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With the rise of applications such as the Internet of Things (IoT) and Virtual Reality 
(VR), there is an increasing demand for stringent service latency and quality of service 
requirements, which has led to a shift in network service deployment from cloud to 
edge, giving rise to Mobile Edge Computing (MEC) architectures. In MEC 
environments, network infrastructure is distributed near users, allowing access to local 
networks in real time. However, dynamically orchestrating Service Function Chains 
(SFCs) presents a significant challenge, especially in resource-constrained settings 
where maximizing SFC deployments while maintaining low latency is essential for 
service providers’ revenue optimization. To address this challenge, this paper proposes 
an intelligent SFC orchestration strategy, termed GCN-DQN, which combines Graph 
Convolutional Networks (GCNs) and Deep Q-Networks (DQNs). The GCN-DQN 
framework is designed to optimize the request acceptance rate while ensuring 
compliance with stringent low-latency requirements. To achieve this, the GCN-DQN 
strategy is designed to perceive network structure, resource availability, and SFC-
specific information, enabling optimized decision-making for SFC traffic steering 
paths. Performance evaluations demonstrate that the proposed algorithm outperforms 
existing methods in SFC request acceptance rates under various network loads. 
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1. INTRODUCTION

The advent of network virtualization and cloud computing
has positioned service function chaining [1] as a pivotal 
technology for the dynamic deployment and management of 
sequential network functions—such as firewalls, load 
balancers—tailored to specific service requirements. 
Traditionally, these functions have been statically deployed 
within networks, resulting in limited flexibility and 
adaptability. Nevertheless, as network traffic continues to 
surge and application scenarios grow increasingly complex, 
the challenge of intelligent and dynamic SFC deployment has 
emerged as a crucial concern in modern network management. 

Recent advances in deep reinforcement learning [2] have 
demonstrated considerable potential in tackling decision-
making challenges, particularly in the dynamic deployment of 
SFCs. Nonetheless, a key limitation of many DRL-based 
approaches in network environments is their restricted 
generalizability. While these methods perform effectively on 
network topologies encountered during training, their 
performance significantly deteriorates when applied to novel, 
unseen topologies. This limitation stems from the use of 
conventional neural networks—such as fully connected and 
convolutional networks—that are not inherently equipped to 
process graph-structured data. In recent years, graph neural 
networks [3], a deep learning model designed to process 

graph-structured data, have shown exceptional performance in 
areas such as social network analysis, molecular modeling, 
and recommendation systems. GNNs effectively capture the 
complex relationships and dependencies between nodes, 
offering a unique advantage for addressing SFC deployment 
challenges. By leveraging GNNs, it is possible to efficiently 
deploy SFCs in complex network topologies, optimizing 
network resource utilization while satisfying quality of service 
[4] requirements.

To tackle the challenge of intelligent SFC orchestration in
Mobile Edge Computing (MEC) [5-8] environments, where 
user mobility significantly influences SFC deployment, this 
paper introduces a 0-1 Integer Linear Programming model for 
dynamic SFC orchestration. Leveraging this model, we 
propose a GCN-DQN-based framework designed to 
intelligently determine traffic steering paths, thereby 
enhancing the acceptance rate of SFC requests. The main 
contributions of this paper are outlined below: 
1. We conducted a comprehensive analysis of latency

within Mobile Edge Computing (MEC) environments
and formulated a 0-1 Integer Linear Programming model
for dynamic SFC orchestration, taking into account
factors such as user mobility. The model aims to optimize
the request acceptance rate in the network while
satisfying latency constraints.

2. Building on the aforementioned model, we developed a
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GCN-DQN-driven framework for dynamic SFC 
orchestration, integrating Graph Convolutional 
Networks with Deep Q-Networks. This framework is the 
first to leverage Deep Reinforcement Learning (DRL) for 
making intelligent decisions in steering traffic paths 
within SFCs. 

3. Extensive experiments were conducted to validate the
effectiveness of the proposed algorithm. Compared to
existing methods, our approach demonstrates superior
generalization across diverse network topologies and
achieves a higher request acceptance rate under identical
resource constraints.

2. RELATED WORK

A considerable body of research has focused on the
deployment of Service Function Chains (SFC). Given our 
objective of deploying as many SFCs as possible in a Mobile 
Edge Computing (MEC) environment with limited resources, 
we closely monitor each SFC traffic steering path to optimize 
the overall request acceptance rate within the network. 
Traditional optimization techniques, including exact methods, 
heuristics [9], and meta-heuristics [10], encounter significant 
limitations as the solution space expands exponentially with 
the growth of the state space, rendering them less effective in 
complex network environments. In contrast, Deep 
Reinforcement Learning (DRL) has emerged as a potent 
approach for autonomously deriving optimal decision-making 
strategies while maximizing long-term rewards. By 
integrating the perceptive capabilities of deep learning with 
the strategic strengths of reinforcement learning, DRL learns 
directly from experience, enabling a deeper understanding of 
both the network and tasks, thereby improving accuracy and 
minimizing the need for repetitive modeling. 

Owing to its self-learning and online learning capabilities, 
DRL presents a promising solution for facilitating dynamic 
adjustments in SFC orchestration optimization. Consequently, 
this paper reviews the state-of-the-art from two perspectives: 
DRL-based SFC orchestration utilizing traditional neural 
networks, such as Convolutional Neural Networks (CNNs) 
and Recurrent Neural Networks (RNNs), and DRL-based SFC 
orchestration employing Graph Neural Networks. 

2.1 DRL approaches based on traditional neural networks 

According to the study of Fu et al. [11], the Virtual Network 
Function (VNF) problem is broken down into individual VNF 
components and an internal connection graph, forming a VNF 
forwarding graph. The SFC embedding challenge is then 
framed as a Deep Reinforcement Learning (DRL) problem, 
enabling effective solutions to complex and dynamic 
environments. 

As reported by Li et al. [12], the task of mapping SFCs with 
varying priorities onto the fundamental network is formulated 
as a multi-step Integer Linear Programming problem with 
distinct objectives. A DQN-based mapping approach is 
proposed, wherein the DRL agent selects between two 
straightforward SFC mapping strategies. 

As demonstrated by Liu et al. [13], a dynamic SFC 
orchestration framework for Internet of Things (IoT) networks 
is proposed, specifically designed for DRL-enabled IoT 
environments. This framework can address the SFC dynamic 
orchestration problem in dynamic and complex network 

scenarios. 
In the study conducted by Wang et al. [14], the DDQP and 

its extension, DDQP+ algorithms, are designed for real-time 
deployment of primary and backup SFC instances. These 
algorithms provide continuous state updates from active 
instances to backup instances for stateful VNFs, ensuring 
seamless redirection in the event of a failure. 

The aforementioned DRL-based approaches predominantly 
rely on simple neural network architectures, such as 
feedforward and recurrent neural networks. However, these 
architectures are limited in their capacity to effectively capture 
features from the underlying network structure. Traditional 
DRL methods, including those utilizing Convolutional Neural 
Networks and Recurrent Neural Networks, encounter 
significant challenges when applied to complex, highly 
dynamic environments like Mobile Edge Computing (MEC). 
These models often struggle to capture the intricate 
relationships and dependencies between network elements. 
Additionally, these methods lack generalization capability 
across different network topologies. 

To overcome these challenges, recent studies have started 
to explore DRL combined with Graph Neural Networks. 
GNNs are well-suited for representing the topological 
structure of networks, making them ideal for optimizing SFC 
orchestration in MEC environments. By using GNNs, DRL-
based SFC orchestration can more effectively model the 
interactions between network components, leading to 
improved performance in terms of scalability, adaptability, 
and resource utilization. 

2.2 DRL approaches based on graph neural networks 

The findings of Sun et al. [15] suggested that a combination 
of Graph Neural Network (GNN) and DQN is used to optimize 
Virtual Network Function (VNF) placement. The GNN 
module maps node features to adjacent edges, which are then 
aggregated and re-encoded into the node features. Input 
attributes include the processing and storage utilization of 
network nodes, while edge attributes are represented by 
bandwidth usage and latency of network links. The output is a 
binary list indicating selected nodes, and the shortest path 
algorithm is applied to deploy routing paths between VNFs. 

Based on the study presented by Heo et al. [16], a sequence 
model based on Graph Neural Networks is proposed for VNF 
placement. This model consists of a graph encoder, which 
represents the network topology, and a decoder, which 
computes the probabilities for adjacent nodes and VNF 
execution. 

In the study conducted by Qi et al. [17], a service function 
chain with a graph structure is considered, and various SFC 
graph structures are modeled using a Graph Convolutional 
Network. The aim is to handle diverse SFC graph structures. 
The DDQN algorithm is employed to make decisions 
regarding the server index for the current VNF deployment. 

All of the above studies, however, do not take into account 
the traffic paths between VNFs and deploy them by utilizing 
the shortest path algorithm. While the shortest path algorithm 
maximizes immediate rewards in the current network state, it 
is not the optimal choice for long-term network environments. 

According to the research by Xiao et al. [18], a two-stage 
GCN-assisted DRL framework is introduced to optimize SFC 
request acceptance while minimizing network costs. In the 
first stage, the upper-layer Management and Orchestration 
(MANO) agent collaborates with lower-layer MANOs to 
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define the local observation scopes for each agent. The second 
stage operates within a discrete time-slot system, where 
resources occupied by expired SFCs are released at the 
beginning of each time slot, and all lower-layer MANOs 
simultaneously begin embedding new SFCs. This study only 
investigates the migration of SFCs between different nodes 
and does not design specific VNF deployment strategies or 
routing path selection, thus not addressing the practical SFC 
deployment problem. 

Our proposed GCN-DQN method builds upon these 
advancements, combining the strengths of Graph 
Convolutional Networks and Deep Q-Networks to optimize 
SFC traffic steering paths. It not only addresses the limitations 
of DRL but also makes decisions for SFC traffic paths, thereby 
solving the practical SFC deployment problem. 

 
 

3. PROBLEM FORMULATION 
 
Figure 1 illustrates the dynamic SFC orchestration model in 

MEC environments. The model is organized hierarchically, 
starting with the network function virtualization infrastructure 
(NFVI) at the bottom, followed by virtual network functions 
(VNFs), and ending with user services. The process concludes 
with the delivery of user services, enabling users to seamlessly 
roam across various NFVIs. Therefore, it is necessary to 
dynamically orchestrate the deployment locations of SFCs and 
the corresponding traffic steering paths. 

In the practical problem, a time-slot model is designed 
where SFC requests arrive dynamically. As shown in Figure 
1, at t=1, only User 1 submits a service request. At t=2, Users 
2 and 3 join the network. Over time, more users will enter the 
network, and some users will leave. 

 

 
 

Figure 1. Intelligent SFC orchestration model 
 

3.1 Network function virtualization infrastructure 
 
The NFVI model is represented as an undirected graph Gs =

(Ns, Es), where Ns  denotes the set of physical nodes, Ns =
(NA

s ∪ NE
s )  including access nodes NA

s  and edge computing 
nodes NE

s . Each edge computing node has constrained 

resources, denoted by R, which include resource types such as 
CPU, storage, and others. For any given resource r ∈ R , 
capr(nis) denotes the quantity of resource type r available at 
node nis. The set of physical links is denoted by Es, where each 
link eijs ∈ Es connects adjacent nodes nis  and njs . Each 
link eijs has associated bandwidth bw(eijs )  and latency 
delay(eijs ). It is assumed that the service requirements can be 
met by the sufficiently large internal bandwidth of each edge 
computing node [19]. 

 
3.2 Virtual network functions 

 
VNFs are software-based components designed to perform 

a variety of traffic processing tasks within edge computing 
nodes. We hypothesize a linear relationship between traffic 
volume and the corresponding resource requirements [20], let 
V denote the set of VNF types, where fi ∈ F  represents a 
specific type of VNF capable of providing particular traffic 
processing services. Given the varying resource consumption 
across different VNF types. The resource demand 
coefficient coeff r(fi) indicates the quantity of resource type r 
required for a unit size of traffic processed by the VNF fi . 
Additionally, since VNFs handle packets in different ways, 
such as adding headers, these processes can modify the traffic 
size [21]. We define this alteration as the traffic scaling factor 
ratio(fi) of the virtual network function fi. 

 
3.3 User services 

 
In Mobile Edge Computing (MEC), as a user's location may 

vary over time. Consequently, the source node of the Service 
Function Chain changes dynamically. we adopt a discrete, 
periodic stationary time-slot model t ∈ {1,2,3...} to simplify 
the problem, where the user service access nodes remain 
stationary within each time slot and switching occurs between 
time slots. 

The user service demands across the network can be 
represented as a set of Service Function Chains (SFCs) Gv, 
where Gj

v ∈ Gvdenotes the j-th SFC. A directed graph Gj
v =

(Nj
v, Ejv) represents source nodes, an ordered set of network 

functional requirements, and destination nodes. Let Nj
v =

{Sj, nj1v . . . njiv . . . Dj}, Sj(t) represent the source node at time t 
and njiv(1 ≤ i ≤ |Nj

v| − 1) is defined as the type of VNF of 
type f(njiv) ∈ F that needs to be mapped to an edge compute 
node for traffic passing through the i-th network function. 
Dj(t) represents the destination node at time t. Let Ejv denote 
the set of virtual links, where ejiv ∈ Ejv represents the virtual 
link between adjacent VNFs njiv  and nj(i+1)

v . For 
simplification, we denote the source node as nj0v  and the 
destination node as nj|Njv|−1

v . For any given SFC Gj
v , D(Gj

v) 
and F(Gj

v) ) represent the target latency requirement and the 
traffic demand, respectively. Based on the required network 
function types and traffic sizes for the SFC, the virtual links’ 
bandwidth requirement is given by Eq. (1): 

 

traffic�ejiv� = F�Gj
v� ∙� ratio �f�njxv ��

i

x=0

 

(ratio(f(nj0v )) = 1) 
(1) 

 
Therefore, we can express the demand for the resource of 
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type r (r∈R) by the network function njiv  as Eq. (2): 

resr�njiv� = coeff r �f�njiv�� ∙ traffic�ej(i−1)
v � 

= coeff r(f(njiv)) ∙ F(Gj
v) ∙� ratio(f(njxv ))

i−1

x=0

 
(2) 

3.4 Network latency 

The rapid development of MEC is attributed to its ability to 
provide services in close proximity, significantly reducing 
service latency. Compared to cloud networks, the distributed 
NFVI, limited computing resources, and link bandwidth in 
edge computing environments necessitate consideration of 
both link propagation delay and queuing delay, as represented 
by Eq. (3): 

delay(eijs ) = prop_delay(eijs ) + queue_dealy(eijs ) (3) 

The propagation delayprop_delay(eijs )  refers to the time 
taken for information to travel across a communication 
medium, which is proportional to the length of the medium. 
Queuing delay queue_dealy(eijs ) is the time a packet waits in 
the queue, which is related to the current link traffic. The 
queuing delay is modeled using the M/M/1 queuing model 
[22], which is defined as the ratio of the remaining bandwidth 
of the link. The calculation of the queuing delay, based on this 
model, is presented in Eq. (4): 

queue_dealy(eijs ) = dij ∙ (1 − ωij(t)/ωij(t)) (4) 

where, dij  denotes the transmission delay of a single data 
packet. 

3.5 Traffic steering 

Most Commonly Used SFC The most widely used 
algorithm for traffic steering is the shortest path algorithm. 
While it effectively minimizes service latency and optimizes 
network bandwidth, it is not without its inherent limitations. 
This study builds upon the shortest path approach to consider 
more feasible traffic steering paths. Let τpq denote the first k 
shortest propagation delay paths between nodes nps  and nqs , 
where τpql  represents the l-th (1 ≤ l ≤ |τpq|)  path. For 
computational convenience, we define a binary variable σpql

ji  
to indicate whether a link eijs  is included in τpql. The latency 
of the traffic steering path is given by: 

dpql(t) = � σpql
ji ∙ delay�eijs �

eij
s ∈Es

 

= � σpql
ji ∙ �propdelay�eijs � + queuedealy�eijs ��

eij
s ∈Es

 

  = � σpql
ji ∙ propdelay�eijs �

eij
s ∈Es

+ � σpql
ji ∙ dij ∙ (1 − ωij(t)/ωij(t))

eij
s ∈Es

 

(5) 

In Eq. (5), the first term represents the sum of the 
propagation delays of the adjacent links in the traffic steering 
path, which is constant. The second term is the sum of the 

queuing delays across all adjacent links, dependent on the 
traffic load. The paths in the set are ordered by propagation 
delay in ascending order, meaning that paths ranked higher are 
shorter and traverse fewer routes. Let traffic steering paths 
between all nodes in the network be denoted by 
Γ(τ11, τ12. . . τpq. . . ) . The SFC traffic steering will take all 
these paths into account. 

3.6 Decision model and optimization objectives 

In the MEC environment, considering the dynamic arrival 
of users and their mobility, the SFC dynamic orchestration 
problem can be viewed as mapping directed graph Gv sets at 
each time slot t to the undirected graph Gs of the NFVI. The 
mapping of user services to the NFVI must account for both 
the variations in service latency due to user mobility and the 
resource constraints of the NFVI, ensuring efficient resource 
utilization to prevent network congestion. To address this 
issue, a 0-1 Integer Linear Programming model has been 
developed for SFC dynamic orchestration in the MEC 
environment, and Boolean decision variables ζji

p(t) and ηji
pq(t)

are defined as follows: 

ζji
p(t) = �

1  if njiv  is mapped to nps  in the time t
0 if njiv  is not mapped to nps  in the time t (6) 

ηji
pql(t) = �

1 if ejivis mapped to τpql in the time t
0 if ejiv  is not mapped to τpql in the time t (7) 

In time t, whereηji
pql(t) denotes whether the virtual link ejiv

in the SFC Gj
v is mapped in the path set τpql, and ζji

p(t) denotes
whether the i-th virtual network function njiv  in the SFC Gj

v is 
mapped to the physical node. 

Based on the aforementioned decision variables, in the time 
t, the remaining bandwidth ratio ωmn of the link emns  is given 
by Eq. (8): 

ωmn(t) = 1 − � � ( � � traffic(ejiv)
τpqlϵτpqτpqϵΓeji

vϵGj
vGj

vϵGv

∙ ηji
pql(t) ∙ σpqlmn) /bw(emns )

(8) 

Therefore, the total service latency of the SFC Gj
v is given 

by Eq. (9): 

dj(t) = � � ηji
pql(t) ∙ dpql(t)

τpqlϵτpqeji
vϵEj

v
(9) 

The total latency of the SFC is given by Eq. (10): 

d(t) = � dj(t)
Gj
vϵGv

 (10) 

The number of SFC requests received is given by Eq. (11): 

A(t) = � f(( � � ζji
p(t)

nps ϵNsnji
vϵGj

v

− |Nj
v|)

Gj
vϵGv

+ ( � � � � ηji
pql(t) ∙ σpqlmn

emn
s ϵEsτpqlϵτpqτpqϵΓeji

vϵEj
v

− (|Nj
v|− 1)))

(11) 
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where, f(x) = �0, x < 0
1, x ≥ 0. 

This paper aims to optimize the overall acceptance rate of 
SFC requests, ensuring that the constraints on physical 
resources and latency within the NFVI are satisfied. Therefore, 
the optimization objective is: 

 
MaximizeA(t) − d(t) (12) 

 
To unify the positive and negative meanings of the 

optimization objective, this paper adopts the latency 
optimization rate ∅(t) as the final optimization criterion: 

 
∅(t) = � (D(Gj

v) − dj(t))/(D(Gj
v)

Gj
vϵGv

 (13) 

 
Therefore, the final optimization objective is: 
 

MaximizeA(t) + ∅(t) (14) 
 
In Mobile Edge Computing (MEC) environments, service 

providers typically aim to accept as many SFC requests as 
possible while optimizing services under limited resources. 
Therefore, choosing "maximizing the request acceptance rate" 
as the objective function aligns with practical needs, 
effectively evaluating and enhancing the overall efficiency of 
SFC traffic steering paths. Due to the resource constraints in 
MEC environments, in addition to maximizing the request 
acceptance rate, it is also essential to ensure low latency and 
service quality. This is another basis for the design of the 
objective function, ensuring system stability and user 
satisfaction. 

In SFC orchestration, the mapping of source and destination 
nodes is a critical constraint, as it ensures that service requests 
can be correctly transmitted from the source node to the 
destination node, maintaining network connectivity and data 
flow integrity. The mapping of virtual nodes and virtual links 
to the physical topology is necessary to support the functional 
requirements of the virtual network and avoid conflicts or 
wastage of physical resources. Node resources as constraints 
ensure that virtual nodes can be mapped to physical nodes with 
sufficient computational, storage, and processing capabilities, 
thus preventing resource overload and ensuring system 
stability. Link resource constraints ensure that virtual links can 
be mapped to physical links that meet bandwidth 
requirements, enabling efficient data flow transmission. These 
constraints ensure the rational allocation of resources, improve 
the utilization efficiency of network resources, and optimize 
service quality. Therefore, the constraint conditions are as 
follows: 

The SFC source node’ mapping location must be the user 
access node, and the mapping location of the SFC endpoint 
must be the destination node: 

 
ζj0
p (t) = Sj(t),    ∀Gj

v ∈ Gv 
ζj(|Nj

v|−1)
p (t) = Dj(t),    ∀Gj

v ∈ Gv (15) 

 
In any time slot t, all virtual network functions used by the 

SFC must be deployed: 
 

� ζji
p(t) = 1,

nps ϵNs
   ∀Gj

v ∈ Gv,∀njiv ∈ Gj
v (16) 

In any time slot t, all virtual links used by the SFC must be 
deployed: 

 
� � � ηji

pql(t) ∙ σpqlmn

emn
s ϵEsτpqlϵτpqτpqϵΓ

= 1,  

∀Gj
v ∈ Gv,∀ejiv ∈ Gj

v 
(17) 

 
In any time slot t, the resource constraints of the edge 

computing nodes in the NFVI are as follows: 
 

� � resr�njiv� ∙ ζji
p(t)

nji
vϵGj

vGj
vϵGv

≤ capr�nps �,  

∀nps ∈ NE
s ,∀r ∈ R 

(18) 

 
In any time slot t, the bandwidth constraints of the physical 

links in the NFVI are as follows: 
 
� � ( � � traffic(ejiv) ∙ ηji

pql(t) ∙ σpqlmn)
τpqlϵτpqτpqϵΓeji

vϵGj
vGj

vϵGv
 

≤ bw(emns ),∀emns ∈ Es 
(19) 

 
 

4. GCN-DQN DRIVEN INTELLIGENT DEPLOYMENT 
STRATEGY FOR SFC 

 
We propose the GCN-DQN framework, which integrates 

Graph Convolutional Networks with Deep Q-Networks to 
optimize Service Function Chain traffic steering paths in 
Mobile Edge Computing environments. The rationale behind 
combining GCNs and DQNs lies in their complementary 
strengths: GCNs are well-suited to model the network's 
topological structure, capturing the complex relationships 
between nodes, while DQNs excel in decision-making by 
learning from past experiences to optimize long-term rewards. 
In the context of MEC, where the network topology is dynamic 
and highly complex, this combination allows the GCN-DQN 
framework to not only understand the intricate dependencies 
between network elements but also adapt and optimize traffic 
steering paths in real-time, ensuring efficient resource 
utilization and low-latency service delivery. 

The specific benefits of this combination are particularly 
evident in MEC environments, where the network is 
distributed, and resources are limited. The GCN component 
ensures that the model captures the network's topology in a 
way that is scalable and adaptable, while the DQN component 
enables the algorithm to continuously improve its decisions 
based on real-time feedback. By leveraging these two 
technologies together, the GCN-DQN framework offers a 
robust solution for optimizing SFC orchestration. The specific 
design is as follows. 

 
4.1 State, action and reward function 

 
The reinforcement learning process is modeled as a Markov 

Decision Process, represented by (S, A, P, R), where S denotes 
the states, A represents the available actions, P represents the 
state transition probability, and R is the reward function. In 
this study, a model-free approach is employed to derive the 
optimal policy using a Deep Q-Network. As a result, the state, 
action, and reward function are defined as follows: 

State: The state represents an abstract view of the 
environment. In the MEC context, the state of SFC dynamic 
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orchestration primarily includes the resources of the NFVI and 
relevant information about the SFC being orchestrated. It 
consists of two components: the node feature matrix X and the 
adjacency matrix Adj. Each row in the X matrix represents the 
features of a node, and the node's features include the 
following aspects: 

 
Xi = (remaincpu(ni), isSource, isDestination, 
remain_bw(ei1), delay(ei1), remain_bw(ei2), 

delay(ei2). . . |SFCvnf|, SFCbw) 
(20) 

 
Remain_cpu(ni) represents the remaining CPU resources 

of the node, and whether it is a source or destination node is 
represented by isSource or isDestination . The remaining 
bandwidth resources and latency of the link eij are represented 
by remain_bw(eij) and delay(eij) , respectively. |SFCvnf|  is 
represents the number of VNFs in the SFC, and the bandwidth 
demand of the SFC is represented by SFCbw. The size of the 
state space is |Ns| ∙ (2 ∗ |Ns| + 5). 

Action: The GCN-DQN algorithm perceives the load status 
of the NFVI and the demand information of the SFC, 
determining the traffic steering path for the SFC. Thus, the 
action space is defined as A=(1, 2, …,k), where 1 to k represent 
the first k shortest paths for SFC deployment. 

Reward function: In this paper, the optimization objective 
is used as the reward function. With the state, action, and 
reward function defined, the GCN-DQN interacts with the 
environment to identify the optimal traffic steering path for the 
SFC, thus enhancing the success rate of deployments in each 
time slot. 

 
4.2 Framework design 
 

The GCN-DQN framework operates in two primary phases: 
offline training and online execution. In the offline training 
phase, data regarding the NFVI state and SFC requirements 
are collected to form training datasets, which the agent uses to 
select policies from the action space. During the online phase, 
the agent receives SFC requirements and the current NFVI 
state, evaluates the rewards associated with different actions, 
and chooses the optimal action to determine the SFC traffic 
routing path. 

 

 
 

Figure 2. Algorithm framework diagram 
 
The main algorithmic framework is shown in Figure 2. 

Initially, the agent acquires the current state through its 
interaction with the environment, which is represented by a 
feature attribute matrix of nodes (including CPU resources, 
storage resources, and the bandwidth and latency of adjacent 
links) and an adjacency matrix. This state is input into the 
GCN, where it undergoes message aggregation and updates, 
resulting in the output vector ht. Based on this vector 
information, the agent makes a decision regarding the action 
to take, which is then applied to the environment to receive a 

reward and determine the next state. The experience replay 
buffer stores the state, action, reward, and next state. During 
offline training, the DQN extracts multiple sets of experience 
values from this buffer to compute the Q-values and loss 
values, subsequently updating the weight parameters. The 
detailed process is described as follows: 

Step 1: The agent observes the MEC network environment 
to obtain the current state. 

Step 2: The current state is input into the GCN, which 
outputs the state encoding after graph convolution. 

Step 3: The Q-values are calculated based on the current 
state, leading to the selection of the optimal action. 

Step 4: After executing the SFC orchestration task, a tuple 
(s, a, r, s′) consisting of the current state, action, reward, and 
next state is generated and stored in the database, enabling 
continuous updates to the Deep Reinforcement Learning 
model. 

Step 5: The Q-values are computed for both the current state 
and the next state. 

Step 6: The predicted Q-values and current Q-values are 
determined. 

Step 7: The loss function is calculated, and the network 
weights are updated. 

Step 8: The Q network weights are copied to the Target Q 
network. 

 
4.3 Model training process 

 
In each time slot t, user arrivals are modeled using a Poisson 

process. Given that the state in graph structure cannot be 
directly input into a fully connected neural network, it is 
necessary to encode the state into a real-valued vector. To 
achieve this, we leverage the Graph Convolutional Network 
architecture outlined in study [23], which operates through the 
following steps. 

By exploiting the intrinsic features of each node within the 
graph, we utilize a Graph Convolutional Network to 
effectively aggregate the neighborhood information associated 
with each node. In this case, we employ a multi-layer GCN 
with a standard hierarchical propagation rule: 

 

H(l+1) = σ(D�−
1
2A�D�−

1
2H(l)W(l)) (21) 

 
Here, A� = A + I  represents the adjacency matrix of the 

undirected graph with added self-connections, and I denotes 
the identity matrix. D�  is the degree matrix, H(l)  is the input 
feature representation of the nodes at layer l-th, H(0) = X.W(l) 
represents the weight matrix for layer l-th, and σ(∙)  is the 
activation function. 

The complexity of the given GCN formula can be analyzed 
as follows: First, computing A� = A + Irequires O(N2) for a 
dense graph, where N = |Ns|  is the number of nodes. 
Calculating D�−

1
2  involves O(N)  since it only requires 

summing the rows of the adjacency matrix and taking the 
square root. Multiplying D�−

1
2A�D�−

1
2 has a complexity of O(N2) 

for dense graphs. For the feature matrix operations, H(l)W(l) 
takes O(N ∙ F(l) ∙ F(l+1)) , where F(l) = F(l+1) = 2 ∗ |Ns| + 5 
in this study and multiplying the normalized adjacency matrix 
with the feature matrix requires O(N2 ∙ F(l))  for dense 
graphs.Overall, the total complexity is O(N2 + N2 ∙ F(l) + N ∙
F(l) ∙ F(l+1)) for dense graphs. 

During the training phase, an ε-greedy strategy is employed 
to select random actions with a defined probability, facilitating 
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exploration of the environment. After an action is executed, 
the state, next state, action, and reward, are recorded in the 
database. Once the database accumulates a sufficient number 
of entries to meet the minimum batch size, a batch of data is 
sampled to train the Q-network after each exploratory step. 
The loss function applied during the training process is 
expressed in Eq. (22): 

L(θ) = E[r + γmaxa′Q(s′, a′; θT) − Q(s, a;θ)] (22) 

In this context, θ and θT represent the Q network and the 
target Q network, respectively. The first part of the loss 
function r + γmaxa′Q(s′, a′; θT) signifies the target Q value 
predicted by the target network, maxa′Q(s′, a′; θT) 
corresponds to the Q value for action a′ derived from the next 
state s′ is used as input to the target network, with γ 
representing the discount factor. The Q(s, a;θ) corresponds to 
the Q value computed by the current Q network. 
Consequently, the loss function captures the model's 
estimation error. A smaller loss indicates improved model 
performance. The Q-network weights are updated through the 
gradient descent algorithm. 

θ′ = θ + α[r + γmaxa′Q(s′, a′; θT) 
−Q(s, a;θ)]∇Q(s, a; θ) (23) 

In Eq. (23), θ and θ′ represent the parameters of the Q 
network before and after the update, respectively, while α 
denotes the learning rate. 

The pseudocode for the training process is outlined in 
Algorithm 1 as follows: 

Algorithm 1: Training Process of GCN-DQN 
1: Initialize the target Q network Q(s′, a′; θT)  and Q 
network Q(s, a;θ) with random weights 
2: Initialize experience replay memory D to capacity N 
3: for each episode do 
4:     Initialize the environment 
5:     for each time slot t do 
6:         the arrival of n SFCs following a Poisson process 
7:         for each SFC do 
8:        obtain the current state s of the environment 
9:        Select action a according to an ε-greedy policy 
based on Q(s, a;θ) 
10:          Perform action a, then observe the resulting reward 
r and the subsequent state s' 
11      Record the transition (s, a, r, s') in D 
12:    end for 
13:      Randomly sample a minibatch of transitions from D 
14:        For each transition (s, a, r, s') in minibatch do 
15:            Set y = r + γmaxa′Q(s′, a′; θT) 
16:          Update Q(s, a;θ) by minimizing the loss: L(θ) =
E[y − Q(s, a; θ)] 
17:         Update the target Q network Q(s′, a′;θT)  with 
weights θT ← θ 
18:      end for 
19:    end for 
20: end for 

5. PERFORMANCE EVALUATION

5.1 Simulation environment and design 

This study uses the open source network function 

virtualization resource allocation simulation software, 
SFCSim [24], as a simulation tool. SFCSim enables dynamic 
SFC orchestration simulations in mobile scenarios. The 
simulation environment utilizes the Cernnet network 
topology, as illustrated in Figure 3. This network consists of 
23 edges and 21 nodes. 

Figure 3. Cernnet network topology 

The simulation parameters are specified in Table 1. In the 
network, the number of CPU cores in the edge computing 
nodes follows a uniform distribution U(100 cores,300 cores). 
The bandwidth of the links between nodes is 2.5 Gbps, and the 
propagation delay of the links ranges from 0.5 ms to 1.6 ms. 
The network supports eight types of virtual network functions. 
The resource coefficient for processing traffic per Mbps is 
uniformly distributed between 0.025 and 0.05 cores, while 
traffic proportion coefficients for each type of VNF follow a 
uniform distribution U(0.8,1.2). Service function chain 
arrivals in different time slots are assumed to follow a Poisson 
distribution, with traffic demands ranging from 20 Mbps to 40 
Mbps and latency requirements between 8 ms and 10 ms. The 
traffic needs to pass through between 2 and 5 network 
functions. 

Table 1. Simulation parameters 

Parameters Value 

NFVI 
Node Resources U(100cores,300cores) 
Link Bandwidth 2.5Gbps 

Transmission Delay 0.5-1.6ms 

VNF 
Type 8 

Traffic scaling factor U(0.8,1.2) 
Resource Coefficient 0.025-0.05cores/Mbps 

SFC 

Traffic Demand 20-40Mbps
Latency Requirement 8-10ms
Number of Required 
Network Functions  2-5

Lifetime 1-3 time slot

The Q network within the agent is built with two GCN 
layers and two fully connected layers. The size of the state 
space corresponds to the input layer, while the size of the 
action space corresponds to the output layer. During training, 
the neural network’s learning rate is set to 0.001, and the 
discount factor is set to 0.95. For the learning rate, 0.001 serves 
as a baseline value. In our experiments, we adopted the Adam 
optimizer, which dynamically computes the effective learning 
rate for each update based on gradient momentum and 
normalization operations, enabling more effective learning. 
Regarding the discount factor, we prioritized long-term 
rewards, which led us to select a relatively large value of 0.95. 
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Figure 4. SFC deployment success rate at an arrival rate of 
10 

 
 

Figure 5. SFC deployment success rate at an arrival rate of 
20 
 

 
 

Figure 6. SFC deployment success rate at an arrival rate of 
50 
 

The first comparative algorithm is the Static Edge Chain 
Allocation (SECA) algorithm [25], which is designed for SFC 
orchestration in MEC environments for mobile users. The core 
idea of SECA is to sequentially treat all nodes along the 
shortest path from the destination node to the source node as 
candidate nodes, deploying the SFC's network functions on 
these candidate nodes in order. If the resources of the current 
candidate node are insufficient, the deployment is moved to 
the next candidate node. This algorithm utilizes the shortest 
path to guide traffic. 

The second comparative algorithm employs DQN 
exclusively to select a traffic steering path from k shortest 
paths. The node deployment strategy aligns with that of the 
SECA algorithm. This algorithm maintains consistency and 
comparability in node placement within the network structure 
by adhering to the same deployment strategy for VNFs as 
SECA. It intelligently selects paths solely through DQN, 
optimizing network traffic allocation, enhancing transmission 
efficiency, and reducing congestion. 

 
5.2 Simulation results 

 
Initially, we assessed the performance of the GCN-DQN in 

the topology depicted in Figure 3, which was also utilized 
during the training phase. The deployment success rates of 
various algorithms over time are presented in Figures 4-6, 
corresponding to SFC arrival rates of 10, 20, and 50, 
respectively. The total number of SFCs simulated is 1000, 
indicating that the simulation concludes after 1000 SFCs have 
appeared in the network. At time slot t=0, there are already 40 
SFCs in the network, and their deployment status is included 
in the overall deployment success rate. From the figures, it is 
evident that as time progresses, the deployment success rate 
initially increases and then stabilizes. This is due to the fact 
that the 40 existing SFCs have not yet reached the end of their 
service time. As time increases, the deployment success rate 
gradually rises and eventually stabilizes, particularly at lower 
arrival rates. However, when the arrival rate is set to 50, this 
value approaches that of the initial 40 SFCs, resulting in 
minimal changes in the deployment success rate over time. 

 

 
 

Figure 7. Average deployment success rate of algorithms 
under different arrival rates of the topology during training 
 
Figure 7 shows the deployment success rates of different 

algorithms under varying arrival rates. The figure clearly 
demonstrates that the GCN-based algorithm consistently 
outperforms both the DQN-only and SECA algorithms. This 
improvement can be attributed to the GCN's ability to model 
the network, allowing for a better understanding of the 
relationships between network nodes and leading to more 
effective deployment decisions. 

Subsequently, we extended our experiments by conducting 
simulations in a network environment whose topology 
deviates from the one used during the training phase, as 
depicted in Figure 8. Unlike the structured topology presented 
in Figure 3, the node connections in this new topology exhibit 
distinct patterns and arrangements, reflecting a more complex 
and dynamic network layout. This deliberate variation in 
topology aims to assess the robustness and adaptability of the 
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GCN-DQN algorithm under diverse conditions, ensuring its 
generalizability beyond the specific topologies it was initially 
trained on. 

Figure 8. Network topology 

Figure 9. SFC deployment success rate at an arrival rate of 
10 

Figure 10. SFC deployment success rate at an arrival rate of 
20 

In this particular network topology, the simulation results 
are comprehensively illustrated in Figures 9-12. These figures 
present a detailed comparison of the deployment success rates 
under various conditions. The findings suggest that, even 
when confronted with previously unseen network topologies, 
our proposed algorithm consistently maintains a high level of 
performance, achieving a satisfactory deployment success 
rate. This robustness in diverse topological scenarios 
highlights the generalizability and adaptability of the 

algorithm. Furthermore, as shown in Figure 9, when 
comparing the deployment success rates, the algorithm 
utilizing only the DQN approach reveals a significant 
disparity, particularly at lower SFC arrival rates. This suggests 
that our proposed algorithm, which integrates additional 
optimization strategies, effectively outperforms the DQN-only 
approach, ensuring more reliable and efficient traffic steering 
decisions under challenging conditions, especially when 
traffic volumes are relatively low. 

Figure 11. SFC deployment success rate at an arrival rate of 
50 

Figure 12. Average deployment success rate of algorithms 
under different arrival rates of non-trained topologies 

Figure 13. Average deployment success rate of algorithms 
under different arrival rates after DQN retraining 

149



To enhance the persuasiveness of our experimental results, 
we also trained the DQN-only algorithm on the network 
topology shown in Figure 8 and then tested its SFC 
deployment success rate in that network. We compared this 
with the GCN-DQN algorithm, which had not been trained on 
that topology. We similarly evaluated the SFC deployment 
success rates under different arrival rates and calculated the 
averages, as presented in Figure 13. From the figure, we can 
see that the deployment success rate of the DQN algorithm 
improved compared to Figure 12. However, at arrival rates of 
10 and 20, the deployment success rate still fell short of that 
of the GCN-DQN algorithm. At an arrival rate of 50, the 
deployment success rate slightly exceeded that of the GCN-
DQN algorithm. Additionally, we conducted similar tests in 
other topologies, yielding consistent results. Therefore, we can 
conclude that the GCN-DQN algorithm demonstrates good 
generalization capability. However, the current topology 
requires the number of nodes to be consistent with the number 
of nodes in the topology used during training. 

We have summarized the comparison of the GCN-DQN 
algorithm with other existing methods, particularly its key 
performance in optimizing SFC traffic steering paths. The 
experimental results reveal that the GCN-DQN approach 
exhibits notable advantages across different network 
topologies and load conditions, achieving a higher SFC 
request acceptance rate than the traditional DQN algorithm, all 
while satisfying QoS constraints. The introduction of GCN 
enables the algorithm to better capture network topology, 
improving decision-making efficiency and scalability. 
Moreover, GCN-DQN exhibits strong generalization 
capabilities, effectively performing SFC orchestration in 
unseen network topologies. These results fully demonstrate 
the innovation and practicality of the GCN-DQN algorithm 
compared to other methods in MEC environments. 

6. CONCLUSION

This paper investigates the dynamic orchestration of
Service Function Chains in MEC environments across 
different network topologies. To address this issue, we 
conduct an in-depth analysis of network latency and user 
services in MEC environments. To enhance the overall 
revenue of network services while meeting user latency 
requirements, we model the dynamic orchestration of SFCs in 
MEC environments as a 0-1 ILP model. Subsequently, we 
propose an intelligent orchestration strategy for SFCs based on 
graph neural networks and deep reinforcement learning. GCN-
DQN intelligently decides on traffic steering paths by 
perceiving network topology states and user service demands 
through GCN and DQN. Extensive experimental simulations 
demonstrate that GCN-DQN can better perceive the 
relationships within network topologies compared to existing 
algorithms, leading to superior decision-making and robust 
generalization capabilities. 

In future work, we plan to evaluate the performance of the 
proposed model in large-scale network topologies to further 
validate its robustness and applicability. To address the 
memory and GPU limitations commonly encountered during 
GCN training, we will incorporate the GraphSAGE [26] 
method to enable efficient node sampling and aggregation. 
This approach will allow the graph model to scale effectively 
for handling large graph-structured data, thereby enhancing 
the practicality of the GCN-based SFC orchestration method 

in extensive MEC environments. 
Additionally, we will explore strategies for SFC 

readjustment to better adapt to dynamic changes in user 
demands and network conditions. This involves developing 
mechanisms for real-time updates to service chain 
deployments while minimizing their impact on network 
operations and optimizing resource utilization. 

We also aim to tackle potential challenges related to 
scalability and real-world application of the framework by 
proposing corresponding solutions. Specifically, we will 
analyze and optimize the algorithm's computational 
complexity to improve its efficiency for real-time operations 
in large-scale networks. To address challenges arising from the 
heterogeneity of MEC infrastructures, we will explore how to 
adapt to diverse hardware capabilities and develop a modular 
design to enhance compatibility. Furthermore, we plan to 
leverage distributed computing techniques to offload 
computational burdens, thereby mitigating resource 
constraints and improving the overall performance of the 
framework. 

Through these efforts, we aim to further enhance the 
adaptability and scalability of the GCN-DQN framework and 
provide effective solutions for its broader application in 
diverse and dynamically evolving MEC environments. 
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