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Mild Cognitive Impairment (MCI) represents early cognitive changes that can signal the 
potential development of more serious memory and thinking problems. The EEG data is 
preprocessed by applying band pass filter and segmenting it into epochs of 5 secs. 
Subsequently, time domain feature extraction techniques including Kurtosis, Zero Crossing 
Rate (ZCR) and Hjorth parameters are explored and applied to the EEG signals. The 
investigation includes the integration of these techniques with 1D deep learning techniques 
like Convolutional Neural Networks (CNN) and Convolutional Recurrent Neural Networks 
(CRNN) and hybrid 1D deep optimized models like PBCNN (Population Based CNN) and 
PBCRNN (Population-Based CRNN). The impact of feature extraction on MCI detection 
accuracy is evaluated by comparing the results obtained with and without feature extraction. 
Additionally, the influence of epoch duration, considering 5-second epochs with 1 second 
overlap, is examined to determine the optimal duration for precise MCI classification using 
EEG data. The findings contribute to advancing the understanding of EEG data analysis 
techniques for early MCI detection. The proposed methods have significant clinical 
application value in the early screening and diagnosis of Mild Cognitive Impairment (MCI). 
Among the proposed models 1DPBCRNN works well with 90.01 accuracy. 
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1. INTRODUCTION

MCI is a state where there is a noticeable decline in
cognitive abilities greater than what would typically be 
anticipated for an individual's age, yet it does not lead to 
significant impairment in their day-to-day activities. Early 
detection of MCI is crucial for timely intervention and 
management of cognitive decline and if not identified earlier 
may lead to Dementia or Alzheimer’s disease [1, 2]. 
Electroencephalography (EEG) is becoming increasingly 
recognized as a valuable tool in the detection of MCI due to its 
nonintrusive characteristics and ability to capture neural 
activity in real-time [3]. 

The removal of Electrooculogram (EOG) artifacts in 
diverse EEG signals is achieved using a novel approach that 
combines Independent Component Analysis (ICA) and 
Ensemble Empirical Mode Decomposition (EEMD) is 
introduced to demonstrate improved performance in EOG 
artifact rejection, making it a promising method for EEG 
signal processing and analysis [4]. A comprehensive artifact 
removal methods like Principal Component Analysis (PCA), 
Canonical correlation analysis (CCA), Empirical Mode 
Decomposition (EMD), and Filtering methods for EEG signals 
were discussed for effectively removing artifacts from EEG 
signals [5]. 

For detecting cognitive impairments and neurological 
disorders, the application of Permutation Entropy (PE) and 

Statistical Complexity (SC) in the case of MEG recordings 
from patients detected with MCI and Alzheimer's disease (AD) 
examines broadband signals and breaks them down into 
frequency bands to identify changes in each band linked to 
MCI and AD [6]. The feature extraction scheme based on 
discrete wavelet transform demonstrates the potential of 
relative wavelet energy features to categorize EEG signals 
obtained during intricate cognitive tasks and rest conditions. 
The performance evaluation with different classifiers 
highlights the ability of this approach to achieve high accuracy 
rates in EEG signal classification [7]. 

The effectiveness of various machine learning algorithms 
by feature extraction of input EEG samples belonging to motor 
movements is conducted and shown that the Medium-ANN 
model emerges as the top performer, suggesting the 
applicability of the approach in scenarios like brain-computer 
interfaces and neural prostheses [8]. Regarding neural 
decoding and brain computer interfaces, Saeidi et al. [9] 
illustrate the latest developments in the decoding and 
categorization of EEG signals made possible by supervised 
ML and DL models. This study explores the increasing 
importance of deep learning in the analysis of EEG data 
through a range of tasks, such as finding emotions, mental 
workload assessment, detection of seizures, program-based 
potential identification, and sleep scoring [10]. Furthermore, 
the research delves into the input formulations employed for 
deep network training and investigates distinct network 
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architectures tailored to various task categories. CNN and 
RNN consistently demonstrate superior classification 
accuracy compared to alternative models. 

Existing methods for processing EEG signals and 
classifying MCI are helpful but still have many issues that 
need fixing. Techniques like PCA, CCA, EMD, and filtering 
often have trouble separating noise from real brain signals, 
especially when the data is messy or comes from different 
sources. Even though ICA and EEMD perform better, they are 
too complicated and slow to work well in real-time situations. 

For feature extraction, methods like Permutation Entropy 
(PE) and Statistical Complexity (SC) are promising but aren’t 
fully designed to work well with EEG data. They miss out on 
important patterns in the signal. Wavelet-based methods also 
depend on choosing the right settings, which might not work 
for all tasks. Machine learning and deep learning models like 
CNNs and RNNs often do well but can struggle with 
overfitting, require a lot of labeled data, and might not work as 
well on new datasets. Most studies focus on simpler tasks like 
detecting movements or emotions, so they don’t work well for 
complex conditions like MCI. There’s also not enough 
research comparing these models across bigger and more 
varied datasets to figure out which ones work best. 

The proposed model tries to solve these problems by 
improving artifact removal, using features from time-domain 
analysis, and comparing advanced models like 1D CNN, 1D 
CRNN, 1D PBCNN, and 1D PBCRNN on different EEG 
datasets. The goal is to make it easier to detect MCI early and 
create better tools to understand and diagnose this condition. 
 
 
2. RELATED WORK 

 
Cognitive impairment, particularly Mild Cognitive 

Impairment (MCI) and its progression to Alzheimer's disease, 
has been a significant focus of research. Richardson et al. [1] 
conducted a longitudinal study that highlighted a two-decade 
change in the prevalence of cognitive impairment in the UK, 
emphasizing the need for early detection and intervention 
strategies. Batum et al. explored the neurocognitive clues 
linking MCI to Alzheimer's disease, providing insights into the 
cognitive deficits that characterize these conditions. 

EEG Signal Processing 
Electroencephalography (EEG) has emerged as a vital tool 

for understanding brain activity related to cognitive functions. 
Sur and Sinha [11] provided a foundational overview of EEG 
and event-related potentials (ERPs), which are crucial for 
studying cognitive processes. The removal of artifacts from 
EEG signals is essential for accurate analysis, as highlighted 
by Jiang et al. [5], who reviewed various techniques for artifact 
removal, and Al-Baddai et al. [12], who proposed a novel 
method combining independent component analysis and 
ensemble empirical mode decomposition. 

Machine Learning in EEG Analysis 
The application of machine learning techniques to EEG data 

has gained traction, particularly for diagnosing cognitive 
impairments. Prochazka et al. [13] demonstrated the 
effectiveness of wavelet transform and machine learning for 
feature extraction and classification of EEG signals. Ramírez-
Arias et al. [8] evaluated various machine learning algorithms 
for EEG classification, while Glaser et al. [14] provided a 
systematic review of neural decoding methods using machine 
learning. Kotowski et al. [15] further explored deep learning 
approaches for EEG classification tasks, indicating a shift 
towards more sophisticated models in this domain. 

Feature Extraction and Complexity Analysis 
Feature extraction plays a crucial role in enhancing the 

performance of machine learning models. Movahed et al. [16] 
focused on the automatic diagnosis of MCI using spectral 
features from EEG signals and supervised dictionary learning 
techniques, respectively. Timothy et al. [17] analyzed 
permutation entropy in MCI, contributing to the understanding 
of EEG signal characteristics in these conditions. 

Real-time Applications and Future Directions 
The integration of EEG signal processing methods into real-

time applications, such as brain-computer interfaces (BCIs), is 
an emerging area of research. EEG signal processing methods 
specifically for brain-controlled robots, while applied a 1D 
convolutional neural network to classify voluntary eye blinks 
in EEG signals for BCI applications. Introduced a CNN-
LSTM model for epileptic seizure recognition, showcasing the 
potential of deep learning in real-time EEG analysis. 
 
 
3. METHODS 
 
3.1 Preprocessing techniques 

 

 
 

Figure 1. Sample EEG signal shown for 1 minute 
 

In recent times, there has been a rising interest in the 
examination of EEG data for the detection of MCI. However, 
the raw EEG signals are often noisy and contain various 

artifacts that can hinder accurate interpretation. To address 
these challenges, preprocessing techniques, such as filtering 
and epoch segmentation, are applied to enhance the signal 
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quality and facilitate subsequent analysis [18]. The EEG data 
is preprocessed to enhance its quality and prepare it for further 
analysis. Firstly, the EEG data is read from EDF files using the 
MNE library. Then the data undergoes re-referencing with a 
common average reference to reduce the presence of noise. A 
bandpass filter is applied to retain frequencies between 0.5 Hz 
and 45 Hz, eliminating unwanted artifacts. Subsequently, the 
data is segmented into fixed-length epochs of 5 seconds with 
a 1-second overlap, facilitating easier analysis. Finally, the 
preprocessed EEG data is organized into epochs and can be 
utilized for various tasks like feature extraction or 
classification. Figure 1 displays a one-minute duration sample 
EEG signal. 

3.2 Feature extraction techniques 

In addition to preprocessing, feature extraction plays a vital 
role in capturing appropriate data from EEG signals. Time 
domain features, including Kurtosis and Hjorth parameters 
and Zero Crossing Rate (ZCR) have shown promise in 
quantifying signal characteristics associated with cognitive 
impairment. These features provide insights into the amplitude, 
variability, and distribution of the EEG signals, which can be 
indicative of underlying cognitive dysfunction. 

3.2.1 Time domain features 
A time domain feature is a statistical measure that 

characterizes the amplitude or waveform of an EEG signal at 
a specific point in time [19]. 

a) Kurtosis:
Kurtosis is a valuable time domain feature for EEG signal

analysis, as it provides insights into the shape and distribution 
of EEG data. Extracting kurtosis features allow researchers 
and clinicians to capture and analyze important characteristics 
of EEG signals related to brain activity. Kurtosis helps us to 
identify the peakedness or flatness of the distribution of brain 
activity [20]. If kurtosis is high, it indicates that the brain 
signal has high spikes. These sharp peaks can happen during 
very strong brain activity or when something is wrong, like 
seizures, memory problems, or diseases like Alzheimer’s. Low 
kurtosis shows that brain activity is normal. 

By quantifying the degree of these peaks and tails, kurtosis 
allows the detection of irregularities in neural activity, which 
are often associated with conditions like MCI or Alzheimer’s. 
The kurtosis formula is shown in Eq. (1). 
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where, n stands for the total number of data points within the 
dataset, i takes on values 1, 2, 3, ..., n, 𝑥𝑥𝑖𝑖 represents each 
specific data point in your dataset, 𝑥̅𝑥  represents the sample 
mean or average of your dataset. 

This is computed by adding together all the data points ∑𝑥𝑥𝑖𝑖 
and then dividing the sum by the total number of data points n. 
𝑠𝑠 represents the sample standard deviation of your dataset. 
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 calculates the fourth 𝑠𝑠 power of the standardized
deviation of each data point. It measures how each data point 
deviates from the mean, scaled by the standard deviation. The 
final step in the formula is subtracting 3. This is done to make 
the kurtosis of a normal distribution equal to 0. In other words, 
if the calculated Kurtosis is greater than 0, it indicates heavier 
tails than a normal distribution, and if it's less than 0, it 

indicates lighter tails. 
The input provided for the kurtosis_features function is a 3-

dimensional array with dimensions (number of epochs, 
number of channels, number of data points per channel). This 
array contains EEG data for two groups: the control group and 
the patient group. 

The kurtosis_features function is designed to calculate the 
kurtosis value for each epoch and each channel separately. As 
the function iterates through each epoch and channel, it 
calculates the kurtosis value for the data recorded in that 
specific epoch and channel using the "kurtosis" function from 
the scipy. stats module. The resulting kurtosis values are stored 
in a new array called "kurtosis_features." After the function 
has processed all the epochs and channels, it returns the 
"kurtosis_features" array. The shape of this array is 
(num_epochs, num_channels), where "num_epochs" 
initializes the number of epochs, and "num_channels" 
signifies the count of electrodes.In the input data, there are 
14757 epochs in MCI group and 13645 epochs in HC group, 
and each epoch contains 19 channels. Therefore, the resulting 
"Patient kurtosis features" and "Control kurtosis features" 
arrays have shapes (14757, 19) and (13645, 19), respectively. 

b) Hjorth:
Hjorth features are a group of time-domain attributes

utilized for the characterization of signals, particularly in the 
context of EEG signals. They were introduced by Dr. Bjorn 
Hjorth to quantify the activity, mobility and complexity of 
signals. In EEG signal processing, Hjorth features provide 
valuable information about the signal's mobility and 
complexity. Mobility represents the rate of change or activity 
in the signal, while complexity measures how irregular or 
diverse the signal's behavior is over time. 

Hjorth Mobility shows us how often the EEG signal varies 
over time. It shows whether the signal is constant or 
fluctuating. The mobility with a higher score means that the 
signal is varying at a faster rate and this can occur during 
increased brain activity or even brain pathology. A low 
mobility number indicates that the signal is much more 
constant and smoother. This is useful since it allows one to 
determine changes in brain activity for instance when the brain 
is in function or if there are any functional abnormalities. The 
mobility evaluation is shown in Eq. (2). 

( )var

var( ( ))

dx t
dtMobility

x t

 
 
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where, �𝑑𝑑𝑑𝑑(𝑡𝑡)
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� represents the first derivative of the function 

𝑥𝑥(𝑡𝑡) over time t, 𝑣𝑣𝑣𝑣𝑣𝑣 �𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑
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𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥(𝑡𝑡)) calculates the variance of the position values 𝑥𝑥(𝑡𝑡) 

over time. �
𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑 �

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥(𝑡𝑡))
 calculates the square root of the ratio 

between the variance of the signal's derivative and the variance 
of the signal. 

Hjorth Complexity measures the signal’s irregularity or 
variability, capturing how unpredictable or difficult the 
signal's behavior is higher complexity means the brain activity 
is more complicated and has lots of different patterns. This can 
happen when the brain is solving problems or when something 
is wrong. Lower complexity means the brain activity is 
simpler, more repetitive, or not as busy. The calculation of 
hjorth complexity is shown in Eq. (3). 
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where, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑
�  calculates the first derivative of 

Hjorth Mobility and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦(𝑡𝑡))  calculates the Hjorth 
Mobility of the original signal, measuring its overall mobility 
[21]. 

The input to the hjorth_features function is a 3D array called 
data_array, which contains the EEG signal data. To calculate 
the Hjorth mobility and complexity features, the function 
iterates over each epoch and channel in the data_array. For 
each epoch and channel, It computes the signal's first 
derivative to determine mobility, and then further computes 
the first derivative of the first derivative to calculate 
complexity. 

In total, the function extracts two sets of features for each 
epoch and channel: the Hjorth mobility features and the Hjorth 
complexity features. Since there are num_epochs epochs and 
num_channels channels, the resulting 
hjorth_mobility_features and hjorth_complexity_features 
arrays have the shape (num_epochs, num_channels). To 
combine the mobility and complexity features into a single 
feature vector, the function uses np.column_stack to stack the 
two feature arrays horizontally. As a result, the final Hjorth 
features arrays, control_hjorth_features,and 
patient_hjorth_features, have the shape (num_epochs, 38). 
Each row in these arrays represents a different epoch, and the 
38 columns contain the combined mobility and complexity 
features for each channel of the EEG signal. 

c) Zero Crossing Rate (ZCR): 
ZCR counts how many times the EEG signal crosses the 

zero line. This shows how much the signal goes up and down. 
A high ZCR means the signal changes quickly, like during 
bursts of brain activity. A low ZCR means the signal is 
smoother and changes less, like when the brain is resting or 
calm. This is important for finding problems with thinking or 
memory because the brain’s patterns might look different from 
normal. 

These features help us understand EEG signals better by 
looking at how they work. They make it easier to find small 
but important changes in the signals that might show problems 
with thinking or memory. This helps with studying and finding 
out what might be wrong. It helps identify sharp waveforms, 
bursts of activity, or the onset and offset of specific events in 
the EEG signal [22]. The ZCR evaluation is shown in Eq. (4). 
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where, x[i] is the sample at index i in the signal, x[i-1] is the 
sample immediately preceding x[i]. x[i]. x[i-1]<0 checks if the 
product of x[i] and x[i-1] is less than zero, indicating a sign 
change (crossing). The summation runs over all pairs of 
consecutive samples, and 1 is added to the sum if a sign change 
is detected; otherwise, 0 is added. 

The input to the zcr_features function is a 3D array 
representing EEG data, comprising the number of epochs, 
channels (electrodes), and data points per channel. The 
function computes the ZCR value for each epoch and channel 
separately, Tallying the occurrences when the EEG signal 
intersects the zero baseline. and dividing it by the total length 

of the epoch.  
As a result, the function extracts a ZCR feature for each 

epoch and channel in the EEG data. Ultimately, the ZCR 
features matrix provides valuable information about the rate of 
zero crossings, with each row representing an epoch and each 
column representing a specific EEG channel. For the control 
group, there are 13645 epochs, each containing 19 channels 
resulting in "Control ZCR features" array has a shape of 
(13645, 19) and for the patient group, there are 14757 epochs, 
each containing 19 channels resulting in "Patient ZCR 
features" array has a shape of (14757, 19). 
 
3.2.2 Deep learning techniques 

To improve the effectiveness of MCI detection, more 
advanced machine learning techniques have to be utilized. 
Specifically, 1D deep learning models like CNN and CRNNs, 
along with hybrid models such as Population Based CNN 
(PBCNN) and Population Based CRNN (PBCRNN), have 
shown remarkable capabilities in capturing spatial and 
temporal dependencies within EEG data. 

a) 1D Convolutional Neural Network: 
1D CNN is a popular neural-network architecture which is 

used for various signal processing tasks, including EEG signal 
analysis [23]. The temporal aspect of EEG data is crucial for 
understanding brain activity, and 1D CNN is well-suited for 
handling this dimension. Furthermore, the network is able to 
extract both local and global features of the EEG signal, thus 
making it an effective and robust tool for EEG signal analysis.  

 

 
 

Figure 2. 1D CNN architecture 
 
Figure 2 shows the architecture of 1D CNN which is used 

for EEG signal analysis. The 1D Convolutional Neural 
Network is used to study EEG signals and find patterns in the 
data. The input to the model is like a 3D tensor with parts that 
include the batch size set to 32 which is how many examples 
the model looks at one time, epochs set to 30 and features set 
to 76. The first layer of the model is a 1D convolutional layer 
that uses 32 filters to capture important details, kernel size of 
3 to find small patterns in the EEG signals and the ReLU 
activation function, which helps the model learn better and 
faster. After this, the data goes through a 1D max pooling layer 
with a pool size of 2, which makes the data smaller by keeping 
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only the most important parts, so the model can work more 
efficiently. 

Next, the output from the pooling layer is flattened into a 
single line, which is sent to the fully connected layers. The first 
dense layer has 64 units and uses ReLU activation, helping it 
find bigger patterns in the data. Finally, the model gives one 
result using a sigmoid activation function, which gives a value 
between 0 and 1. A value close to 0 means the data is from the 
healthy control group, and a value close to 1 means it’s from 
the mild cognitive impairment group. The model learns using 
binary cross-entropy loss, which is used for binary 
classification, and the Adam optimizer, which helps the model 
learn quickly and accurately. This design makes the CNN 
good at studying EEG data and classifying it correctly. 

b) 1D Convolutional Recurrent Neural Network (1D 
CRNN) 

The CRNN architecture is useful for tasks that involve 
sequential data with long-term dependencies, such as speech, 
signal, and language processing [24]. The convolutional layers 
can identify spatial patterns present in the input data, including 
the frequency features within a signal., while the recurrent 
layers can capture the temporal patterns. The 1D CRNN 
architecture is shown in Figure 3. 

 

 
 

Figure 3. 1D CRNN architecture 
 

The model starts with a normal 1D convolutional layer 
which has 64 filters, kernel size of 3 in order to capture the 
basic and frequency characteristics of the EEG signals and a 
ReLU activation function which assist in the detection of 
complex patterns. Then max pooling to applied to 
convolutional layer with pool size 2 through which the data 
size can be reduced while keeping the most important 
information from the previous layer. Then the model has two 

LSTM layers each with 64 units each. These layers help in 
comprehending the variations in the data at a certain interval 
and identifying trends in the data over a long period. Following 
the LSTM layers the data is supplied to a dense layer with 64 
units with ReLU activation function. This layer assists in 
enhancing the features identified in the prior layers. Last, the 
model contains one output layer with one unit and uses the 
sigmoid activation function. This layer outputs a value 
between 0 with and binary 1 cross for entropy the loss 
classification function of and the optimizer signal Adam as is 
control used or which patient. helps the in-model training is 
the trained model faster and more accurately. 

 
3.2.3 Hybrid deep optimized techniques 

a) Population Based Training (PBT) 
PBT is an optimization technique within machine learning 

and deep learning that aims to optimize hyperparameter tuning 
efficiency and elevate the performance of trained models. It 
utilizes the principles of genetic algorithms to iteratively 
evolve a population of models over multiple training epochs. 
The PBT process typically involves the steps like- Population 
Initialization, Model Evaluation, Exploitation and Exploration, 
Hyperparameter Exploration, Population Update. By 
dynamically allocating more resources (e.g., computation time, 
memory) to promising models and discarding fewer promising 
ones early in the training process, PBT converges to better 
hyperparameter settings more efficiently than traditional 
hyperparameter optimization methods like grid or random 
search. This makes PBT particularly advantageous when 
training resource-intensive deep learning models. PBT has 
gained popularity for its ability to efficiently explore the 
hyperparameter space and find optimal configurations, 
enabling faster and more effective training of machine 
learning models [25]. 

Population Based Training (PBT) Algorithm 
(1) Start with a population of 5 models and choose the 

hyperparameters of each model at random. Filters are selected 
as any number between 32 and 128, the kernel size is chosen 
from the set of 2 to 5 and the number of dense units can also 
be between 32 and 128. Make the weights of each model to be 
any random value. 

(2) For each model in the population, fine tune each model 
for every epoch using the training data set. 

(3) To determine the validation accuracy of each model, test 
each model on the validation dataset  

(4) Sort the models in the decreasing order of validation 
accuracy and retain the best models  

(5) Select hyperparameters 20% of the population. Modify 
hyperparameters by changing kernel size, filter size and dense 
units for the selected models within the specified ranges.  

(6) To transfer the hyperparameters and weights from the 
top performing models to the low performing models in order 
to enhance the whole population. 

(7) Repeat the training, evaluating and updating the models 
for a total of 10 generations 

(8) Choose and return the model with the best validation 
accuracy from the last generation. 

b) 1D PBCNN: 
In the hybrid model, the 1D CNN serves as the core 

architecture for processing one-dimensional sequential data. 
The PBT algorithm is integrated with 1D CNN model in the 
training process to optimize its hyperparameters effectively. 
During the training process, PBT dynamically adjusts 
hyperparameters depending on the evaluation of different 
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models in the population, allowing the models to explore the 
hyperparameter space efficiently. This integration of PBT with 
the 1D CNN model results in faster convergence to optimal 
hyperparameter settings, ultimately leading to a more accurate 
and efficient model and its architecture is shown in Figure 4. 

c) 1D PBCRNN (Population Based Convolutional
Recurrent Neural Network) 

In the hybrid model, the1D CRNN plays a central role in 
processing sequential data, enabling it to capture both local 
and long-range patterns present in the input. To efficiently 
optimize its performance, the Population-Based Training 
(PBT) algorithm is seamlessly integrated into the training 
process of the 1D CRNN model. PBT effectively manages a 
diverse population of 1D CRNN models, each with distinct 
hyperparameter configurations. During training, these models 
undergo evaluation on a validation set, and the best-
performing models serve as a foundation for exploitation. 
Through this exploitation process, their hyperparameters are 
dynamically updated to potentially improve their performance. 
This cycle of evaluation, exploitation, and exploration 
continues over multiple epochs. By dynamically updating the 
hyperparameters based on the models' performance within the 
population, PBT allows the hybrid model to explore the 
hyperparameter space more efficiently. Consequently, this 
optimization approach empowers the hybrid 1D CRNN model 
to discover more effective hyperparameter configurations, 
ultimately leading to a more accurate and efficient model for 
processing sequential data. The architecture of 1D PBCRNN 
is shown in Figure 5. 

Figure 4. Architecture of 1D PBCNN 

Figure 5. Architecture of 1D PBCRNN 

4. EXPERIMENTAL RESULTS

The study employed EEG signals Datasets from the Isfahan
MISP database, involving 61 participants aged 55, categorized 
into Healthy Control (29) and Mild Cognitive Impairment (32) 
groups. EEG recordings were made during morning sessions 
with closed eyes, utilizing a Galileo NT device with 19 
electrodes (C3, Cz, C4, Fp1, Fp2, F7, F3, Fz, F4, F8, O1, O2, 
P3, Pz, P4, T3, T4, T5 and T6). Data was saved in EDF format 
[26, 27].  

A 5-second epoch duration was employed with an overlap 
of 1 second. Each epoch contained N = 1280 (5 × 256) samples, 
resulting in a total of 28,402 input EEG data points, which 
included data from 14,757 MCI subjects and 13,645 HC 
subjects. 

4.1 Performance metrics 

Table 1. Confusion matrix 

MCI HC 
MCI True Positive (TP) False Positive (FP) 
HC False Negative (FP) True Negative (TN) 

Performance metrics are important because they allow us to 
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objectively assess the model's performance and make 
comparisons with other models or benchmarks function is 
shown in the Table 1. 
• Accuracy: It is a performance metric that calculates the 

ratio of accurate predictions to the total number of predictions 
generated by a model. The Accuracy formula is shown in Eq. 
(5). 
 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (5) 

 
where, TP stands for true positives, TN represents true 
negatives, FP signifies false positives, and FN denotes false 
negatives. 
• Precision: This metric is employed to assess the precision 

of positive predictions generated by a classification model. 
The precision calculation is shown in Eq. (6). 
 

TPPrecision
TP FP

=
+

 (6) 

 
• Recall: It signifies the ratio of actual positive instances 

that the model correctly classifies as positive. Recall formula 
is shown in Eq. (7). 
 

Recall TP
TP FP

=
+

 (7) 

 
• F1 score: It provides a balance between precision and 

recall. F1 score calculation is shown in Eq. (8). 
 

2*  Precision *  Recall 1 F score
TP FN

=
+

 (8) 

 
4.2 1D CNN for feature extraction and classification 

The dataset mainly contains training and testing subsets 
using the "train_test_split" method with 75% and 25% 
respectively. Initially, the model extracts important patterns or 
features from the EEG data through convolutional and pooling 
layers. Then, it uses these learned features to classify the EEG 
data into control or patient groups through the dense layers. 
The model is constructed with the 'adam' optimizer, 
responsible for adapting the model's internal parameters 
during the training process to minimize the 
'binary_crossentropy' loss function. The model's prediction 
accuracy against the real labels (0 or 1) is gauged by the loss 
function. The accuracy that we achieved using 1DCNN is 
79.43%. 
 
4.3 1D CRNN for feature extraction and classification 

 
The input data is divided into training with 25% and testing 

75%. This modified architecture (1D CRNN) incorporates 
LSTM layers alongside convolutional layers. The CNN part 
extracts features, and the LSTM part captures temporal 
dependencies in the EEG data. The model is configured with 
'adam' as the optimizer and 'binary_crossentropy' as the loss 
function. As a result, it achieves an accuracy of 81.12%. 
 
4.4 Time-domain features with 1D CNN 

 
Time-domain features like Kurtosis, Zero Crossing Rate 

(ZCR), and Hjorth parameters are very important in studying 
EEG signals. They capture key details that help to differentiate 
Healthy Controls (HC) and people with Mild Cognitive 
Impairment (MCI). When these features are used as inputs for 
different models—such as 1D CNN, 1D CRNN, 1D PBCNN 
and 1D PBCRNN—the results show how these features affect 
the accuracy of classification. The analysis compares how 
these features contribute are useful in detecting MCI. 
 

 
 

Figure 6. Utilizing time domain features as input for 1D 
CNN to classify HC and MCI classes 

 
When each feature Kurtosis, ZCR, and Hjorth was tested 

separately with the 1D CNN, the Hjorth parameter had the 
highest validation accuracy of 89.70%, when compared to 
both Kurtosis and ZCR. This shows that Hjorth features, which 
measure mobility and complexity in EEG signals, are better at 
telling the difference between Healthy Controls (HC) and 
people with Mild Cognitive Impairment (MCI) when using the 
1D CNN. Although Kurtosis and ZCR are useful, they don’t 
capture enough changes or variability in the signals to perform 
as well as Hjorth features in this model. The time domain 
features giving as input to 1DCNN model is shown in Figure 
6. 

The major advantage of the model is its capability of 
effectively mining spatial features from the EEG data using 
the convolutional layers. Through recognizing both the local 
and global patterns, the 1D CNN is able to extract significant 
information from time-series features. Additionally, the 1D 
CNN works well with smaller datasets but the model cannot 
effectively capture long-term temporal patterns, which is 
difficult for analyzing EEG signals and detecting MCI. This 
limitation makes it unable to utilize the sequential information 
contained in the data. 

 
4.5 Time-domain features with 1D CRNN 

 
When the same time-domain features were used with 1D 

CRNN, similar results were seen. The Hjorth parameter once 
again had the best accuracy, reaching 88.29%, which was 
slightly lower than its performance with the 1D CNN. This 
shows that the CRNN can understand time-based patterns and 
find useful details in EEG signals. Although Kurtosis and ZCR 
performed reasonably well, they didn’t capture the complexity 
of EEG signals as effectively as Hjorth, which likely affected 
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their classification accuracy. 1DCRNN Model with time 
domain features is shown in Figure 7. 

This allows the model to study EEG signals more 
completely by capturing both spatial and time-based details, 
which are important for telling MCI apart from HC. However, 
adding recurrent layers makes the model more complex, which 
means it takes longer to train and needs more computer power. 
Also, the large number of parameters can lead to overfitting, 
especially when using smaller EEG datasets. Even with these 
challenges, CRNNs are useful for classifying EEG signals 
because they can analyze time-based patterns so well. 

 
4.6 Time-domain features with 1D PBCNN 

 
Using Population-Based Training (PBT) improved the 

models a lot by fine-tuning their hyperparameters to find the 

best settings. When the time-domain features were used with 
these optimized models, the results were as follows: 

With PBT optimization, the Hjorth parameter showed better 
performance, reaching a validation accuracy of 88.39%. This 
small improvement compared to the 1D CNN model. This 
process tune hyperparameters helps the model do a better job 
of picking out important features and classifying EEG signals. 

However, like the 1D CNN, the PBCNN cannot understand 
long-term patterns in the data since it doesn’t model temporal 
dependencies. Another downside is that PBT requires a lot of 
computational power because multiple models need to be 
trained and tested at the same time. Even with these challenges, 
the PBCNN’s ability to adjust its settings dynamically makes 
it a strong model for finding spatial features in EEG signals. 
The architecture of 1DPBCNN with time domain features is 
shown in Figure 8. 

 

 
 

Figure 7. Utilizing time-domain features as input for 1D CRNN to classify HC and MCI classes 
 

 
 

Figure 8. Utilizing time domain features as input for optimized 1D PBCNN to classify HC and MCI classes 
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4.7 Time-domain features with 1D PBCRNN 
 
The optimized 1D PBCRNN model achieved the highest 

overall accuracy of 90.01% when using the Hjorth parameter 
as input. This result shows that the Hjorth parameter is very 
good at capturing detailed time-based patterns in EEG signals. 
The convolution layers focus on spatial features while the 
recurrent layers focus on long term patterns and Population 
Based Training which makes it effective for analyzing EEG 
signals. With PBT, the model’s hyperparameters are adjusted 

during training to find the best settings. This process improves 
the model settings and leads for better performance. Although 
the PBCRNN performs the best, it requires a lot of 
computational power, taking more time and memory to train. 
The high complexity of the model also means it needs to be 
carefully controlled to avoid overfitting. Despite these 
challenges, the PBCRNN’s ability to capture both spatial and 
temporal details makes it the most effective model for 
detecting MCI. The 1DPBCRNN with Time domain features 
is shown in Figure 9. 

 

Figure 9. Utilizing time domain features as input for optimized 1D PBCRNN to classify HC and MCI classes 
 

 
 

Figure 10. Classification results for various deep learning and optimized deep learning techniques 

 
 

Figure 11. Classification accuracy for various feature extraction and deep learning techniques 
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Table 2. Deep learning models result (IN %) 

Deep Learning Models Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
1D CNN 79.43 79.40 77.22 78.29 

1D PBCNN 80.60 79.98 79.5 3 79.75 
1D CRNN 81.12 78.78 83.0 8 80.87 

1D PBCRNN 82.59 85.59 76.6 6 80.88 

Table 3. Different feature extraction techniques and deep learning models classification accuracy (IN %) 

DL Models Time Domain Features Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
1D CNN Kurtosis 79.67 78.75 78.64 78.70 

ZCR 87.16 86.61 87.30 86.95 
Hjorth 89.70 89.05 90.17 89.60 

1D PBCNN Kurtosis 80.62 79.62 77.54 78.15 
ZCR 87.90 87.10 88.37 87.73 

Hjorth 88.39 87.55 88.96 88.25 
1D CRNN Kurtosis 80.58 75.57 87.64 81.16 

ZCR 87.47 87.81 86.66 87.23 
Hjorth 88.29 87.35 88.96 88.15 

1D PBCRNN Kurtosis 81.77 80.46 79.32 80.13 
ZCR 87.24 86.56 87.51 87.03 

Hjorth 90.01 89.73 90.11 89.92 

Table 4. The comparison accuracy of existing models with our proposed model 

Author Features Classifier Accuracy (in %) 
Khatun et al. [28] Time-frequency Features SVM 87.90 

Morabito et al. [29] - Deep Learning on Convolutional Neural 
Networks (CNN) 

80% 

Our Proposed Method Time domain Features 1DPBCRNN 90.01 

The accuracy, precision, recall and F1-score results 
comparison for 1D CNN and 1DCRNN with 1D PBCNN and 
1D PBCRNN is shown in Table 2 and the pie chart 
representation of these results is shown in Figure 10. 

The classification results of various time domain features 
along with deep learning and optimized deep learning models 
is shown in Table 3. And its pie chart representation is shown 
in Figure 11. 
The comparison of existing models with our proposed model 
are in Table 4. 

5. CONCLUSION

The proposed methods 1DCNN, 1DCRNN, 1DPBCNN, 1D
PBCRNN presents unique advantages and disadvantages 
based on its structure and complexity. The 1D CNN stands out 
for its simplicity and efficiency in spatial feature extraction, 
while the 1D CRNN introduces the ability to model temporal 
dependencies. The optimized models, 1D PBCNN and 1D 
PBCRNN, leverage PBT to dynamically tune hyperparameters, 
particularly the 1D PBCRNN model, have significant clinical 
application value in the early screening and diagnosis of Mild 
Cognitive Impairment (MCI). The high classification accuracy 
of 90.01 is achieved using 1D PBCRNN with Hjorth features 
proves that these methods have the capacity of offering 
accurate and non-invasive diagnostic assistance. Early 
detection of MCI is critical in clinical practice, as it allows 
timely intervention to delay or prevent the progression to 
Alzheimer’s disease. In this study, EEG-based approaches are 
used and these are especially useful because they are 
affordable, readily available and can be transported to different 
locations while other expensive and inaccessible imaging 
methods like MRI or PET scans are not. The application of 
these sophisticated models integrated with clinical practices 

can help the neurologists and other healthcare personnel 
providers by offering objective, data-driven insights into 
cognitive function. 

There are some limitations to the proposed methods. A 
significant problem is that they require a lot of data for training 
which can be overcome by using better data augmentation 
strategies or transfer learning. Combing EEG data with other 
datas like MRI or clinical biomarkers can help in accurate 
analysis. Another area of future research could also involve the 
enhancement of computational efficiency and also increasing 
the generality of these models for their effective application in 
the clinical setting as well. 
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