
A Service Function Chain Traffic Steering Path Algorithm Based on Graph Convolutional
Network and Deep Q-Network

Yanwen Yu , Hefei Hu*

School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876,
China

Corresponding Author Email: huhefei@bupt.edu.cn

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120116 ABSTRACT

Received: 11 November 2024
Revised: 1 January 2025
Accepted: 8 January 2025
Available online: 25 January 2025

With the rise of applications such as the Internet of Things (IoT) and Virtual Reality
(VR), there is an increasing demand for stringent service latency and quality of service
requirements, which has led to a shift in network service deployment from cloud to
edge, giving rise to Mobile Edge Computing (MEC) architectures. In MEC
environments, network infrastructure is distributed near users, allowing access to local
networks in real time. However, dynamically orchestrating Service Function Chains
(SFCs) presents a significant challenge, especially in resource-constrained settings
where maximizing SFC deployments while maintaining low latency is essential for
service providers’ revenue optimization. To address this challenge, this paper proposes
an intelligent SFC orchestration strategy, termed GCN-DQN, which combines Graph
Convolutional Networks (GCNs) and Deep Q-Networks (DQNs). The GCN-DQN
framework is designed to optimize the request acceptance rate while ensuring
compliance with stringent low-latency requirements. To achieve this, the GCN-DQN
strategy is designed to perceive network structure, resource availability, and SFC-
specific information, enabling optimized decision-making for SFC traffic steering
paths. Performance evaluations demonstrate that the proposed algorithm outperforms
existing methods in SFC request acceptance rates under various network loads.

Keywords:
Mobile Edge Computing, Service Function
Chains, Graph Convolutional Networks, Deep
Q-Networks, performance consistency across
networks, traffic steering optimization

1. INTRODUCTION

The advent of network virtualization and cloud computing
has positioned service function chaining [1] as a pivotal
technology for the dynamic deployment and management of
sequential network functions—such as firewalls, load
balancers—tailored to specific service requirements.
Traditionally, these functions have been statically deployed
within networks, resulting in limited flexibility and
adaptability. Nevertheless, as network traffic continues to
surge and application scenarios grow increasingly complex,
the challenge of intelligent and dynamic SFC deployment has
emerged as a crucial concern in modern network management.

Recent advances in deep reinforcement learning [2] have
demonstrated considerable potential in tackling decision-
making challenges, particularly in the dynamic deployment of
SFCs. Nonetheless, a key limitation of many DRL-based
approaches in network environments is their restricted
generalizability. While these methods perform effectively on
network topologies encountered during training, their
performance significantly deteriorates when applied to novel,
unseen topologies. This limitation stems from the use of
conventional neural networks—such as fully connected and
convolutional networks—that are not inherently equipped to
process graph-structured data. In recent years, graph neural
networks [3], a deep learning model designed to process

graph-structured data, have shown exceptional performance in
areas such as social network analysis, molecular modeling,
and recommendation systems. GNNs effectively capture the
complex relationships and dependencies between nodes,
offering a unique advantage for addressing SFC deployment
challenges. By leveraging GNNs, it is possible to efficiently
deploy SFCs in complex network topologies, optimizing
network resource utilization while satisfying quality of service
[4] requirements.

To tackle the challenge of intelligent SFC orchestration in
Mobile Edge Computing (MEC) [5-8] environments, where
user mobility significantly influences SFC deployment, this
paper introduces a 0-1 Integer Linear Programming model for
dynamic SFC orchestration. Leveraging this model, we
propose a GCN-DQN-based framework designed to
intelligently determine traffic steering paths, thereby
enhancing the acceptance rate of SFC requests. The main
contributions of this paper are outlined below:
1. We conducted a comprehensive analysis of latency

within Mobile Edge Computing (MEC) environments
and formulated a 0-1 Integer Linear Programming model
for dynamic SFC orchestration, taking into account
factors such as user mobility. The model aims to optimize
the request acceptance rate in the network while
satisfying latency constraints.

2. Building on the aforementioned model, we developed a

Mathematical Modelling of Engineering Problems
Vol. 12, No. 1, January, 2025, pp. 141-151

Journal homepage: http://iieta.org/journals/mmep

141

https://orcid.org/0009-0000-6491-0773
https://orcid.org/0000-0002-5402-2091
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120116&domain=pdf

GCN-DQN-driven framework for dynamic SFC
orchestration, integrating Graph Convolutional
Networks with Deep Q-Networks. This framework is the
first to leverage Deep Reinforcement Learning (DRL) for
making intelligent decisions in steering traffic paths
within SFCs.

3. Extensive experiments were conducted to validate the
effectiveness of the proposed algorithm. Compared to
existing methods, our approach demonstrates superior
generalization across diverse network topologies and
achieves a higher request acceptance rate under identical
resource constraints.

2. RELATED WORK

A considerable body of research has focused on the
deployment of Service Function Chains (SFC). Given our
objective of deploying as many SFCs as possible in a Mobile
Edge Computing (MEC) environment with limited resources,
we closely monitor each SFC traffic steering path to optimize
the overall request acceptance rate within the network.
Traditional optimization techniques, including exact methods,
heuristics [9], and meta-heuristics [10], encounter significant
limitations as the solution space expands exponentially with
the growth of the state space, rendering them less effective in
complex network environments. In contrast, Deep
Reinforcement Learning (DRL) has emerged as a potent
approach for autonomously deriving optimal decision-making
strategies while maximizing long-term rewards. By
integrating the perceptive capabilities of deep learning with
the strategic strengths of reinforcement learning, DRL learns
directly from experience, enabling a deeper understanding of
both the network and tasks, thereby improving accuracy and
minimizing the need for repetitive modeling.

Owing to its self-learning and online learning capabilities,
DRL presents a promising solution for facilitating dynamic
adjustments in SFC orchestration optimization. Consequently,
this paper reviews the state-of-the-art from two perspectives:
DRL-based SFC orchestration utilizing traditional neural
networks, such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), and DRL-based SFC
orchestration employing Graph Neural Networks.

2.1 DRL approaches based on traditional neural networks

According to the study of Fu et al. [11], the Virtual Network
Function (VNF) problem is broken down into individual VNF
components and an internal connection graph, forming a VNF
forwarding graph. The SFC embedding challenge is then
framed as a Deep Reinforcement Learning (DRL) problem,
enabling effective solutions to complex and dynamic
environments.

As reported by Li et al. [12], the task of mapping SFCs with
varying priorities onto the fundamental network is formulated
as a multi-step Integer Linear Programming problem with
distinct objectives. A DQN-based mapping approach is
proposed, wherein the DRL agent selects between two
straightforward SFC mapping strategies.

As demonstrated by Liu et al. [13], a dynamic SFC
orchestration framework for Internet of Things (IoT) networks
is proposed, specifically designed for DRL-enabled IoT
environments. This framework can address the SFC dynamic
orchestration problem in dynamic and complex network

scenarios.
In the study conducted by Wang et al. [14], the DDQP and

its extension, DDQP+ algorithms, are designed for real-time
deployment of primary and backup SFC instances. These
algorithms provide continuous state updates from active
instances to backup instances for stateful VNFs, ensuring
seamless redirection in the event of a failure.

The aforementioned DRL-based approaches predominantly
rely on simple neural network architectures, such as
feedforward and recurrent neural networks. However, these
architectures are limited in their capacity to effectively capture
features from the underlying network structure. Traditional
DRL methods, including those utilizing Convolutional Neural
Networks and Recurrent Neural Networks, encounter
significant challenges when applied to complex, highly
dynamic environments like Mobile Edge Computing (MEC).
These models often struggle to capture the intricate
relationships and dependencies between network elements.
Additionally, these methods lack generalization capability
across different network topologies.

To overcome these challenges, recent studies have started
to explore DRL combined with Graph Neural Networks.
GNNs are well-suited for representing the topological
structure of networks, making them ideal for optimizing SFC
orchestration in MEC environments. By using GNNs, DRL-
based SFC orchestration can more effectively model the
interactions between network components, leading to
improved performance in terms of scalability, adaptability,
and resource utilization.

2.2 DRL approaches based on graph neural networks

The findings of Sun et al. [15] suggested that a combination
of Graph Neural Network (GNN) and DQN is used to optimize
Virtual Network Function (VNF) placement. The GNN
module maps node features to adjacent edges, which are then
aggregated and re-encoded into the node features. Input
attributes include the processing and storage utilization of
network nodes, while edge attributes are represented by
bandwidth usage and latency of network links. The output is a
binary list indicating selected nodes, and the shortest path
algorithm is applied to deploy routing paths between VNFs.

Based on the study presented by Heo et al. [16], a sequence
model based on Graph Neural Networks is proposed for VNF
placement. This model consists of a graph encoder, which
represents the network topology, and a decoder, which
computes the probabilities for adjacent nodes and VNF
execution.

In the study conducted by Qi et al. [17], a service function
chain with a graph structure is considered, and various SFC
graph structures are modeled using a Graph Convolutional
Network. The aim is to handle diverse SFC graph structures.
The DDQN algorithm is employed to make decisions
regarding the server index for the current VNF deployment.

All of the above studies, however, do not take into account
the traffic paths between VNFs and deploy them by utilizing
the shortest path algorithm. While the shortest path algorithm
maximizes immediate rewards in the current network state, it
is not the optimal choice for long-term network environments.

According to the research by Xiao et al. [18], a two-stage
GCN-assisted DRL framework is introduced to optimize SFC
request acceptance while minimizing network costs. In the
first stage, the upper-layer Management and Orchestration
(MANO) agent collaborates with lower-layer MANOs to

142

define the local observation scopes for each agent. The second
stage operates within a discrete time-slot system, where
resources occupied by expired SFCs are released at the
beginning of each time slot, and all lower-layer MANOs
simultaneously begin embedding new SFCs. This study only
investigates the migration of SFCs between different nodes
and does not design specific VNF deployment strategies or
routing path selection, thus not addressing the practical SFC
deployment problem.

Our proposed GCN-DQN method builds upon these
advancements, combining the strengths of Graph
Convolutional Networks and Deep Q-Networks to optimize
SFC traffic steering paths. It not only addresses the limitations
of DRL but also makes decisions for SFC traffic paths, thereby
solving the practical SFC deployment problem.

3. PROBLEM FORMULATION

Figure 1 illustrates the dynamic SFC orchestration model in

MEC environments. The model is organized hierarchically,
starting with the network function virtualization infrastructure
(NFVI) at the bottom, followed by virtual network functions
(VNFs), and ending with user services. The process concludes
with the delivery of user services, enabling users to seamlessly
roam across various NFVIs. Therefore, it is necessary to
dynamically orchestrate the deployment locations of SFCs and
the corresponding traffic steering paths.

In the practical problem, a time-slot model is designed
where SFC requests arrive dynamically. As shown in Figure
1, at t=1, only User 1 submits a service request. At t=2, Users
2 and 3 join the network. Over time, more users will enter the
network, and some users will leave.

Figure 1. Intelligent SFC orchestration model

3.1 Network function virtualization infrastructure

The NFVI model is represented as an undirected graph Gs =

(Ns, Es), where Ns denotes the set of physical nodes, Ns =
(NA

s ∪ NE
s) including access nodes NA

s and edge computing
nodes NE

s . Each edge computing node has constrained

resources, denoted by R, which include resource types such as
CPU, storage, and others. For any given resource r ∈ R ,
capr(nis) denotes the quantity of resource type r available at
node nis. The set of physical links is denoted by Es, where each
link eijs ∈ Es connects adjacent nodes nis and njs . Each
link eijs has associated bandwidth bw(eijs) and latency
delay(eijs). It is assumed that the service requirements can be
met by the sufficiently large internal bandwidth of each edge
computing node [19].

3.2 Virtual network functions

VNFs are software-based components designed to perform

a variety of traffic processing tasks within edge computing
nodes. We hypothesize a linear relationship between traffic
volume and the corresponding resource requirements [20], let
V denote the set of VNF types, where fi ∈ F represents a
specific type of VNF capable of providing particular traffic
processing services. Given the varying resource consumption
across different VNF types. The resource demand
coefficient coeff r(fi) indicates the quantity of resource type r
required for a unit size of traffic processed by the VNF fi .
Additionally, since VNFs handle packets in different ways,
such as adding headers, these processes can modify the traffic
size [21]. We define this alteration as the traffic scaling factor
ratio(fi) of the virtual network function fi.

3.3 User services

In Mobile Edge Computing (MEC), as a user's location may

vary over time. Consequently, the source node of the Service
Function Chain changes dynamically. we adopt a discrete,
periodic stationary time-slot model t ∈ {1,2,3...} to simplify
the problem, where the user service access nodes remain
stationary within each time slot and switching occurs between
time slots.

The user service demands across the network can be
represented as a set of Service Function Chains (SFCs) Gv,
where Gj

v ∈ Gvdenotes the j-th SFC. A directed graph Gj
v =

(Nj
v, Ejv) represents source nodes, an ordered set of network

functional requirements, and destination nodes. Let Nj
v =

{Sj, nj1v . . . njiv . . . Dj}, Sj(t) represent the source node at time t
and njiv(1 ≤ i ≤ |Nj

v| − 1) is defined as the type of VNF of
type f(njiv) ∈ F that needs to be mapped to an edge compute
node for traffic passing through the i-th network function.
Dj(t) represents the destination node at time t. Let Ejv denote
the set of virtual links, where ejiv ∈ Ejv represents the virtual
link between adjacent VNFs njiv and nj(i+1)

v . For
simplification, we denote the source node as nj0v and the
destination node as nj|Njv|−1

v . For any given SFC Gj
v , D(Gj

v)
and F(Gj

v)) represent the target latency requirement and the
traffic demand, respectively. Based on the required network
function types and traffic sizes for the SFC, the virtual links’
bandwidth requirement is given by Eq. (1):

traffic�ejiv� = F�Gj
v� ∙� ratio �f�njxv ��

i

x=0

(ratio(f(nj0v)) = 1)
(1)

Therefore, we can express the demand for the resource of

143

type r (r∈R) by the network function njiv as Eq. (2):

resr�njiv� = coeff r �f�njiv�� ∙ traffic�ej(i−1)
v �

= coeff r(f(njiv)) ∙ F(Gj
v) ∙� ratio(f(njxv))

i−1

x=0

(2)

3.4 Network latency

The rapid development of MEC is attributed to its ability to
provide services in close proximity, significantly reducing
service latency. Compared to cloud networks, the distributed
NFVI, limited computing resources, and link bandwidth in
edge computing environments necessitate consideration of
both link propagation delay and queuing delay, as represented
by Eq. (3):

delay(eijs) = prop_delay(eijs) + queue_dealy(eijs) (3)

The propagation delayprop_delay(eijs) refers to the time
taken for information to travel across a communication
medium, which is proportional to the length of the medium.
Queuing delay queue_dealy(eijs) is the time a packet waits in
the queue, which is related to the current link traffic. The
queuing delay is modeled using the M/M/1 queuing model
[22], which is defined as the ratio of the remaining bandwidth
of the link. The calculation of the queuing delay, based on this
model, is presented in Eq. (4):

queue_dealy(eijs) = dij ∙ (1 − ωij(t)/ωij(t)) (4)

where, dij denotes the transmission delay of a single data
packet.

3.5 Traffic steering

Most Commonly Used SFC The most widely used
algorithm for traffic steering is the shortest path algorithm.
While it effectively minimizes service latency and optimizes
network bandwidth, it is not without its inherent limitations.
This study builds upon the shortest path approach to consider
more feasible traffic steering paths. Let τpq denote the first k
shortest propagation delay paths between nodes nps and nqs ,
where τpql represents the l-th (1 ≤ l ≤ |τpq|) path. For
computational convenience, we define a binary variable σpql

ji
to indicate whether a link eijs is included in τpql. The latency
of the traffic steering path is given by:

dpql(t) = � σpql
ji ∙ delay�eijs �

eij
s ∈Es

= � σpql
ji ∙ �propdelay�eijs � + queuedealy�eijs ��

eij
s ∈Es

 = � σpql
ji ∙ propdelay�eijs �

eij
s ∈Es

+ � σpql
ji ∙ dij ∙ (1 − ωij(t)/ωij(t))

eij
s ∈Es

(5)

In Eq. (5), the first term represents the sum of the
propagation delays of the adjacent links in the traffic steering
path, which is constant. The second term is the sum of the

queuing delays across all adjacent links, dependent on the
traffic load. The paths in the set are ordered by propagation
delay in ascending order, meaning that paths ranked higher are
shorter and traverse fewer routes. Let traffic steering paths
between all nodes in the network be denoted by
Γ(τ11, τ12. . . τpq. . .) . The SFC traffic steering will take all
these paths into account.

3.6 Decision model and optimization objectives

In the MEC environment, considering the dynamic arrival
of users and their mobility, the SFC dynamic orchestration
problem can be viewed as mapping directed graph Gv sets at
each time slot t to the undirected graph Gs of the NFVI. The
mapping of user services to the NFVI must account for both
the variations in service latency due to user mobility and the
resource constraints of the NFVI, ensuring efficient resource
utilization to prevent network congestion. To address this
issue, a 0-1 Integer Linear Programming model has been
developed for SFC dynamic orchestration in the MEC
environment, and Boolean decision variables ζji

p(t) and ηji
pq(t)

are defined as follows:

ζji
p(t) = �

1 if njiv is mapped to nps in the time t
0 if njiv is not mapped to nps in the time t (6)

ηji
pql(t) = �

1 if ejivis mapped to τpql in the time t
0 if ejiv is not mapped to τpql in the time t (7)

In time t, whereηji
pql(t) denotes whether the virtual link ejiv

in the SFC Gj
v is mapped in the path set τpql, and ζji

p(t) denotes
whether the i-th virtual network function njiv in the SFC Gj

v is
mapped to the physical node.

Based on the aforementioned decision variables, in the time
t, the remaining bandwidth ratio ωmn of the link emns is given
by Eq. (8):

ωmn(t) = 1 − � � (� � traffic(ejiv)
τpqlϵτpqτpqϵΓeji

vϵGj
vGj

vϵGv

∙ ηji
pql(t) ∙ σpqlmn) /bw(emns)

(8)

Therefore, the total service latency of the SFC Gj
v is given

by Eq. (9):

dj(t) = � � ηji
pql(t) ∙ dpql(t)

τpqlϵτpqeji
vϵEj

v
(9)

The total latency of the SFC is given by Eq. (10):

d(t) = � dj(t)
Gj
vϵGv

 (10)

The number of SFC requests received is given by Eq. (11):

A(t) = � f((� � ζji
p(t)

nps ϵNsnji
vϵGj

v

− |Nj
v|)

Gj
vϵGv

+ (� � � � ηji
pql(t) ∙ σpqlmn

emn
s ϵEsτpqlϵτpqτpqϵΓeji

vϵEj
v

− (|Nj
v|− 1)))

(11)

144

where, f(x) = �0, x < 0
1, x ≥ 0.

This paper aims to optimize the overall acceptance rate of
SFC requests, ensuring that the constraints on physical
resources and latency within the NFVI are satisfied. Therefore,
the optimization objective is:

MaximizeA(t) − d(t) (12)

To unify the positive and negative meanings of the

optimization objective, this paper adopts the latency
optimization rate ∅(t) as the final optimization criterion:

∅(t) = � (D(Gj

v) − dj(t))/(D(Gj
v)

Gj
vϵGv

 (13)

Therefore, the final optimization objective is:

MaximizeA(t) + ∅(t) (14)

In Mobile Edge Computing (MEC) environments, service

providers typically aim to accept as many SFC requests as
possible while optimizing services under limited resources.
Therefore, choosing "maximizing the request acceptance rate"
as the objective function aligns with practical needs,
effectively evaluating and enhancing the overall efficiency of
SFC traffic steering paths. Due to the resource constraints in
MEC environments, in addition to maximizing the request
acceptance rate, it is also essential to ensure low latency and
service quality. This is another basis for the design of the
objective function, ensuring system stability and user
satisfaction.

In SFC orchestration, the mapping of source and destination
nodes is a critical constraint, as it ensures that service requests
can be correctly transmitted from the source node to the
destination node, maintaining network connectivity and data
flow integrity. The mapping of virtual nodes and virtual links
to the physical topology is necessary to support the functional
requirements of the virtual network and avoid conflicts or
wastage of physical resources. Node resources as constraints
ensure that virtual nodes can be mapped to physical nodes with
sufficient computational, storage, and processing capabilities,
thus preventing resource overload and ensuring system
stability. Link resource constraints ensure that virtual links can
be mapped to physical links that meet bandwidth
requirements, enabling efficient data flow transmission. These
constraints ensure the rational allocation of resources, improve
the utilization efficiency of network resources, and optimize
service quality. Therefore, the constraint conditions are as
follows:

The SFC source node’ mapping location must be the user
access node, and the mapping location of the SFC endpoint
must be the destination node:

ζj0
p (t) = Sj(t), ∀Gj

v ∈ Gv
ζj(|Nj

v|−1)
p (t) = Dj(t), ∀Gj

v ∈ Gv (15)

In any time slot t, all virtual network functions used by the

SFC must be deployed:

� ζji
p(t) = 1,

nps ϵNs
 ∀Gj

v ∈ Gv,∀njiv ∈ Gj
v (16)

In any time slot t, all virtual links used by the SFC must be
deployed:

� � � ηji

pql(t) ∙ σpqlmn

emn
s ϵEsτpqlϵτpqτpqϵΓ

= 1,

∀Gj
v ∈ Gv,∀ejiv ∈ Gj

v
(17)

In any time slot t, the resource constraints of the edge

computing nodes in the NFVI are as follows:

� � resr�njiv� ∙ ζji
p(t)

nji
vϵGj

vGj
vϵGv

≤ capr�nps �,

∀nps ∈ NE
s ,∀r ∈ R

(18)

In any time slot t, the bandwidth constraints of the physical

links in the NFVI are as follows:

� � (� � traffic(ejiv) ∙ ηji

pql(t) ∙ σpqlmn)
τpqlϵτpqτpqϵΓeji

vϵGj
vGj

vϵGv

≤ bw(emns),∀emns ∈ Es
(19)

4. GCN-DQN DRIVEN INTELLIGENT DEPLOYMENT
STRATEGY FOR SFC

We propose the GCN-DQN framework, which integrates

Graph Convolutional Networks with Deep Q-Networks to
optimize Service Function Chain traffic steering paths in
Mobile Edge Computing environments. The rationale behind
combining GCNs and DQNs lies in their complementary
strengths: GCNs are well-suited to model the network's
topological structure, capturing the complex relationships
between nodes, while DQNs excel in decision-making by
learning from past experiences to optimize long-term rewards.
In the context of MEC, where the network topology is dynamic
and highly complex, this combination allows the GCN-DQN
framework to not only understand the intricate dependencies
between network elements but also adapt and optimize traffic
steering paths in real-time, ensuring efficient resource
utilization and low-latency service delivery.

The specific benefits of this combination are particularly
evident in MEC environments, where the network is
distributed, and resources are limited. The GCN component
ensures that the model captures the network's topology in a
way that is scalable and adaptable, while the DQN component
enables the algorithm to continuously improve its decisions
based on real-time feedback. By leveraging these two
technologies together, the GCN-DQN framework offers a
robust solution for optimizing SFC orchestration. The specific
design is as follows.

4.1 State, action and reward function

The reinforcement learning process is modeled as a Markov

Decision Process, represented by (S, A, P, R), where S denotes
the states, A represents the available actions, P represents the
state transition probability, and R is the reward function. In
this study, a model-free approach is employed to derive the
optimal policy using a Deep Q-Network. As a result, the state,
action, and reward function are defined as follows:

State: The state represents an abstract view of the
environment. In the MEC context, the state of SFC dynamic

145

orchestration primarily includes the resources of the NFVI and
relevant information about the SFC being orchestrated. It
consists of two components: the node feature matrix X and the
adjacency matrix Adj. Each row in the X matrix represents the
features of a node, and the node's features include the
following aspects:

Xi = (remaincpu(ni), isSource, isDestination,
remain_bw(ei1), delay(ei1), remain_bw(ei2),

delay(ei2). . . |SFCvnf|, SFCbw)
(20)

Remain_cpu(ni) represents the remaining CPU resources

of the node, and whether it is a source or destination node is
represented by isSource or isDestination . The remaining
bandwidth resources and latency of the link eij are represented
by remain_bw(eij) and delay(eij) , respectively. |SFCvnf| is
represents the number of VNFs in the SFC, and the bandwidth
demand of the SFC is represented by SFCbw. The size of the
state space is |Ns| ∙ (2 ∗ |Ns| + 5).

Action: The GCN-DQN algorithm perceives the load status
of the NFVI and the demand information of the SFC,
determining the traffic steering path for the SFC. Thus, the
action space is defined as A=(1, 2, …,k), where 1 to k represent
the first k shortest paths for SFC deployment.

Reward function: In this paper, the optimization objective
is used as the reward function. With the state, action, and
reward function defined, the GCN-DQN interacts with the
environment to identify the optimal traffic steering path for the
SFC, thus enhancing the success rate of deployments in each
time slot.

4.2 Framework design

The GCN-DQN framework operates in two primary phases:
offline training and online execution. In the offline training
phase, data regarding the NFVI state and SFC requirements
are collected to form training datasets, which the agent uses to
select policies from the action space. During the online phase,
the agent receives SFC requirements and the current NFVI
state, evaluates the rewards associated with different actions,
and chooses the optimal action to determine the SFC traffic
routing path.

Figure 2. Algorithm framework diagram

The main algorithmic framework is shown in Figure 2.

Initially, the agent acquires the current state through its
interaction with the environment, which is represented by a
feature attribute matrix of nodes (including CPU resources,
storage resources, and the bandwidth and latency of adjacent
links) and an adjacency matrix. This state is input into the
GCN, where it undergoes message aggregation and updates,
resulting in the output vector ht. Based on this vector
information, the agent makes a decision regarding the action
to take, which is then applied to the environment to receive a

reward and determine the next state. The experience replay
buffer stores the state, action, reward, and next state. During
offline training, the DQN extracts multiple sets of experience
values from this buffer to compute the Q-values and loss
values, subsequently updating the weight parameters. The
detailed process is described as follows:

Step 1: The agent observes the MEC network environment
to obtain the current state.

Step 2: The current state is input into the GCN, which
outputs the state encoding after graph convolution.

Step 3: The Q-values are calculated based on the current
state, leading to the selection of the optimal action.

Step 4: After executing the SFC orchestration task, a tuple
(s, a, r, s′) consisting of the current state, action, reward, and
next state is generated and stored in the database, enabling
continuous updates to the Deep Reinforcement Learning
model.

Step 5: The Q-values are computed for both the current state
and the next state.

Step 6: The predicted Q-values and current Q-values are
determined.

Step 7: The loss function is calculated, and the network
weights are updated.

Step 8: The Q network weights are copied to the Target Q
network.

4.3 Model training process

In each time slot t, user arrivals are modeled using a Poisson

process. Given that the state in graph structure cannot be
directly input into a fully connected neural network, it is
necessary to encode the state into a real-valued vector. To
achieve this, we leverage the Graph Convolutional Network
architecture outlined in study [23], which operates through the
following steps.

By exploiting the intrinsic features of each node within the
graph, we utilize a Graph Convolutional Network to
effectively aggregate the neighborhood information associated
with each node. In this case, we employ a multi-layer GCN
with a standard hierarchical propagation rule:

H(l+1) = σ(D�−
1
2A�D�−

1
2H(l)W(l)) (21)

Here, A� = A + I represents the adjacency matrix of the

undirected graph with added self-connections, and I denotes
the identity matrix. D� is the degree matrix, H(l) is the input
feature representation of the nodes at layer l-th, H(0) = X.W(l)
represents the weight matrix for layer l-th, and σ(∙) is the
activation function.

The complexity of the given GCN formula can be analyzed
as follows: First, computing A� = A + Irequires O(N2) for a
dense graph, where N = |Ns| is the number of nodes.
Calculating D�−

1
2 involves O(N) since it only requires

summing the rows of the adjacency matrix and taking the
square root. Multiplying D�−

1
2A�D�−

1
2 has a complexity of O(N2)

for dense graphs. For the feature matrix operations, H(l)W(l)
takes O(N ∙ F(l) ∙ F(l+1)) , where F(l) = F(l+1) = 2 ∗ |Ns| + 5
in this study and multiplying the normalized adjacency matrix
with the feature matrix requires O(N2 ∙ F(l)) for dense
graphs.Overall, the total complexity is O(N2 + N2 ∙ F(l) + N ∙
F(l) ∙ F(l+1)) for dense graphs.

During the training phase, an ε-greedy strategy is employed
to select random actions with a defined probability, facilitating

146

exploration of the environment. After an action is executed,
the state, next state, action, and reward, are recorded in the
database. Once the database accumulates a sufficient number
of entries to meet the minimum batch size, a batch of data is
sampled to train the Q-network after each exploratory step.
The loss function applied during the training process is
expressed in Eq. (22):

L(θ) = E[r + γmaxa′Q(s′, a′; θT) − Q(s, a;θ)] (22)

In this context, θ and θT represent the Q network and the
target Q network, respectively. The first part of the loss
function r + γmaxa′Q(s′, a′; θT) signifies the target Q value
predicted by the target network, maxa′Q(s′, a′; θT)
corresponds to the Q value for action a′ derived from the next
state s′ is used as input to the target network, with γ
representing the discount factor. The Q(s, a;θ) corresponds to
the Q value computed by the current Q network.
Consequently, the loss function captures the model's
estimation error. A smaller loss indicates improved model
performance. The Q-network weights are updated through the
gradient descent algorithm.

θ′ = θ + α[r + γmaxa′Q(s′, a′; θT)
−Q(s, a;θ)]∇Q(s, a; θ) (23)

In Eq. (23), θ and θ′ represent the parameters of the Q
network before and after the update, respectively, while α
denotes the learning rate.

The pseudocode for the training process is outlined in
Algorithm 1 as follows:

Algorithm 1: Training Process of GCN-DQN
1: Initialize the target Q network Q(s′, a′; θT) and Q
network Q(s, a;θ) with random weights
2: Initialize experience replay memory D to capacity N
3: for each episode do
4: Initialize the environment
5: for each time slot t do
6: the arrival of n SFCs following a Poisson process
7: for each SFC do
8: obtain the current state s of the environment
9: Select action a according to an ε-greedy policy
based on Q(s, a;θ)
10: Perform action a, then observe the resulting reward
r and the subsequent state s'
11 Record the transition (s, a, r, s') in D
12: end for
13: Randomly sample a minibatch of transitions from D
14: For each transition (s, a, r, s') in minibatch do
15: Set y = r + γmaxa′Q(s′, a′; θT)
16: Update Q(s, a;θ) by minimizing the loss: L(θ) =
E[y − Q(s, a; θ)]
17: Update the target Q network Q(s′, a′;θT) with
weights θT ← θ
18: end for
19: end for
20: end for

5. PERFORMANCE EVALUATION

5.1 Simulation environment and design

This study uses the open source network function

virtualization resource allocation simulation software,
SFCSim [24], as a simulation tool. SFCSim enables dynamic
SFC orchestration simulations in mobile scenarios. The
simulation environment utilizes the Cernnet network
topology, as illustrated in Figure 3. This network consists of
23 edges and 21 nodes.

Figure 3. Cernnet network topology

The simulation parameters are specified in Table 1. In the
network, the number of CPU cores in the edge computing
nodes follows a uniform distribution U(100 cores,300 cores).
The bandwidth of the links between nodes is 2.5 Gbps, and the
propagation delay of the links ranges from 0.5 ms to 1.6 ms.
The network supports eight types of virtual network functions.
The resource coefficient for processing traffic per Mbps is
uniformly distributed between 0.025 and 0.05 cores, while
traffic proportion coefficients for each type of VNF follow a
uniform distribution U(0.8,1.2). Service function chain
arrivals in different time slots are assumed to follow a Poisson
distribution, with traffic demands ranging from 20 Mbps to 40
Mbps and latency requirements between 8 ms and 10 ms. The
traffic needs to pass through between 2 and 5 network
functions.

Table 1. Simulation parameters

Parameters Value

NFVI
Node Resources U(100cores,300cores)
Link Bandwidth 2.5Gbps

Transmission Delay 0.5-1.6ms

VNF
Type 8

Traffic scaling factor U(0.8,1.2)
Resource Coefficient 0.025-0.05cores/Mbps

SFC

Traffic Demand 20-40Mbps
Latency Requirement 8-10ms
Number of Required
Network Functions 2-5

Lifetime 1-3 time slot

The Q network within the agent is built with two GCN
layers and two fully connected layers. The size of the state
space corresponds to the input layer, while the size of the
action space corresponds to the output layer. During training,
the neural network’s learning rate is set to 0.001, and the
discount factor is set to 0.95. For the learning rate, 0.001 serves
as a baseline value. In our experiments, we adopted the Adam
optimizer, which dynamically computes the effective learning
rate for each update based on gradient momentum and
normalization operations, enabling more effective learning.
Regarding the discount factor, we prioritized long-term
rewards, which led us to select a relatively large value of 0.95.

147

Figure 4. SFC deployment success rate at an arrival rate of
10

Figure 5. SFC deployment success rate at an arrival rate of
20

Figure 6. SFC deployment success rate at an arrival rate of
50

The first comparative algorithm is the Static Edge Chain
Allocation (SECA) algorithm [25], which is designed for SFC
orchestration in MEC environments for mobile users. The core
idea of SECA is to sequentially treat all nodes along the
shortest path from the destination node to the source node as
candidate nodes, deploying the SFC's network functions on
these candidate nodes in order. If the resources of the current
candidate node are insufficient, the deployment is moved to
the next candidate node. This algorithm utilizes the shortest
path to guide traffic.

The second comparative algorithm employs DQN
exclusively to select a traffic steering path from k shortest
paths. The node deployment strategy aligns with that of the
SECA algorithm. This algorithm maintains consistency and
comparability in node placement within the network structure
by adhering to the same deployment strategy for VNFs as
SECA. It intelligently selects paths solely through DQN,
optimizing network traffic allocation, enhancing transmission
efficiency, and reducing congestion.

5.2 Simulation results

Initially, we assessed the performance of the GCN-DQN in

the topology depicted in Figure 3, which was also utilized
during the training phase. The deployment success rates of
various algorithms over time are presented in Figures 4-6,
corresponding to SFC arrival rates of 10, 20, and 50,
respectively. The total number of SFCs simulated is 1000,
indicating that the simulation concludes after 1000 SFCs have
appeared in the network. At time slot t=0, there are already 40
SFCs in the network, and their deployment status is included
in the overall deployment success rate. From the figures, it is
evident that as time progresses, the deployment success rate
initially increases and then stabilizes. This is due to the fact
that the 40 existing SFCs have not yet reached the end of their
service time. As time increases, the deployment success rate
gradually rises and eventually stabilizes, particularly at lower
arrival rates. However, when the arrival rate is set to 50, this
value approaches that of the initial 40 SFCs, resulting in
minimal changes in the deployment success rate over time.

Figure 7. Average deployment success rate of algorithms
under different arrival rates of the topology during training

Figure 7 shows the deployment success rates of different

algorithms under varying arrival rates. The figure clearly
demonstrates that the GCN-based algorithm consistently
outperforms both the DQN-only and SECA algorithms. This
improvement can be attributed to the GCN's ability to model
the network, allowing for a better understanding of the
relationships between network nodes and leading to more
effective deployment decisions.

Subsequently, we extended our experiments by conducting
simulations in a network environment whose topology
deviates from the one used during the training phase, as
depicted in Figure 8. Unlike the structured topology presented
in Figure 3, the node connections in this new topology exhibit
distinct patterns and arrangements, reflecting a more complex
and dynamic network layout. This deliberate variation in
topology aims to assess the robustness and adaptability of the

148

GCN-DQN algorithm under diverse conditions, ensuring its
generalizability beyond the specific topologies it was initially
trained on.

Figure 8. Network topology

Figure 9. SFC deployment success rate at an arrival rate of
10

Figure 10. SFC deployment success rate at an arrival rate of
20

In this particular network topology, the simulation results
are comprehensively illustrated in Figures 9-12. These figures
present a detailed comparison of the deployment success rates
under various conditions. The findings suggest that, even
when confronted with previously unseen network topologies,
our proposed algorithm consistently maintains a high level of
performance, achieving a satisfactory deployment success
rate. This robustness in diverse topological scenarios
highlights the generalizability and adaptability of the

algorithm. Furthermore, as shown in Figure 9, when
comparing the deployment success rates, the algorithm
utilizing only the DQN approach reveals a significant
disparity, particularly at lower SFC arrival rates. This suggests
that our proposed algorithm, which integrates additional
optimization strategies, effectively outperforms the DQN-only
approach, ensuring more reliable and efficient traffic steering
decisions under challenging conditions, especially when
traffic volumes are relatively low.

Figure 11. SFC deployment success rate at an arrival rate of
50

Figure 12. Average deployment success rate of algorithms
under different arrival rates of non-trained topologies

Figure 13. Average deployment success rate of algorithms
under different arrival rates after DQN retraining

149

To enhance the persuasiveness of our experimental results,
we also trained the DQN-only algorithm on the network
topology shown in Figure 8 and then tested its SFC
deployment success rate in that network. We compared this
with the GCN-DQN algorithm, which had not been trained on
that topology. We similarly evaluated the SFC deployment
success rates under different arrival rates and calculated the
averages, as presented in Figure 13. From the figure, we can
see that the deployment success rate of the DQN algorithm
improved compared to Figure 12. However, at arrival rates of
10 and 20, the deployment success rate still fell short of that
of the GCN-DQN algorithm. At an arrival rate of 50, the
deployment success rate slightly exceeded that of the GCN-
DQN algorithm. Additionally, we conducted similar tests in
other topologies, yielding consistent results. Therefore, we can
conclude that the GCN-DQN algorithm demonstrates good
generalization capability. However, the current topology
requires the number of nodes to be consistent with the number
of nodes in the topology used during training.

We have summarized the comparison of the GCN-DQN
algorithm with other existing methods, particularly its key
performance in optimizing SFC traffic steering paths. The
experimental results reveal that the GCN-DQN approach
exhibits notable advantages across different network
topologies and load conditions, achieving a higher SFC
request acceptance rate than the traditional DQN algorithm, all
while satisfying QoS constraints. The introduction of GCN
enables the algorithm to better capture network topology,
improving decision-making efficiency and scalability.
Moreover, GCN-DQN exhibits strong generalization
capabilities, effectively performing SFC orchestration in
unseen network topologies. These results fully demonstrate
the innovation and practicality of the GCN-DQN algorithm
compared to other methods in MEC environments.

6. CONCLUSION

This paper investigates the dynamic orchestration of
Service Function Chains in MEC environments across
different network topologies. To address this issue, we
conduct an in-depth analysis of network latency and user
services in MEC environments. To enhance the overall
revenue of network services while meeting user latency
requirements, we model the dynamic orchestration of SFCs in
MEC environments as a 0-1 ILP model. Subsequently, we
propose an intelligent orchestration strategy for SFCs based on
graph neural networks and deep reinforcement learning. GCN-
DQN intelligently decides on traffic steering paths by
perceiving network topology states and user service demands
through GCN and DQN. Extensive experimental simulations
demonstrate that GCN-DQN can better perceive the
relationships within network topologies compared to existing
algorithms, leading to superior decision-making and robust
generalization capabilities.

In future work, we plan to evaluate the performance of the
proposed model in large-scale network topologies to further
validate its robustness and applicability. To address the
memory and GPU limitations commonly encountered during
GCN training, we will incorporate the GraphSAGE [26]
method to enable efficient node sampling and aggregation.
This approach will allow the graph model to scale effectively
for handling large graph-structured data, thereby enhancing
the practicality of the GCN-based SFC orchestration method

in extensive MEC environments.
Additionally, we will explore strategies for SFC

readjustment to better adapt to dynamic changes in user
demands and network conditions. This involves developing
mechanisms for real-time updates to service chain
deployments while minimizing their impact on network
operations and optimizing resource utilization.

We also aim to tackle potential challenges related to
scalability and real-world application of the framework by
proposing corresponding solutions. Specifically, we will
analyze and optimize the algorithm's computational
complexity to improve its efficiency for real-time operations
in large-scale networks. To address challenges arising from the
heterogeneity of MEC infrastructures, we will explore how to
adapt to diverse hardware capabilities and develop a modular
design to enhance compatibility. Furthermore, we plan to
leverage distributed computing techniques to offload
computational burdens, thereby mitigating resource
constraints and improving the overall performance of the
framework.

Through these efforts, we aim to further enhance the
adaptability and scalability of the GCN-DQN framework and
provide effective solutions for its broader application in
diverse and dynamically evolving MEC environments.

REFERENCES

[1] Hantouti, H., Benamar, N., Taleb, T. (2020). Service
function chaining in 5G & beyond networks: Challenges
and open research issues. IEEE Network, 34(4): 320-327.
https://doi.org/10.1109/MNET.001.1900554

[2] Arulkumaran, K., Deisenroth, M. P., Brundage, M.,
Bharath, A.A. (2017). Deep reinforcement learning: A
brief survey. IEEE Signal Processing Magazine, 34(6):
26-38. https://doi.org/10.1109/MSP.2017.2743240

[3] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z.,
Sun, M. (2020). Graph neural networks: A review of
methods and applications. AI Open, 1: 57-81.
https://doi.org/10.1016/j.aiopen.2021.01.001

[4] Aurrecoechea, C., Campbell, A.T., Hauw, L. (1998). A
survey of QoS architectures. Multimedia Systems, 6:
138-151. https://doi.org/10.1007/s005300050083

[5] Sonkoly, B., Czentye, J., Szalay, M., Németh, B., Toka,
L. (2021). Survey on placement methods in the edge and
beyond. IEEE Communications Surveys & Tutorials,
23(4): 2590-2629.
https://doi.org/10.1109/COMST.2021.3101460

[6] Chen, Y.T., Liao, W. (2019). Mobility-aware service
function chaining in 5G wireless networks with mobile
edge computing. In ICC 2019-2019 IEEE International
Conference on Communications (ICC), Shanghai, China,
pp. 1-6. https://doi.org/10.1109/ICC.2019.8761306

[7] Taleb, T., Ksentini, A., Frangoudis, P.A. (2016). Follow-
me cloud: When cloud services follow mobile users.
IEEE Transactions on Cloud Computing, 7(2): 369-382.
https://doi.org/10.1109/TCC.2016.2525987

[8] Mouradian, C., Kianpisheh, S., Abu-Lebdeh, M.,
Ebrahimnezhad, F., Jahromi, N.T., Glitho, R.H. (2019).
Application component placement in NFV-based hybrid
cloud/fog systems with mobile fog nodes. IEEE Journal
on Selected Areas in Communications, 37(5): 1130-
1143. https://doi.org/10.1109/JSAC.2019.2906790

[9] Mosayebi, A., Pozveh, A.J. (2020). Heuristic based

150

algorithm for SFC allocation in 5G experience
applications. In 2020 6th Iranian Conference on Signal
Processing and Intelligent Systems (ICSPIS), Mashhad,
Iran, pp. 1-6.
https://doi.org/10.1109/ICSPIS51611.2020.9349535

[10] Shokouhifar, M. (2021). FH-ACO: Fuzzy heuristic-
based ant colony optimization for joint virtual network
function placement and routing. Applied Soft
Computing, 107: 107401.
https://doi.org/10.1016/j.asoc.2021.107401

[11] Fu, X., Yu, F.R., Wang, J., Qi, Q., Liao, J. (2019).
Service function chain embedding for NFV-enabled IoT
based on deep reinforcement learning. IEEE
Communications Magazine, 57(11): 102-108.
https://doi.org/10.1109/MCOM.001.1900097

[12] Li, G., Feng, B., Zhou, H., Zhang, Y., Sood, K., Yu, S.
(2020). Adaptive service function chaining mappings in
5G using deep Q-learning. Computer Communications,
152: 305-315.
https://doi.org/10.1016/j.comcom.2020.01.035

[13] Liu, Y., Lu, H., Li, X., Zhang, Y., Xi, L., Zhao, D.
(2020). Dynamic service function chain orchestration for
NFV/MEC-enabled IoT networks: A deep reinforcement
learning approach. IEEE Internet of Things Journal, 8(9):
7450-7465. https://doi.org/10.1109/JIOT.2020.3038793

[14] Wang, L., Mao, W., Zhao, J., Xu, Y. (2021). DDQP: A
double deep Q-learning approach to online fault-tolerant
SFC placement. IEEE Transactions on Network and
Service Management, 18(1): 118-132.
https://doi.org/10.1109/TNSM.2021.3049298

[15] Sun, P., Lan, J., Li, J., Guo, Z., Hu, Y. (2020). Combining
deep reinforcement learning with graph neural networks
for optimal VNF placement. IEEE Communications
Letters, 25(1): 176-180.
https://doi.org/10.1109/LCOMM.2020.3025298

[16] Heo, D., Lange, S., Kim, H.G., Choi, H. (2020). Graph
neural network based service function chaining for
automatic network control. In 2020 21st Asia-Pacific
Network Operations and Management Symposium
(APNOMS), Daegu, Korea (South), pp. 7-12.
https://doi.org/10.23919/APNOMS50412.2020.9236954

[17] Qi, S., Li, S., Lin, S., Saidi, M.Y., Chen, K. (2021).
Energy-efficient VNF deployment for graph-structured
SFC based on graph neural network and constrained deep
reinforcement learning. In 2021 22nd Asia-Pacific
Network Operations and Management Symposium
(APNOMS), Tainan, Taiwan, pp. 348-353.

https://doi.org/10.23919/APNOMS52696.2021.9562610
[18] Xiao, D., Zhang, J.A., Liu, X., Qu, Y., Ni, W., Liu, R.P.

(2023). A two-stage GCN-based deep reinforcement
learning framework for SFC embedding in multi-
datacenter networks. IEEE Transactions on Network and
Service Management, 20(4): 4297-4312.
https://doi.org/10.1109/TNSM.2023.3284293

[19] Kuo, T.W., Liou, B.H., Lin, K.C.J., Tsai, M.J. (2018).
Deploying chains of virtual network functions: On the
relation between link and server usage. IEEE/ACM
Transactions on Networking, 26(4): 1562-1576.
https://doi.org/10.1109/TNET.2018.2842798

[20] Gouareb, R., Friderikos, V., Aghvami, A.H. (2018).
Virtual network functions routing and placement for
edge cloud latency minimization. IEEE Journal on
Selected Areas in Communications, 36(10): 2346-2357.
https://doi.org/10.1109/JSAC.2018.2869955

[21] Wang, L., Lu, Z., Wen, X., Knopp, R., Gupta, R. (2016).
Joint optimization of service function chaining and
resource allocation in network function virtualization.
IEEE Access, 4: 8084-8094.
https://doi.org/10.1109/ACCESS.2016.2629278

[22] Pei, J., Hong, P., Xue, K., Li, D. (2018). Efficiently
embedding service function chains with dynamic virtual
network function placement in geo-distributed cloud
system. IEEE Transactions on Parallel and Distributed
Systems, 30(10): 2179-2192.
https://doi.org/10.1109/TPDS.2018.2880992

[23] Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., Wang, W.
(2019). SimGNN. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data
Mining, USA. https://doi.org/10.1145/3289600.3290967

[24] Xu, L., Hu, H., Liu, Y. (2023). SFCSim: A network
function virtualization resource allocation simulation
platform. Cluster Computing, 26(1): 423-436.
https://doi.org/10.1007/s10586-022-03670-8

[25] Zheng, G., Tsiopoulos, A., Friderikos, V. (2019).
Dynamic VNF chains placement for mobile IoT
applications. In 2019 IEEE Global Communications
Conference (GLOBECOM), Waikoloa, HI, USA, pp. 1-
6.
https://doi.org/10.1109/GLOBECOM38437.2019.90141
66

[26] Huang, K., Chen, C. (2024). Subgraph generation
applied in GraphSAGE deal with imbalanced node
classification. Soft Computing, 28(17-18): 10727-10740.
https://doi.org/10.1007/s00500-024-09797-7

151

	1. Introduction

