), (41) and (43) we can find the 

residual function R(t) of problem (17) as follows: 

From Eq. (17), we have: 

 

R(t) = x′′(t) − f(t, x(t), x′(t)) (44) 

 

This gives: 

 

R(t) = 12c2p0(t) + 40c4p0(t) + 60c3p1(t)
+ 140c4p2(t)
− f( t, c0 p0(t) + c1 p1(t)
+ c2 p2(t) + c3 p3(t)
+ c4 p4(t), 2c1p0(t) + 2c3p0(t)
+ 6c2p1(t) + 6c4p1(t)
+ 10c3p2(t) + 14c4p3(t)) 

(45) 

 

Then, we can apply Tau method, which can be defined as: 

 

∫ R(t) pr(t) dt = 0; r = 0,1,2, … ,m − 2
1

0

 (46) 

 

For m=4, we get: 

 

∫ R(t) p0(t) dt = 0
1

0

 (47) 

∫ R(t) p1(t) dt = 0
1

0

 (48) 

 

∫ R(t) p2(t) dt = 0
1

0

 (49) 

 

From the Eqs. (47)-(49), we get three linear (or non-linear) 

equations. In addition, two linear equations can be obtained by 

applying the initial conditions of Eq. (18). Therefore, we will 

get a system of five linear (or non-linear) equations, and then 

by solving this system, we will obtain the constants 

c0, c1, c2, c3 and c4. 

Through these constants, the approximate-analytical 

solution of the problem (17) can be obtained, which is: 

 

x(t) ≈ c0 p0(t) + c1 p1(t) + c2 p2(t) + c3 p3(t)
+ c4 p4(t) 

(50) 

 

It is necessary to note that the above mathematical 

description can be repeated if the NFDD of problem (17) is 

boundary value problem or if it is higher order initial (or 

boundary) value problems. 

From the above, the solution steps for LODMM based on 

Tau method can be summarized as follows: 

1. We adjust the order of the DE so that it is always an 

equation of the second order. 

2. We use the Eqs. (39), (41) and (43) to obtain the residual 

function R(t) of the DE in step (1). 

3. We use the Eqs. (47)-(49), to get three linear (or non-

linear) algebraic equations. 
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4. We apply the initial conditions (or the boundary 

conditions) of the DE in step (1) to get two linear algebraic 

equations. 

5.  From the steps (3) and (4), we have a system of five linear 

(or non-linear) algebraic equations. 

6. We solve the system in step (5) to find the constants 

c0, c1, c2, c3 and c4. 

7. We substitute the constants of step (6) in the Eq. (50) to 

get the approximate-analytical solution of the DE in step 

(1). 

The advantage of the LODMM based on Tau method over 

the other methods is therefore: 

• It is computational less cost, 

• It needs less computational time and effort and 

• It has better accuracy. 

The theorems that ensure the convergence of the solution 

and the stability of the errors analysis can be found in studies 

[8, 13]. 

 

 

5. FUZZY DIFFERENTIAL EQUATIONS WITH 

TRIANGULAR FUZZY FUNCTION COEFFICIENTS 

 

The general form of the nth-order linear FDE with TFF 

coefficients is [1, 14]: 

 

x̃
(n)(t) + ãn−1(t)x̃

(n−1)(t) + ãn−2(t)x̃
(n−2)(t) + ⋯

+ ã1(t)x̃ˊ(t) + ã0(t)x̃(t) = k̃(t),  
t ∈ [0,∞) ⊆ R 

(51) 

 

With: 

 

x̃(0) = x(0; α) = v0(α) (52) 
 

x̃ˊ(0) = x′(0; α) = v1(α) (53) 
 

x̃ˊˊ(0) = x′′(0; α) = v2(α) (54) 

⋮ 

x̃(n−1)(0) = x(n−1)(0; α) = vn−1(α) (55) 

 

where, 

ãn−1(t), ãn−2(t), … , ã1(t), ã0(t) and k̃(t) are TFFs. 

v0(α),  v1(α) , v2(α), … , vn−1(α) are TFNs. 

Since ãn−1(t), ãn−2(t), … , ã1(t), ã0(t) and k̃(t)  are TFFs, 

then we must have: 

 

ãn−1(t) = an−1(t; α) = (h1(t), h2(t), h3(t)) (56) 
 

ãn−2(t) = an−2(t; α) = (h4(t), h5(t), h6(t)) (57) 

⋮ 
ã1(t) = a1(t; α) = (h7(t), h8(t), h9(t)) (58) 

 

ã0(t) = a0(t; α) = (h10(t), h11(t), h12(t)) (59) 

 

k̃(t) = k(t; α) = (h13(t), h14(t), h15(t)) (60) 

 

where,  h1(t),  h2(t), … , h15(t)  are continuous real-valued 

functions. 

Since v0(α),  v1(α), v2(α), … , vn−1(α) are TFNs, then we 

must have: 

 

v0(α) = (b1, b2, b3) (61) 
 

v1(α) = (b4, b5, b6) (62) 

v2(α) = (b7, b8, b9) (63) 

⋮ 
vn−1(α) = (b10, b11, b12) (64) 

 

where, b1,  b2, … , b12 are real numbers. 

By using the concepts that we introduced in section two, we 

write the parametric form of the Eqs. (56)-(64) as follows: 

 

an−1(t; α) =
[an−1(t)]α=[[an−1(t)]α

L , [an−1(t)]α
U]=[(h2(t) −

h1(t))α + h1(t),(h2(t) − h3(t))α + h3(t)] 
(65) 

 

an−2(t; α) =
[an−2(t)]α=[[an−2(t)]α

L , [an−2(t)]α 
U ]=[(h5(t) −

h4(t))α + h4(t), (h5(t) − h6(t))α + h6(t)] 
(66) 

⋮ 
a1(t; α) = [a1(t)]α=[[a1(t)]α

L , [a1(t)]α
U]=[(h8(t) −

h7(t))α + h7(t), (h8(t) − h9(t))α + h9(t)] 
(67) 

 

a0(t; α)=[ a0(t)]α=[[a0(t)]α
L , [a0(t)]α

U]=[(h11(t) −
h10(t))α + h10(t), (h11(t) − h12(t))α + h12(t)] 

(68) 

 

k(t; α) = [k(t)]α=[[k(t)]α
L , [k(t)]α

U]=[(h14(t) −
h13(t))α + h13(t), (h14(t) − h15(t))α + h15(t)] 

(69) 

 

v0(α) = [v0]α=[[v0]α
L , [v0]α

U]=[( b2 − b1)α + b1, 

(b2 − b3)α + b3] 
(70) 

 

v1(α) = [v1]α=[[v1]α
L , [v1]α

U]=[(b5 − b4)α + b4, 

(b5 − b6)α + b6] 
(71) 

 

v2(α) = [v2]α=[[v2]α
L , [v2]α

U]=[(b8 − b7)α + b7, 
(b8 − b9)α + b9] 

(72) 

⋮ 
vn−1(α) = [vn−1]α=[[vn−1]α

L , [vn−1]α
U]=[(b11 −

b10)α + b10, (b11 − b12)α + b12] 
(73) 

 

There are many main approaches in solving the FDE. The 

most popular approach is so called the defuzzification. The 

principal idea in this approach is converting the FDE into a 

system of NFDEs by using the properties of the α-level sets 

(For more details, see studies [15-19]). 

Therefore, for solving problem (51), we convert it into a 

system of nth-order linear NFDEs as follows: 

 

[x(n)(t) + an−1(t)x
(n−1)(t) + an−2(t)x

(n−2)(t) + ⋯
+ a1(t)x

′(t) + a0(t)x(t)]α = [k(t)]α 
(74) 

 

With: 

 

[x(0)]α = [v0]α (75) 

 

[x′(0)]α = [v1]α (76) 

 

[x′′(0)]α = [v2]α (77) 

⋮ 
[x(n−1)(0)]α = [vn−1]α (78) 

 

Then, we get: 
 

[x(n)(t)]
α
+ [an−1(t)x

(n−1)(t)]
α
+ [an−2(t)x

(n−2)(t)]
α
+ 

…+ [a1(t)x
′(t)]α + [a0(t)x(t)]α = [k(t)]α 

(79) 
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Therefore, we have: 

 

[x(n)(t)]α + [an−1(t)]α[x
(n−1)(t)]α

+ [an−2(t)]α[x
(n−2)(t)]α +⋯

+ [a1(t)]α[x
′(t)]α

+ [a0(t)]α[x(t)]α = [k(t)]α 

(80) 

 

Then, we write the lower bound and the upper bound of Eq. 

(80) as follows: 

 

●) The lower bound of the parametric form 

 

[x(n)(t)]
α

L
+ [an−1(t)]α

L[x(n−1)(t)]
α

L

+ [an−2(t)]α
L[x(n−2)(t)]

α

L
+⋯

+ [a1(t)]α
L[x′(t)]α

L

+ [a0(t)]α
L[x(t)]α

L = [k(t)]α
L  

(81) 

 

With: 

 

[x(0)]α
L = [v0]α

L  (82) 

 

[x′(0)]α
L = [v1]α

L  (83) 

 

[x′′(0)]α
L = [v2]α

L  (84) 

⋮ 
[x(n−1)(0)]α

L = [vn−1]α
L  (85) 

 

where, 

 

[an−1(t)]α
L=(h2(t) − h1(t))α + h1(t) (86) 

 

[an−2(t)]α
L = (h5(t) − h4(t))α + h4(t) (87) 

⋮ 
[a1(t)]α

L = (h8(t) − h7(t))α +  h7(t) (88) 

 

[a0(t)]α
L = (h11(t) − h10(t))α + h10(t) (89) 

 

[k(t)]α
L = (h14(t) − h13(t))α +  h13(t) (90) 

 

[v0]α
L=(b2 − b1)α + b1 (91) 

 

[v1]α
L=(b5 − b4)α + b4 (92) 

 

[v2]α
L=(b8 − b7)α + b7 (93) 

⋮ 
[vn−1]α

L=(b11 − b10)α + b10 (94) 

 

Now, by using LODMM that we described in section four, 

we will solve Eq. (81) subject to the initial conditions in the 

Eqs. (82)-(85), we can obtain the lower bound of the fuzzy 

solution of problem (51) which is [x(t)]α
L. 

●) The upper bound of the parametric form 

 

[x(n)(t)]
α

U
+ [an−1(t)]α

U[x(n−1)(t)]
α

U

+ [an−2(t)]α
U[x(n−2)(t)]

α

U
+⋯

+ [a1(t)]α
U[x′(t)]α

U

+ [a0(t)]α
U[x(t)]α

U = [k(t)]α
U 

(95) 

 

With initial conditions:  

 

[x(0)]α
U = [v0]α

U (96) 

[x′(0)]α
U = [v1]α

U (97) 

 

[x′′(0)]α
U = [v2]α

U (98) 

⋮ 
[x(n−1)(0)]α

U = [vn−1]α
U (99) 

 

where, 

 

[an−1(t)]α
U=(h2(t) − h3(t))α + h3(t) (100) 

 

[an−2(t)]α
U = (h5(t) − h6(t))α + h6(t) (101) 

⋮ 
[a1(t)]α

U = (h8(t) − h9(t))α + h9(t) (102) 

 

[a0(t)]α
U = (h11(t) − h12(t))α + h12(t) (103) 

 

[k(t)]α
U = (h14(t) − h15(t))α + h15(t) (104) 

 

[v0]α
U=( b2 − b3)α + b3 (105) 

 

[v1]α
U=(b5 − b6)α + b6 (106) 

 

[v2]α
U=(b8 − b9)α + b9 (107) 

⋮ 
[vn−1]α

U=(b11 − b12)α + b12 (108) 

 

Now, by using LODMM that we described in section four, 

we will solve Eq. (95) subject to the initial conditions in the 

Eqs. (96)-(99), we can obtain the upper bound of the fuzzy 

solution of problem (51) which is [x(t)]α
U. 

Finally, we obtain the fuzzy solution of the problem (51), 

which is: 

 

x̃(t)= [x(t)]α = [[x(t)]α
L, [x(t)]α

U] (109) 

 

The following theorem ensures the existence and 

uniqueness of the fuzzy solution of the problem (51). 

 

Theorem 

Let F̃:  [0,∞) × Ẽ × Ẽ × …× Ẽ → Ẽ  be continuous fuzzy 

function and assume that there exist real numbers 

q1, q2 , … , qn > 0 such that [14]: 

 

D(F̃(t, x̃1, x̃2, … , x̃n), F̃(t, ỹ1, ỹ2, … , ỹn)) ≤∑qi

n

i=1

D(x̃i, ỹi) 

for all t ∈ [a, b], x̃i, ỹi ∈ Ẽ, i = 1,2, … , n 

 

Then the nth-order FDE described by the problem (51) has 

a unique solution on [0, ∞). 

 

 

6. APPLIED EXAMPLES 

 

In this section, we will solve four fuzzy problems. For each 

problem, we obtain the absolute errors: 

 

[error]α
L=|[xexact(t)]α

L − [xapp(t)]α
L| (110) 

 

[error]α
U=|[xexact(t)]α

U − [xapp(t)]α
U| (111) 

 

where, 
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[xexact(t)]α
L  and [xexact(t)]α

U are the lower bound and upper 

bound of the FEAS, respectively. 

[xapp(t)]α
L  and [xapp(t)]α

U  are the lower bound and upper 

bound of the FAAS, respectively. 

To obtain accurate approximate solutions, all numerical 

results were processed by taking 15 decimal places using 

MATLAB. 

 

Example (6.1) Consider the FDE 

 

x̃ˊ(t) = (0.5, 1, 1.5)x̃2(t) + (0.75, 1, 1.25); 
t ∈ [0, 1] 

(112) 

 

With:  

 

x(0) = 0 (113) 

 

Solution: 

 

The FAAS is: 

 

x̃(t) = [[x(t)]α
L , [x(t)]α

U] (114) 

 

where, 

 

[x(t)]α
L = [c0]α

Lp0(t) + [c1]α
Lp1(t) + [c2]α

Lp2(t)
+ [c3]α

Lp3(t) + [c4]α
Lp4(t) 

(115) 

 

[x(t)]α
U = [c0]α

Up0(t) + [c1]α
Up1(t) + [c2]α

Up2(t)
+ [c3]α

Up3(t) + [c4]α
Up4(t) 

(116) 

 

First, we write problem (112) in the parametric form as 

follows: 

 

[xˊ(t)]α=[0.5α + 0.5, −0.5α + 1.5][x2(t)]α +
[0.25α + 0.75, −0.25α + 1.25] 

(117) 

 

With: 

 
[x(0)]α = [0, 0] (118) 

 

Then, we get the following system: 

 

[xˊ(t)]α
L = (0.5α + 0.5)[x2(t)]α

L + (0.25α + 0.75) (119) 

 

[xˊ(t)]α
U = (−0.5α + 1.5)[x2(t)]α

U

+ (−0.25α + 1.25) 
(120) 

 

With: 

 

[x(0)]α
L = 0 (121) 

 

[x(0)]α
U = 0 (122) 

 

We will solve problem (112) for α=0.5. In this case, we get 

the following system: 

 

[x′(t)]0.5
L = 0.75[x2(t)]0.5

L + 0.875 (123) 

 

[x′(t)]0.5
U = 1.25[x2(t)]0.5

U + 1.125 (124) 

 

With: 

 

[x(0)]0.5
L = 0 (125) 

 

[x(0)]0.5
U = 0 (126) 

 

●) The lower bound of the fuzzy solution 

 

By derivation Eq. (123), we have: 

 

[x′′(t)]0.5
L = 1.5[x′(t)]0.5

L [x(t)]0.5
L  (127) 

 

With: 

 

[x(0)]0.5
L = 0 (128) 

 

[x′(0)]0.5
L = 0.875 (129) 

 

Then, by substituting the Eqs. (11-15) into Eq. (115), we 

obtain: 

 
[x(t)]0.5

L = [c0]0.5
L (1) + [c1]0.5

L (2t − 1)

+ [c2]0.5
L (6t2 − 6t + 1)

+ [c3]0.5
L (20t3 − 30t2 + 12t − 1)

+ [c4]0.5
L (70t4 − 140t3 + 90t2

− 20t + 1) 

(130) 

 

Now, we find the lower bound of the fuzzy residual function 

[R(t)]0.5
L : 

 

[x′′(t)]0.5
L − 1.5[x′(t)]0.5

L [x(t)]0.5
L = 0 (131) 

 

This gives: 

 

[R(t)]0.5
L = [x′′(t)]0.5

L − 1.5[x′(t)]0.5
L [x(t)]0.5

L  (132) 

 

Thus, by substituting the Eqs. (41), (43) and (115) into Eq. 

(132), we find: 

 

[R(t)]0.5
L = 12[c2]0.5 

L p0(t) + 40[c4]0.5 
L p0(t)

+ 60[c3]0.5 
L p1(t)

+ 140[c4]0.5 
L p2(t)

− 1.5[(2[c1]0.5 
L p0(t)

+ 2[c3]0.5 
L p0(t) + 6[c2]0.5 

L p1(t)

+ 6[c4]0.5 
L p1(t) + 10[c3]0.5 

L p2(t)

+ 14[c4]0.5 
L p3(t)) ([c0]0.5

L p0(t)

+ [c1]0.5
L p1(t) + [c2]0.5

L p2(t)

+ [c3]0.5
L p3(t) + [c4]0.5

L p4(t))] 

(133) 

 

Now, we apply the Eqs. (47), (48) and (49) as follows: 

• ∫ [R(t)]0.5
L  p0(t) dt = 0

1

0
 

This gives: 

 

−3[c0]0.5 
L [c1]0.5

L − 3[c0]0.5 
L [c3]0.5

L − 3[c2]0.5 
L [c1]0.5

L

− 3[c4]0.5 
L [c1]0.5

L

− 3[c2]0.5 
L [c3]0.5

L

− 3[c3]0.5 
L [c4]0.5

L + 12[c2]0.5 
L

+ 40[c4]0.5 
L = 0 

(134) 

 

• ∫ [R(t)]0.5
L  p1(t) dt = 0

1

0
 

This gives: 

 

211



 

−[c1
2]0.5
L − 3[c0]0.5 

L [c2]0.5
L − 3[c0]0.5 

L [c4]0.5
L

− 3[c3]0.5 
L [c1]0.5

L

− 3[c2]0.5 
L [c4]0.5

L −
6

5
[c2

2]0.5
L

−
9

7
[c3

2]0.5 
L −

4

3
[c4

2]0.5 
L

+ 20[c3]0.5 
L = 0 

(135) 

 

• ∫ [R(t)]0.5
L  p2(t) dt = 0

1

0
 

This gives: 

 

−3[c0]0.5 
L [c3]0.5

L −
9

5
[c1]0.5 

L [c2]0.5
L − 3[c4]0.5 

L [c1]0.5
L

−
78

35
[c2]0.5 

L [c3]0.5
L

−
17

7
[c4]0.5 

L [c3]0.5
L + 28[c4]0.5 

L

= 0 

(136) 

 

Moreover, we apply the initial conditions by substituting the 

Eqs. (128) and (129) in Eq. (130), we find: 

 

[c0]0.5
L − [c1]0.5

L + [c2]0.5
L − [c3]0.5

L + [c4]0.5
L = 0 (137) 

 

2[c1]0.5
L − 6[c2]0.5

L + 12[c3]0.5
L − 20[c4]0.5

L

= 0.875 
(138) 

 

By solving the Eqs. (134)-(138), we get: 

 

[c0]0.5
L = 0.495864567230580 

[c1]0.5
L = 0.544865800002154 

[c2]0.5
L = 0.067416854542166 

[c3]0.5
L = 0.022317863520394 

[c4]0.5
L = 0.003902241749802 

 

Finally, we put the above constants in Eq. (130) to obtain 

the lower bound of the FAAS of problem (112) at α = 0.5, 

which is: 

 

[x(t)]0.5
L = (0.875)t + (0.086166979123356)t2

− (0.099956574564400)t3

+ (0.273156922486140)t4 

(139) 

 

●) The upper bound of the fuzzy solution 

 

By derivation Eq. (124), we get: 

 

[x′′(t)]0.5
U = 2.5[x′(t)]0.5

U [x(t)]0.5
U  (140) 

 

With: 

 

[X(0)]0.5
U = 0 (141) 

 

[x′(0)]0.5
U = 1.125 (142) 

 

Then, by substituting the Eqs. (11)-(15) in Eq. (116), we 

obtain: 

 

[x(t)]0.5
U =[c0]0.5 

U (1) + [c1]0.5 
U (2t − 1) +

[c2]0.5 
U (6t2 − 6t + 1) + [c3]0.5 

U (20t3 − 30t2 +
12t − 1) + [c4]0.5

U (70t4 − 140t3 + 90t2 − 20t +
1) 

(143) 

 

Now, we find the upper bound of the fuzzy residual function 

[R(t)]0.5
U : 

 

[x′′(t)]0.5
U − 2.5[x′(t)]0.5

U [x(t)]0.5
U = 0 (144) 

 

This gives: 

 

[R(t)]0.5
U = [x′′(t)]0.5

U − 2.5[x′(t)]0.5
U [x(t)]0.5

U  (145) 

 

Thus, by substituting the Eqs. (41), (43) and (116) in Eq. 

(145), we find: 

 
[R(t)]0.5

U = 12[c2]0.5 
U p0(t) + 40[c4]0.5 

U p0(t)

+ 60[c3]0.5 
U p1(t) + 140[c4]0.5 

U p2(t)

− 2.5 (2[c1]0.5 
U p0(t) + 2[c3]0.5 

U p0(t)

+ 6[c2]0.5 
U p1(t) + 6[c4]0.5 

U p1(t)

+ 10[c3]0.5 
U p2(t)

+ 14[c4]0.5 
U p3(t)) ([c0]0.5

U p0(t)

+ [c1]0.5
U p1(t) + [c2]0.5

U p2(t)

+ [c3]0.5
U p3(t) + [c4]0.5

U p4(t)) 

(146) 

 

Now, we apply the Eqs. (47)-(49) as follows: 

• ∫ [R(t)]0.5
U  p0(t) dt = 0

1

0
 

This gives: 
 

−5[c0]0.5 
U [c1]0.5

U − 5[c0]0.5 
U [c3]0.5

U − 5[c2]0.5 
U [c1]0.5

U

− 5[c4]0.5 
U [c1]0.5

U − 5[c2]0.5 
U [c3]0.5

U

− 5[c3]0.5 
U [c4]0.5

U + 12[c2]0.5 
U

+ 40[c4]0.5 
U = 0 

(147) 

 

• ∫ [R(t)]0.5
U  p1(t) dt = 0

1

0
 

This gives: 

 

−
5

3
[c1

2

]0.5
U − 5[c0]0.5 

U [c2]0.5
U − 5[c0]0.5 

U [c4]0.5
U

− 5[c3]0.5 
U [c1]0.5

U − 5[c2]0.5 
U [c4]0.5

U

− 2[c2
2]0.5
U −

15

7
[c3

2]0.5 
U

−
20

9
[c4

2]0.5 
U + 20[c3]0.5 

U = 0 

(148) 

 

• ∫ [R(t)]0.5
U  p2(t) dt = 0

1

0
 

This gives: 
 

−5[c0]0.5 
U [c3]0.5

U − 3[c1]0.5 
U [c2]0.5

U − 5[c4]0.5 
U [c1]0.5

U

−
26

7
[c2]0.5 

U [c3]0.5
U

−
85

21
[c4]0.5 

U [c3]0.5
U + 28[c4]0.5 

U = 0 

(149) 

 

Moreover, we apply the initial conditions by substituting the 

Eqs. (141) and (142) in Eq. (143), we find: 
 

[c0]0.5
U − [c1]0.5

U + [c2]0.5
U − [c3]0.5

U + [c4]0.5
U = 0 (150) 

 

2[c1]0.5
U − 6[c2]0.5

U + 12[c3]0.5
U − 20[c4]0.5

U = 1.125 (151) 
 

By solving the Eqs. (147)-(151), we get: 
 

[c0]0.5
U = 0.790314364547047 

[c1]0.5
U = 0.963777246933006 

[c2]0.5
U = 0.277516715528700 

[c3]0.5
U = 0.213066357943577 

[c4]0.5
U = 0.082012524800837 
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Finally, we put the above constants in Eq. (143) to obtain 

the upper bound of FAAS of problem (112) at α = 0.5, which 

is: 

 

[x(t)]0.5
U = (1.125)t + (2.654236786940220)t2

− (7.220426313245640)t3

+ (5.740876736058590)t4 

(152) 

 

The FEAS at α = 0.5 is: 

 

[x(t)]0.5 = [[x(t)]0.5
L , [x(t)]0.5

U ] (153) 

 

where, 

 

[x(t)]0.5
L = √

7 

6 
tan (√

21 

32 
t) (154) 

 

[x(t)]0.5
U = √

9 

10 
tan (√

45

32
t) (155) 

 

In the same way, we can obtain the FAAS of problem (112) 

at α = 0.8, which is: 

 

[x(t)]0.8 = [[x(t)]0.8
L , [x(t)]0.8

U  ] (156) 

 

where, 

 

[x(t)]0.8
L = (0.95)t + (0.236294161886970)t2

− (0.496519586166660)t3

+ (0.670682205917990)t4 

(157) 

 

[x(t)]0.8
U = (1.05)t + (0.909874153685058)t2

− (2.384077355435620)t3

+ (2.217290934190570)t4 

(158) 

 

While the FEAS at α = 0.8 will be: 

 

[x(t)]0.8 = [[x(t)]0.8
L , [x(t)]0.8

U ] (159) 

 

where, 

 

[x(t)]0.8
L = √

19

18
tan (√

171

200
t) (160) 

 

[x(t)]0.8
U = √

21

22
tan (√

231

200
t) (161) 

 

Below, numerical Tables 1-2 for this example. 
 

Table 1. Results for example (6.1), α=0.5 

 
t [𝐱𝐚𝐩𝐩(𝐭)]𝛂

𝐋  [𝐞𝐫𝐫𝐨𝐫]𝛂
𝐋  [𝐱𝐚𝐩𝐩(𝐭)]𝛂

𝐔 [𝐞𝐫𝐫𝐨𝐫]𝛂
𝐔 

0 0 0 0 0 

0.1 0.088289028908918 5.97 e-4 0.132396029229762 1.94 e-4 

0.2 0.178084077644397 1.54 e-3 0.282591463749337 5.33 e-4 

0.3 0.269768771680001 1.98 e-3 0.427930901929062 7.54 e-4 

0.4 0.364382313103261 1.59 e-3 0.559537046305814 7.24 e-4 

0.5 0.463619480615673 5.12 e-4 0.682310703583012 4.31 e-4 

0.6 0.569830629532702 8.33 e-4 0.814930784630614 2.99 e-5 

0.7 0.686021691783777 1.84 e-3 0.989854304485121 4.77 e-4 

0.8 0.815854175912298 1.98 e-3 1.253316382349572 6.96 e-4 

0.9 0.963645167075627 1.19 e-3 1.665330241593548 5.68 e-4 

1 1.134367327045096 4.64 e-4 2.299687209753170 4.18 e-4 

 

Table 2. Results for example (6.1), α=0.8 

 
t [𝐱𝐚𝐩𝐩(𝐭)]𝛂

𝐋  [𝐞𝐫𝐫𝐨𝐫]𝛂
𝐋  [𝐱𝐚𝐩𝐩(𝐭)]𝛂

𝐔 [𝐞𝐫𝐫𝐨𝐫]𝛂
𝐔 

0 0 0 0 0 

0.0000429 0.040755434838939 4.35 e-10 0.045046674353267 1.67 e-9 

0.0000858 0.081511739198974 1.74 e-9 0.090096696660233 6.70 e-9 

0.0001287 0.122268912844976 3.91 e-9 0.135150065791779 1.51 e-8 

0.0001716 0.163026955541869 6.95 e-9 0.180206780618968 2.68 e-8 

0.0002145 0.203785867054631 1.09 e-8 0.225266840013041 4.18 e-8 

0.0002574 0.244545647148297 1.56 e-8 0.270330242845420 6.02 e-8 

0.0003003 0.285306295587953 2.13 e-8 0.315396987987708 8.20 e-8 

0.0003432 0.326067812138742 2.78 e-8 0.360467074311688 1.07 e-7 

0.0003861 0.366830196565861 3.52 e-8 0.405540500689323 1.35 e-7 

0.000429 0.407593448634561 4.34 e-8 0.450617265992757 1.67 e-7 

The researchers in study [19] solved this problem by using 

the Runge-Kutta method of order sixth for different values of 

α , t=1 and h=0.02. The absolute error was belonged into 

[2.02e−5, 9.98e−4]. At α=0.5, they obtained:  

 

[error]α
L = 6.79e − 4, [error]α

U = 1.26e − 4 

 

While according to our results, at α=0.5 and t=1, we 

obtained: 

[error]α
L = 4.64e − 4, [error]α

U = 4.18e − 4 

 

Example (6.2): Consider the FDE 

 

x̃ˊˊ(t) − (0, 2, 3)x̃ˊ(t) = (4t2, 5t2, 7t2) + 2t;  
t ∈ [0, 1] 

(162) 

 

With: 
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x̃(0) = (1, 2, 2.5) (163) 

 

x̃(1) = (3.5, 4, 4.5) (164) 

 

Solution 

 

The FAAS is: 

 

x̃(t) = [[x(t)]α
L , [x(t)]α

U ] (165) 

 

where, 

 

[x(t)]α
L = [c0]α

Lp0(t) + [c1]α
Lp1(t) + [c2]α

Lp2(t)
+ [c3]α

Lp3(t) + [c4]α
Lp4(t) 

(166) 

 

[x(t)]α
U = [c0]α

Up0(t) + [c1]α
Up1(t) + [c2]α

Up2(t)
+ [c3]α

Up3(t) + [c4]α
Up4(t) 

(167) 

 

First, we write problem (162) in the parametric form as 

follows: 

 
[x′′(t)]α − [2α,−α + 3][x

′(t)]α
= [(α + 4)t2, (−2α + 7)t2]
+ [2t, 2t] 

(168) 

 

With: 

 
[x(0)]α = [α + 1,−0.5α + 2.5] (169) 

 
[x(1)]α = [0.5α + 3.5, −0.5α + 4.5] (170) 

 

Then, we get: 

 

[x′′(t)]α
L − (2α)[x′(t)]α

L = (α + 4)t2 + 2t (171) 

 

[x′′(t)]α
U − (−α + 3)[x′(t)]α

U = (−2α + 7)t2 + 2t (172) 

 

With: 

 

[x(0)]α
L = α + 1 (173) 

 

[x(0)]α
U = −0.5α + 2.5 (174) 

 

[x(1)]α
L = 0.5α + 3.5 (175) 

 

[x(1)]α
U = −0.5α + 4.5 (176) 

 

We will solve problem (162) at α=0.2. Therefore, we have: 

 

[x′′(t)]0.2
L − 0.4[x′(t)]0.2

L = 4.2t2 + 2t (177) 
 

[x′′(t)]0.2
U − 2.8[x′(t)]0.2

U = 6.6t2 + 2t (178) 
 

With: 
 

[x(0)]0.2
L = 1.2 (179) 

 

[x(0)]0.2
U = 2.4 (180) 

 

[x(1)]0.2
L = 3.6 (181) 

 

[x(1)]0.2
U = 4.4 (182) 

 

●) The lower bound of the fuzzy solution 

By substituting the Eqs. (11)-(15) in Eq. (166), we obtain: 
 

[x(t)]0.2
L = [c0]0.2

L (1) + [c1]0.2
L (2t − 1)

+ [c2]0.2
L (6t2 − 6t + 1)

+ [c3]0.2
L (20t3 − 30t2 + 12t

− 1)

+ [c4]0.2
L (70t4 − 140t3 + 90t2

− 20t + 1) 

(183) 

 

Now, we find the lower bound of the fuzzy residual function 

[R(t)]0.2
L : 

 

[x′′(t)]0.2
L − 0.4[x′(t)]0.2

L − 4.2t2 − 2t = 0 (184) 

 

This gives: 

 

[R(t)]0.2
L = [x′′(t)]0.2

L − 0.4[x′(t)]0.2
L − 4.2t2 − 2t (185) 

 

Thus, by substituting the Eqs. (41) and (43) in Eq. (185), we 

find: 

 

[R(t)]0.2
L =  12[c2]0.2 

L p0(t) + 40[c4]0.2 
L p0(t)

+ 60[c3]0.2 
L p1(t)

+ 140[c4]0.2 
L p2(t)

− 0.4[2[c1]0.2 
L p0(t)

+ 2[c3]0.2 
L p0(t) + 6[c2]0.2 

L p1(t)

+ 6[c4]0.2 
L p1(t) + 10[c3]0.2 

L p2(t)

+ 14[c4]0.2 
L p3(t)] − 4.2t

2 − 2t 

(186) 

 

Now, we apply the Eqs. (47)-(49) as follows: 

• ∫ [R(t)]0.2
L  p0(t) dt = 0

1

0
 

This gives: 

 

12[c2]0.2
L − 0.8[c1]0.2

L − 0.8[c3]0.2
L + 31[c4]0.2

L

− 2.4 = 0 
(187) 

 

• ∫ [R(t)]0.2
L  p1(t) dt = 0

1

0
 

This gives: 
 

−0.8[c2]0.2
L + 20[c3]0.2

L + 8.2[c4]0.2
L +

49

30
= 0 (188) 

 

• ∫ [R(t)]0.2
L  p2(t) dt = 0

1

0
 

This gives: 
 

−0.8[c3]0.2
L + 19[c4]0.2

L −
7

50
= 0 (189) 

 

Moreover, we apply the boundary conditions by substituting 

the Eqs. (179) and (181) in Eq. (183), we find: 

 

[c0]0.2
L − [c1]0.2

L + [c2]0.2
L − [c3]0.2

L + [c4]0.2
L = 1.2 (190) 

 

[c0]0.2
L + [c1]0.2

L + [c2]0.2
L + [c3]0.2

L + [c4]0.2
L = 3.6 (191) 

 

By solving the Eqs. (187)-(191), we get: 

 

[c0]0.2
L = 2.126821450933619 

[c1]0.2
L = 1.272678252580361 

[c2]0.2
L = 0.268870264960180 

   [c3]0.2
L = −0.072678252580361 

[c4]0.2
L = 0.004308284106201 

214



 

Finally, we put the above constants in Eq. (183) to obtain 

the lower bound of the FAAS of problem (162) at α=0.2, 

which is: 

 

[x(t)]0.2
L = (1.2) − (0.026169797688710)t

+ (4.181314736730000)t2

− (2.056724826475360)t3

+ (0.301579887434070)t4 

(192) 

 

●) The upper bound of the fuzzy solution 

By substituting the Eqs. (11)-(15) in Eq. (161), we obtain: 

 

[x(t)]0.2
U = [c0]0.2

U (1) + [c1]0.2
U (2t − 1)

+ [c2]0.2
U (6t2 − 6t + 1)

+ [c3]0.2
U (20t3 − 30t2 + 12t

− 1)

+ [c4]0.2
U (70t4 − 140t3 + 90t2

− 20t + 1) 

(193) 

 

Now, we find the upper bound of the fuzzy residual function 

[R(t)]0.2
U : 

 

[x′′(t)]0.2
U − 2.8[x′(t)]0.2

U − 6.6t2 − 2t = 0 (194) 

 

This gives: 

 

[R(t)]0.2
U = [x′′(t)]0.2

U − 2.8[x′(t)]0.2
U − 6.6t2 − 2t (195) 

 

Thus, by substituting the Eqs. (41) and (43) in Eq. (195), we 

find: 

 

[R(t)]0.2
U =12[c2]0.2 

U p0(t) + 40[c4]0.2 
U p0(t) +

60[c3]0.2 
U p1(t) + 140[c4]0.2 

U p2(t) −
2.8[2[c1]0.2 

U p0(t) + 2[c3]0.2 
U p0(t) +

6[c2]0.2 
U p1(t) + 6[c4]0.2 

U p1(t) + 10[c3]0.2 
U p2(t) +

14[c4]0.2 
U p3(t)] − 6.6t

2 − 2t 

(196) 

 

Now, we apply the Eqs. (47)-(49) as follows: 

• ∫ [R(t)]0.2
U  p0(t) dt = 0

1

0
 

This gives: 

 
12[c2]0.2

U − 5.6[c1]0.2
U − 5.6[c3]0.2

U + 40.3[c4]0.2
U − 3.2 = 0 (197) 

 

• ∫ [R(t)]0.2
U  p1(t) dt = 0

1

0
 

This gives: 

 

−5.6[c2]0.2
U − 43[c3]0.2

U − 5.5[c4]0.2
U −

43

30
= 0 (198) 

 

• ∫ [R(t)]0.2
U  p2(t) dt = 0

1

0
 

This gives: 

 

−5.6[c3]0.2
U + 28[c4]0.2

U −
11

50
= 0 (199) 

 

Moreover, we apply the boundary conditions by substituting 

the Eqs. (180) and (182) in Eq. (193), we find: 

 

[c0]0.2
U − [c1]0.2

U + [c2]0.2
U − [c3]0.2

U + [c4]0.2
U = 2.4 (200) 

 

[c0]0.2
U + [c1]0.2

U + [c2]0.2
U + [c3]0.2

U + [c4]0.2
U = 4.4 (201) 

 

By solving the Eqs. (197)-(201), we get: 

 

[c0]0.2
U = 2.621641538498813 

[c1]0.2
U = 1.134745346681082 

[c2]0.2
U = 0.797450387965678 

   [c3]0.2
U = −0.134745346681082 

   [c4]0.2
U = −0.019091926464490 

 

Finally, we put the above constants in Eq. (193) to obtain 

the upper bound of the FAAS of problem (162) at α=0.2, 

which is: 

 

[x(t)]0.2
U = (2.4) − (3.750317265315089)t

+ (7.108789346422429)t2

− (0.022037228593040)t3

− (1.336434852514300)t4 

(202) 

 

The FEAS at α=0.2 is: 

 

[x(t)]0.2 = [[x(t)]0.2
L , [x(t)]0.2

U ] (203) 

 

where, 

 

[x(t)]0.2
L = −

7

2
t3 −

115

4
t2 −

575

4
t

− (361.5308690588012)
+ (362.7308690588012)e0.4t 

(204) 

 

[x(t)]0.2
U = −

11

14
t3 −

235

196
t2 −

1175

1372
t

+ (2.086551078605455)
+ (0.313448921394545) 

(205) 

 

Below, a numerical Table 3 for this example. 

Table 3. Results for example (6.2), α=0.2 

 
T [𝐱𝐚𝐩𝐩(𝐭)]𝛂

𝐋  [𝐞𝐫𝐫𝐨𝐫]𝛂
𝐋  [𝐱𝐚𝐩𝐩(𝐭)]𝛂

𝐔 [𝐞𝐫𝐫𝐨𝐫]𝛂
𝐔 

0 1.2 0 2.4 0 

0.00000219 1.199999942708197 3.00 e-6 2.399991786839284 8.26 e-6 

0.00000438 1.199999885456502 6.00 e-6 2.399983573746756 1.65 e-5 

0.00000657 1.199999828244915 8.99 e-6 2.399975360722417 2.48 e-5 

0.00000876 1.199999771073435 1.20 e-5 2.399967147766267 3.30 e-5 

0.00001095 1.199999713942063 1.50 e-5 2.399958934878307 4.13 e-5 

0.00001314 1.199999656850798 1.80 e-5 2.399950722058534 4.96 e-5 

0.00001533 1.199999599799640 2.10 e-5 2.399942509306952 5.78 e-5 

0.00001752 1.199999542788590 2.40 e-5 2.399934296623557 6.61 e-5 

0.00001971 1.199999485817646 2.70 e-5 2.399926084008353 7.43 e-5 

0.0000219 1.199999428886809 3.00 e-5 2.399917871461335 8.26 e-5 
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Example (6.3): Consider the FDE 

 

x̃ˊˊ(t) =
(x̃ˊ(t))2

(0.2, 0.6, 0.9)
;  t ∈ [0, 1] (206) 

 

With: 

 

x̃(0) =
1

(1.3, 2, 2.8)
 (207) 

 

x(1) = −1 (208) 

 

Solution 

 

The FAAS is: 

 

x̃ˊ(t) = [[x(t)]α
L , [x(t)]α

U] (209) 

 

where, 

 

[x(t)]α
L=[c0]α

Lp0(t) + [c1]α
Lp1(t) + [c2]α

Lp2(t) +
[c3]α

Lp3(t) + [c4]α
Lp4(t) 

(210) 

 

[x(t)]α
U=[c0]α

Up0(t) + [c1]α
Up1(t) + [c2]α

Up2(t) +
[c3]α

Up3(t) + [c4]α
Up4(t) 

(211) 

 

In the same way that we have used in the previous examples, 

we can find FAAS of this problem at α=0.3, which is: 

 

[x(t)]0.3 = [[x(t)]0.3
L , [x(t)]0.3

U ] (212) 

where, 

 

[x(t)]0.3
L = (0.390625)

− (1.987660202022536)t
+ (1.684206221749926)t2

− (1.798897567337860)t3

+ (0.711726547610470)t4 

(213) 

 

[x(t)]0.3
U = (0.662251655629139)

− (2.142528648228798)t
+ (2.138256591361530)t2

− (3.059723346903740)t3

+ (1.401743748141870)t4 

(214) 

 

The FEAS at α=0.3 is: 

 

[x(t)]0.3 = [[x(t)]0.3
L , [x(t)]0.3

U ] (215) 

 

where, 

 

[x(t)]0.3
L = (−0.81) ln(100t
+ 21.897154734360726)
+ (2.890573933139084) 

(216) 

 

[x(t)]0.3
U = (−0.32) ln(25t
+ 0.139443138240584)
+ (0.031820176796409) 

(217) 

 

Below, a numerical Table 4 for this example. 

 

 

Table 4. Result for example (6.3), α=0.3 

 

T [𝐱𝐚𝐩𝐩(𝐭)]𝛂
𝐋  [𝐞𝐫𝐫𝐨𝐫]𝛂

𝐋  [𝐱𝐚𝐩𝐩(𝐭)]𝛂
𝐔 [𝐞𝐫𝐫𝐨𝐫]𝛂

𝐔 

0 0.390625 0 0.662251655629139 0 

0.00000112 0.390622773822686 1.92 e-6 0.662249255999735 6.18 e-5 

0.00000224 0.390620547649598 3.83 e-6 0.662246856375696 1.24 e-4 

0.00000336 0.390618321480735 5.75 e-6 0.662244456757021 1.86 e-4 

0.00000448 0.390616095316097 7.67 e-6 0.662242057143710 2.47 e-4 

0.0000056 0.390613869155685 9.58 e-6 0.662239657535764 3.09 e-4 

0.00000672 0.390611642999498 1.15 e-5 0.662237257933182 3.71 e-4 

0.00000784 0.390609416847536 1.34 e-5 0.662234858335965 4.33 e-4 

0.00000896 0.390607190699799 1.53 e-5 0.662232458744111 4.94 e-4 

0.00001008 0.390604964556288 1.73 e-5 0.662230059157622 5.56 e-4 

0.0000112 0.390602738417002 1.92 e-5 0.662227659576497 6.18 e-4 

Example (6.4): Consider the FDE 

 

x̃ˊˊ(t) + x̃(t) = t;  t ∈ [0, 1] (218) 

 

With: 
 

x̃(0) = (0.9, 1, 1.1) (219) 
 

x̃ˊ(0) = (1.8, 2, 2.2) (220) 
 

Solution 

 
The FAAS of this problem at α=0.4 is: 

 

[x(t)]0.4 = [[x(t)]0.4
L , [x(t)]0.4

U ] (221) 

 

where, 

 

[x(t)]0.4
L = (0.94) + (1.88)t − (0.468328835651892)t2

− (0.154323286870860)t3

+ (0.051028087028100)t4 
(222) 

 
[x(t)]0.4

U = (1.06) + (2.12)t − (0.527642430400338)t2

− (0.197240698406060)t3

+ (0.060047128750910)t4 
(223) 

 

While the FEAS at α=0.4 is: 

 

[x(t)]0.4 = [[x(t)]0.4
L , [x(t)]0.4

U ] (224) 

 

where, 

 

[x(t)]0.4
L = (0.88)sint + (0.94)cost + t (225) 

 

[x(t)]0.4
U = (1.12)sint + (1.06)cost + t (226) 

 

Below, numerical Tables 5-6 for this example. 
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Table 5. Result for example (6.4), α=0.4 
 

t [𝐱𝐚𝐩𝐩(𝐭)]𝛂
𝐋  [𝐞𝐫𝐫𝐨𝐫]𝛂

𝐋  [𝐱𝐚𝐩𝐩(𝐭)]𝛂
𝐔 [𝐞𝐫𝐫𝐨𝐫]𝛂

𝐔 

0 0.94 0 1.06 0 

0.1 1.123167491165313 1.02 e-5 1.266532339710466 1.45 e-5 

0.2 1.296113905218202 2.23 e-5 1.461412452602739  3.22 e-5 

0.3 1.458097003550744 2.29 e-5 1.643673064149889 3.38 e-5 

0.4 1.608497014963882 1.15 e-5 1.812491012933982 1.78 e-5 

0.5 1.746816635667426 5.45 e-6 1.967187250646090 6.87 e-6 

0.6 1.872681029280054 1.98 e-5 2.107226842086288 2.85 e-5 

0.7 1.985837826829315 2.54 e-5 2.232218965163650 3.76 e-5 

0.8 2.086157126751619 2.05 e-5 2.341916910896254 3.10 e-5 

0.9 2.173631494892247 9.56 e-6 2.436218083411181 1.46 e-5 

1 2.248375964505348 2.67 e-6 2.515163999944512 3.95 e-6 

 

Table 6. Result for example (6.4), α=0.4 
 

T [𝐱𝐚𝐩𝐩(𝐭)]𝛂
𝐋  [𝐞𝐫𝐫𝐨𝐫]𝛂

𝐋  [𝐱𝐚𝐩𝐩(𝐭)]𝛂
𝐔 [𝐞𝐫𝐫𝐨𝐫]𝛂

𝐔 

0 0.94 0 1.06 0 

-0.000215 0.939595778353033 7.73 e-11 1.059544175611689 1.09 e-10 

-0.000430 0.939191513418270 3.10 e-10 1.059088302454599  4.37 e-10 

-0.000645 0.938787205204916 6.97 e-10 1.058632380540495 9.84 e-10 

-0.000860 0.938382853722179 1.24 e-9 1.058176409881148 1.75 e-9 

-0.001075 0.937978458979273 1.94 e-9 1.057720390488328 2.74 e-9 

-0.001290 0.937574020985410 2.80 e-9 1.057264322373812 3.95 e-9 

-0.001505 0.937169539749808 3.81 e-9 1.056808205549379 5.38 e-9 

-0.001720 0.936765015281685 4.98 e-9 1.056352040026809 7.03 e-9 

-0.001935 0.936360447590264 6.31 e-9 1.055895825817887 8.90 e-9 

-0.002150 0.935955836684770 7.80 e-9 1.055439562934400 1.10 e-8 

Table 7. Comparison between the absolute errors for 

example (6.4) 
 

Method [𝐞𝐫𝐫𝐨𝐫]𝛂
𝐋  [𝐞𝐫𝐫𝐨𝐫]𝛂

𝐔 

RKN4 1.85 e-6 2.24 e-6 

IRKN3 3.19 e-5 3.52 e-5 

IRKN4 4.44 e-8 6.32 e-8 

IRKN5 3.37 e-8 4.09 e-8 

This research 2.67 e-6 3.95 e-6 

 

The researchers in study [20] solved this problem by using 

the improved Runge-Kutta Nystrom methods of orders three, 

four and five for different values of α, t=1 and h=0.1. The 

absolute error was belonged into [3.13e-8, 3.63e-5]. At α=0.4, 

Table 7 gives a comparison between the absolute errors in 

study [20] and in our research. 

 

 

7. DISCUSSION 

 

Through the applied examples that solved in this work, it 

can be seen that LODMM based on Tau method has a high 

efficiency in approximating the exact-analytical solution, as 

the comparison that we conducted with other approximation 

methods showed the accuracy of the results that can be 

obtained when using this method. These results can improve 

further when increasing the number of terms of the solution 

series. This means, using a larger value for m, such as m=5, 

m=6, and so on. 

From the solved examples in this work, we can conclude 

that several factors affect the accuracy of the results, namely: 

• The number of terms of the solution series. The more 

terms in the solution series, the more accurate results 

will be obtained. 

• The value of the variable t. If the value of t is close to 

the initial value, the results will be more accurate. 

• The value of the constant α. In fact, the best value of 

α cannot be determined, as it changes from one 

problem to another. 

• The mathematical nature of the problem, whether it 

is linear or non-linear. 

• The order of the FDE, whether it is first order or 

higher order. 

It is necessary to note that the lower absolute error is not 

related to the upper absolute error. In the same problem, with 

the same value of α and the same value of t, the lower absolute 

error may be higher than the upper absolute error and vice 

versa. As for the case of equality between the two errors, it is 

rare. 

 

 

8. CONCLUSION 

 

In this work, we have used the fuzzy fiction of LODMM 

based on Tau method to obtain the FAAS of the FDEs in which 

the coefficients are TFFs. The approximate solutions that we 

obtained are accurate solutions and very close to the FEAS. In 

comparison with the other methods, we can determine many 

advantages for the LODMM, namely, it is computational less 

cost, it needs less computational time and effort and it has 

better accuracy. 

For the future works, one can extend and use this method 

for solving other types of the FDE such as fuzzy fractional 

differential equations, fuzzy partial differential equations, 

fuzzy delay differential equations, etc. Also, one can use this 

method for solving FDEs with other types of the fuzzy 

function coefficients such as trapezoidal fuzzy function 

coefficients, exponential fuzzy function coefficients, etc. 
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