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Mild Cognitive Impairment (MCI) represents early cognitive changes that can signal the
potential development of more serious memory and thinking problems. The EEG data is
preprocessed by applying band pass filter and segmenting it into epochs of 5 secs.
Subsequently, time domain feature extraction techniques including Kurtosis, Zero Crossing
Rate (ZCR) and Hjorth parameters are explored and applied to the EEG signals. The
investigation includes the integration of these techniques with 1D deep learning techniques
like Convolutional Neural Networks (CNN) and Convolutional Recurrent Neural Networks
(CRNN) and hybrid 1D deep optimized models like PBCNN (Population Based CNN) and
PBCRNN (Population-Based CRNN). The impact of feature extraction on MCI detection
accuracy is evaluated by comparing the results obtained with and without feature extraction.
Additionally, the influence of epoch duration, considering 5-second epochs with 1 second
overlap, is examined to determine the optimal duration for precise MCI classification using
EEG data. The findings contribute to advancing the understanding of EEG data analysis
techniques for early MCI detection. The proposed methods have significant clinical
application value in the early screening and diagnosis of Mild Cognitive Impairment (MCI).

Among the proposed models 1DPBCRNN works well with 90.01 accuracy.

1. INTRODUCTION

MCI is a state where there is a noticeable decline in
cognitive abilities greater than what would typically be
anticipated for an individual's age, yet it does not lead to
significant impairment in their day-to-day activities. Early
detection of MCI is crucial for timely intervention and
management of cognitive decline and if not identified earlier
may lead to Dementia or Alzheimer’s disease [1, 2].
Electroencephalography (EEG) is becoming increasingly
recognized as a valuable tool in the detection of MCI due to its
nonintrusive characteristics and ability to capture neural
activity in real-time [3].

The removal of Electrooculogram (EOG) artifacts in
diverse EEG signals is achieved using a novel approach that
combines Independent Component Analysis (ICA) and
Ensemble Empirical Mode Decomposition (EEMD) is
introduced to demonstrate improved performance in EOG
artifact rejection, making it a promising method for EEG
signal processing and analysis [4]. A comprehensive artifact
removal methods like Principal Component Analysis (PCA),
Canonical correlation analysis (CCA), Empirical Mode
Decomposition (EMD), and Filtering methods for EEG signals
were discussed for effectively removing artifacts from EEG
signals [5].

For detecting cognitive impairments and neurological
disorders, the application of Permutation Entropy (PE) and
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Statistical Complexity (SC) in the case of MEG recordings
from patients detected with MCI and Alzheimer's disease (AD)
examines broadband signals and breaks them down into
frequency bands to identify changes in each band linked to
MCI and AD [6]. The feature extraction scheme based on
discrete wavelet transform demonstrates the potential of
relative wavelet energy features to categorize EEG signals
obtained during intricate cognitive tasks and rest conditions.
The performance evaluation with different classifiers
highlights the ability of this approach to achieve high accuracy
rates in EEG signal classification [7].

The effectiveness of various machine learning algorithms
by feature extraction of input EEG samples belonging to motor
movements is conducted and shown that the Medium-ANN
model emerges as the top performer, suggesting the
applicability of the approach in scenarios like brain-computer
interfaces and neural prostheses [8]. Regarding neural
decoding and brain computer interfaces, Saeidi et al. [9]
illustrate the latest developments in the decoding and
categorization of EEG signals made possible by supervised
ML and DL models. This study explores the increasing
importance of deep learning in the analysis of EEG data
through a range of tasks, such as finding emotions, mental
workload assessment, detection of seizures, program-based
potential identification, and sleep scoring [10]. Furthermore,
the research delves into the input formulations employed for
deep network training and investigates distinct network
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architectures tailored to various task categories. CNN and
RNN consistently demonstrate superior classification
accuracy compared to alternative models.

Existing methods for processing EEG signals and
classifying MCI are helpful but still have many issues that
need fixing. Techniques like PCA, CCA, EMD, and filtering
often have trouble separating noise from real brain signals,
especially when the data is messy or comes from different
sources. Even though ICA and EEMD perform better, they are
too complicated and slow to work well in real-time situations.

For feature extraction, methods like Permutation Entropy
(PE) and Statistical Complexity (SC) are promising but aren’t
fully designed to work well with EEG data. They miss out on
important patterns in the signal. Wavelet-based methods also
depend on choosing the right settings, which might not work
for all tasks. Machine learning and deep learning models like
CNNs and RNNs often do well but can struggle with
overfitting, require a lot of labeled data, and might not work as
well on new datasets. Most studies focus on simpler tasks like
detecting movements or emotions, so they don’t work well for
complex conditions like MCI. There’s also not enough
research comparing these models across bigger and more
varied datasets to figure out which ones work best.

The proposed model tries to solve these problems by
improving artifact removal, using features from time-domain
analysis, and comparing advanced models like 1D CNN, 1D
CRNN, 1D PBCNN, and 1D PBCRNN on different EEG
datasets. The goal is to make it easier to detect MCI early and
create better tools to understand and diagnose this condition.

2. RELATED WORK

Cognitive impairment, particularly Mild Cognitive
Impairment (MCI) and its progression to Alzheimer's disease,
has been a significant focus of research. Richardson et al. [1]
conducted a longitudinal study that highlighted a two-decade
change in the prevalence of cognitive impairment in the UK,
emphasizing the need for early detection and intervention
strategies. Batum et al. explored the neurocognitive clues
linking MCI to Alzheimer's disease, providing insights into the
cognitive deficits that characterize these conditions.

EEG Signal Processing

Electroencephalography (EEG) has emerged as a vital tool
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for understanding brain activity related to cognitive functions.
Sur and Sinha [11] provided a foundational overview of EEG
and event-related potentials (ERPs), which are crucial for
studying cognitive processes. The removal of artifacts from
EEG signals is essential for accurate analysis, as highlighted
by Jiang et al. [5], who reviewed various techniques for artifact
removal, and Al-Baddai et al. [12], who proposed a novel
method combining independent component analysis and
ensemble empirical mode decomposition.

Machine Learning in EEG Analysis

The application of machine learning techniques to EEG data
has gained traction, particularly for diagnosing cognitive
impairments. Prochazka et al. [13] demonstrated the
effectiveness of wavelet transform and machine learning for
feature extraction and classification of EEG signals. Ramirez-
Arias et al. [8] evaluated various machine learning algorithms
for EEG classification, while Glaser et al. [14] provided a
systematic review of neural decoding methods using machine
learning. Kotowski et al. [15] further explored deep learning
approaches for EEG classification tasks, indicating a shift
towards more sophisticated models in this domain.

Feature Extraction and Complexity Analysis

Feature extraction plays a crucial role in enhancing the
performance of machine learning models. Movahed et al. [16]
focused on the automatic diagnosis of MCI using spectral
features from EEG signals and supervised dictionary learning
techniques, respectively. Timothy et al. [17] analyzed
permutation entropy in MCI, contributing to the understanding
of EEG signal characteristics in these conditions.

Real-time Applications and Future Directions

The integration of EEG signal processing methods into real-
time applications, such as brain-computer interfaces (BClIs), is
an emerging area of research. EEG signal processing methods
specifically for brain-controlled robots, while applied a 1D
convolutional neural network to classify voluntary eye blinks
in EEG signals for BCI applications. Introduced a CNN-
LSTM model for epileptic seizure recognition, showcasing the
potential of deep learning in real-time EEG analysis.

3. METHODS

3.1 Preprocessing techniques
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Figure 1.

In recent times, there has been a rising interest in the
examination of EEG data for the detection of MCI. However,
the raw EEG signals are often noisy and contain various
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Sample EEG signal shown for 1 minute

artifacts that can hinder accurate interpretation. To address
these challenges, preprocessing techniques, such as filtering
and epoch segmentation, are applied to enhance the signal



quality and facilitate subsequent analysis [18]. The EEG data
is preprocessed to enhance its quality and prepare it for further
analysis. Firstly, the EEG data is read from EDF files using the
MNE library. Then the data undergoes re-referencing with a
common average reference to reduce the presence of noise. A
bandpass filter is applied to retain frequencies between 0.5 Hz
and 45 Hz, eliminating unwanted artifacts. Subsequently, the
data is segmented into fixed-length epochs of 5 seconds with
a 1-second overlap, facilitating easier analysis. Finally, the
preprocessed EEG data is organized into epochs and can be
utilized for wvarious tasks like feature extraction or
classification. Figure 1 displays a one-minute duration sample
EEG signal.

3.2 Feature extraction techniques

In addition to preprocessing, feature extraction plays a vital
role in capturing appropriate data from EEG signals. Time
domain features, including Kurtosis and Hjorth parameters
and Zero Crossing Rate (ZCR) have shown promise in
quantifying signal characteristics associated with cognitive
impairment. These features provide insights into the amplitude,
variability, and distribution of the EEG signals, which can be
indicative of underlying cognitive dysfunction.

3.2.1 Time domain features

A time domain feature is a statistical measure that
characterizes the amplitude or waveform of an EEG signal at
a specific point in time [19].

a) Kurtosis:

Kurtosis is a valuable time domain feature for EEG signal
analysis, as it provides insights into the shape and distribution
of EEG data. Extracting kurtosis features allow researchers
and clinicians to capture and analyze important characteristics
of EEG signals related to brain activity. Kurtosis helps us to
identify the peakedness or flatness of the distribution of brain
activity [20]. If kurtosis is high, it indicates that the brain
signal has high spikes. These sharp peaks can happen during
very strong brain activity or when something is wrong, like
seizures, memory problems, or diseases like Alzheimer’s. Low
kurtosis shows that brain activity is normal.

By quantifying the degree of these peaks and tails, kurtosis
allows the detection of irregularities in neural activity, which
are often associated with conditions like MCI or Alzheimer’s.
The kurtosis formula is shown in Eq. (1).
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where, n stands for the total number of data points within the
dataset, i takes on values 1, 2, 3, ..., n, X; represents each
specific data point in your dataset, X represents the sample
mean or average of your dataset.

This is computed by adding together all the data points Y, x;
and then dividing the sum by the total number of data points n.
s represents the sample standard deviation of your dataset.

Kurtosis

(1

a4
(x‘s x) calculates the fourth s power of the standardized

deviation of each data point. It measures how each data point
deviates from the mean, scaled by the standard deviation. The
final step in the formula is subtracting 3. This is done to make
the kurtosis of a normal distribution equal to 0. In other words,
if the calculated Kurtosis is greater than 0, it indicates heavier
tails than a normal distribution, and if it's less than 0, it
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indicates lighter tails.

The input provided for the kurtosis_features function is a 3-
dimensional array with dimensions (number of epochs,
number of channels, number of data points per channel). This
array contains EEG data for two groups: the control group and
the patient group.

The kurtosis_features function is designed to calculate the
kurtosis value for each epoch and each channel separately. As
the function iterates through each epoch and channel, it
calculates the kurtosis value for the data recorded in that
specific epoch and channel using the "kurtosis" function from
the scipy. stats module. The resulting kurtosis values are stored
in a new array called "kurtosis_features." After the function
has processed all the epochs and channels, it returns the
"kurtosis_features" array. The shape of this array is
(num_epochs, num_channels), where "num_epochs"
initializes the number of epochs, and "num_channels"
signifies the count of electrodes.In the input data, there are
14757 epochs in MCI group and 13645 epochs in HC group,
and each epoch contains 19 channels. Therefore, the resulting
"Patient kurtosis features" and "Control kurtosis features"
arrays have shapes (14757, 19) and (13645, 19), respectively.

b) Hjorth:

Hjorth features are a group of time-domain attributes
utilized for the characterization of signals, particularly in the
context of EEG signals. They were introduced by Dr. Bjorn
Hjorth to quantify the activity, mobility and complexity of
signals. In EEG signal processing, Hjorth features provide
valuable information about the signal's mobility and
complexity. Mobility represents the rate of change or activity
in the signal, while complexity measures how irregular or
diverse the signal's behavior is over time.

Hjorth Mobility shows us how often the EEG signal varies
over time. It shows whether the signal is constant or
fluctuating. The mobility with a higher score means that the
signal is varying at a faster rate and this can occur during
increased brain activity or even brain pathology. A low
mobility number indicates that the signal is much more
constant and smoother. This is useful since it allows one to
determine changes in brain activity for instance when the brain
is in function or if there are any functional abnormalities. The
mobility evaluation is shown in Eq. (2).

dx(?)

var 00}

var(x(t))

2

Mobility =

dx(t)
dt

where, ( ) represents the first derivative of the function

x(t) over time t, var (dz—(:)) calculates the variance of (—d);(tt)) .

var(x(t)) calculates the variance of the position values x(t)

var(29)
var(x(t))

over time. calculates the square root of the ratio

between the variance of the signal's derivative and the variance
of the signal.

Hjorth Complexity measures the signal’s irregularity or
variability, capturing how unpredictable or difficult the
signal's behavior is higher complexity means the brain activity
is more complicated and has lots of different patterns. This can
happen when the brain is solving problems or when something
is wrong. Lower complexity means the brain activity is
simpler, more repetitive, or not as busy. The calculation of
hjorth complexity is shown in Eq. (3).
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where, Mobility (di;—(tt)) calculates the first derivative of
Hjorth Mobility and Mobility(y(t)) calculates the Hjorth
Mobility of the original signal, measuring its overall mobility
[21].

The input to the hjorth_features function is a 3D array called
data array, which contains the EEG signal data. To calculate
the Hjorth mobility and complexity features, the function
iterates over each epoch and channel in the data_array. For
each epoch and channel, It computes the signal's first
derivative to determine mobility, and then further computes
the first derivative of the first derivative to calculate
complexity.

In total, the function extracts two sets of features for each
epoch and channel: the Hjorth mobility features and the Hjorth
complexity features. Since there are num_epochs epochs and
num_channels channels, the resulting
hjorth_mobility features and hjorth complexity features
arrays have the shape (num_epochs, num_channels). To
combine the mobility and complexity features into a single
feature vector, the function uses np.column_stack to stack the
two feature arrays horizontally. As a result, the final Hjorth
features arrays, control_hjorth_features,and
patient_hjorth_features, have the shape (num_epochs, 38).
Each row in these arrays represents a different epoch, and the
38 columns contain the combined mobility and complexity
features for each channel of the EEG signal.

¢) Zero Crossing Rate (ZCR):

ZCR counts how many times the EEG signal crosses the
zero line. This shows how much the signal goes up and down.
A high ZCR means the signal changes quickly, like during
bursts of brain activity. A low ZCR means the signal is
smoother and changes less, like when the brain is resting or
calm. This is important for finding problems with thinking or
memory because the brain’s patterns might look different from
normal.

These features help us understand EEG signals better by
looking at how they work. They make it easier to find small
but important changes in the signals that might show problems
with thinking or memory. This helps with studying and finding
out what might be wrong. It helps identify sharp waveforms,
bursts of activity, or the onset and offset of specific events in
the EEG signal [22]. The ZCR evaluation is shown in Eq. (4).

1 N-‘{l if x[i].x[i —1]< 0

ZCR=—— ) (4)

N-1%510 otherwise
where, x[7] is the sample at index i in the signal, x[i-1] is the
sample immediately preceding x[i]. x[Z]. x[i-1]<0 checks if the
product of x[i] and x[i-1] is less than zero, indicating a sign
change (crossing). The summation runs over all pairs of
consecutive samples, and 1 is added to the sum if a sign change
is detected; otherwise, 0 is added.

The input to the zcr features function is a 3D array
representing EEG data, comprising the number of epochs,
channels (electrodes), and data points per channel. The
function computes the ZCR value for each epoch and channel
separately, Tallying the occurrences when the EEG signal
intersects the zero baseline. and dividing it by the total length
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of the epoch.

As a result, the function extracts a ZCR feature for each
epoch and channel in the EEG data. Ultimately, the ZCR
features matrix provides valuable information about the rate of
zero crossings, with each row representing an epoch and each
column representing a specific EEG channel. For the control
group, there are 13645 epochs, each containing 19 channels
resulting in "Control ZCR features" array has a shape of
(13645, 19) and for the patient group, there are 14757 epochs,
each containing 19 channels resulting in "Patient ZCR
features" array has a shape of (14757, 19).

3.2.2 Deep learning techniques

To improve the effectiveness of MCI detection, more
advanced machine learning techniques have to be utilized.
Specifically, 1D deep learning models like CNN and CRNN:gs,
along with hybrid models such as Population Based CNN
(PBCNN) and Population Based CRNN (PBCRNN), have
shown remarkable capabilities in capturing spatial and
temporal dependencies within EEG data.

a) 1D Convolutional Neural Network:

1D CNN is a popular neural-network architecture which is
used for various signal processing tasks, including EEG signal
analysis [23]. The temporal aspect of EEG data is crucial for
understanding brain activity, and 1D CNN is well-suited for
handling this dimension. Furthermore, the network is able to
extract both local and global features of the EEG signal, thus
making it an effective and robust tool for EEG signal analysis.

Input 3D
(Batch_size, nsamples, nchannels)

1D Convolutional Layer
(64 filters, Kernel size=3, RelLU)

A

1D Max Pooling Layer
(Pool Size=2)

Flatten Layer

h 4

Fully Connected Layer (Dense)
(1 unit, Sigmoid)

Figure 2. 1D CNN architecture

Figure 2 shows the architecture of 1D CNN which is used
for EEG signal analysis. The 1D Convolutional Neural
Network is used to study EEG signals and find patterns in the
data. The input to the model is like a 3D tensor with parts that
include the batch size set to 32 which is how many examples
the model looks at one time, epochs set to 30 and features set
to 76. The first layer of the model is a 1D convolutional layer
that uses 32 filters to capture important details, kernel size of
3 to find small patterns in the EEG signals and the ReLU
activation function, which helps the model learn better and
faster. After this, the data goes through a 1D max pooling layer
with a pool size of 2, which makes the data smaller by keeping



only the most important parts, so the model can work more
efficiently.

Next, the output from the pooling layer is flattened into a
single line, which is sent to the fully connected layers. The first
dense layer has 64 units and uses ReLU activation, helping it
find bigger patterns in the data. Finally, the model gives one
result using a sigmoid activation function, which gives a value
between 0 and 1. A value close to 0 means the data is from the
healthy control group, and a value close to 1 means it’s from
the mild cognitive impairment group. The model learns using
binary cross-entropy loss, which is wused for binary
classification, and the Adam optimizer, which helps the model
learn quickly and accurately. This design makes the CNN
good at studying EEG data and classifying it correctly.

b) 1D Convolutional Recurrent Neural Network (1D
CRNN)

The CRNN architecture is useful for tasks that involve
sequential data with long-term dependencies, such as speech,
signal, and language processing [24]. The convolutional layers
can identify spatial patterns present in the input data, including
the frequency features within a signal., while the recurrent
layers can capture the temporal patterns. The 1D CRNN
architecture is shown in Figure 3.

Input 3D
(Batch_size, nsamples, nchannels)

Y

1D Convolutional Layer
(64 filters, Kernel size=3, RelLU)

1D Max Pooling Layer
(Pool Size=2)

Y

LSTM Layer
(64 filters)

Y

LSTM Layer
(64 filters)

Y

Fully Connectsed Layer (Dense)
(64 units, ReLU)

Fully Connectsed Layer (Dense)
(1 unit, Sigmoid)

Figure 3. 1D CRNN architecture

The model starts with a normal 1D convolutional layer
which has 64 filters, kernel size of 3 in order to capture the
basic and frequency characteristics of the EEG signals and a
ReLU activation function which assist in the detection of
complex patterns. Then max pooling to applied to
convolutional layer with pool size 2 through which the data
size can be reduced while keeping the most important
information from the previous layer. Then the model has two
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LSTM layers each with 64 units each. These layers help in
comprehending the variations in the data at a certain interval
and identifying trends in the data over a long period. Following
the LSTM layers the data is supplied to a dense layer with 64
units with ReLU activation function. This layer assists in
enhancing the features identified in the prior layers. Last, the
model contains one output layer with one unit and uses the
sigmoid activation function. This layer outputs a value
between 0 with and binary 1 cross for entropy the loss
classification function of and the optimizer signal Adam as is
control used or which patient. helps the in-model training is
the trained model faster and more accurately.

3.2.3 Hybrid deep optimized techniques

a) Population Based Training (PBT)

PBT is an optimization technique within machine learning
and deep learning that aims to optimize hyperparameter tuning
efficiency and elevate the performance of trained models. It
utilizes the principles of genetic algorithms to iteratively
evolve a population of models over multiple training epochs.
The PBT process typically involves the steps like- Population
Initialization, Model Evaluation, Exploitation and Exploration,
Hyperparameter Exploration, Population Update. By
dynamically allocating more resources (e.g., computation time,
memory) to promising models and discarding fewer promising
ones early in the training process, PBT converges to better
hyperparameter settings more efficiently than traditional
hyperparameter optimization methods like grid or random
search. This makes PBT particularly advantageous when
training resource-intensive deep learning models. PBT has
gained popularity for its ability to efficiently explore the
hyperparameter space and find optimal configurations,
enabling faster and more effective training of machine
learning models [25].

Population Based Training (PBT) Algorithm

(1) Start with a population of 5 models and choose the
hyperparameters of each model at random. Filters are selected
as any number between 32 and 128, the kernel size is chosen
from the set of 2 to 5 and the number of dense units can also
be between 32 and 128. Make the weights of each model to be
any random value.

(2) For each model in the population, fine tune each model
for every epoch using the training data set.

(3) To determine the validation accuracy of each model, test
each model on the validation dataset

(4) Sort the models in the decreasing order of validation
accuracy and retain the best models

(5) Select hyperparameters 20% of the population. Modify
hyperparameters by changing kernel size, filter size and dense
units for the selected models within the specified ranges.

(6) To transfer the hyperparameters and weights from the
top performing models to the low performing models in order
to enhance the whole population.

(7) Repeat the training, evaluating and updating the models
for a total of 10 generations

(8) Choose and return the model with the best validation
accuracy from the last generation.

b) 1D PBCNN:

In the hybrid model, the 1D CNN serves as the core
architecture for processing one-dimensional sequential data.
The PBT algorithm is integrated with 1D CNN model in the
training process to optimize its hyperparameters effectively.
During the training process, PBT dynamically adjusts
hyperparameters depending on the evaluation of different



models in the population, allowing the models to explore the
hyperparameter space efficiently. This integration of PBT with
the 1D CNN model results in faster convergence to optimal
hyperparameter settings, ultimately leading to a more accurate
and efficient model and its architecture is shown in Figure 4.

c¢) 1D PBCRNN (Population Based Convolutional
Recurrent Neural Network)

In the hybrid model, thelD CRNN plays a central role in
processing sequential data, enabling it to capture both local
and long-range patterns present in the input. To efficiently
optimize its performance, the Population-Based Training
(PBT) algorithm is seamlessly integrated into the training
process of the 1D CRNN model. PBT effectively manages a
diverse population of 1D CRNN models, each with distinct
hyperparameter configurations. During training, these models
undergo evaluation on a validation set, and the best-
performing models serve as a foundation for exploitation.
Through this exploitation process, their hyperparameters are

dynamically updated to potentially improve their performance.

This cycle of evaluation, exploitation, and exploration
continues over multiple epochs. By dynamically updating the
hyperparameters based on the models' performance within the
population, PBT allows the hybrid model to explore the
hyperparameter space more efficiently. Consequently, this
optimization approach empowers the hybrid 1D CRNN model
to discover more effective hyperparameter configurations,
ultimately leading to a more accurate and efficient model for
processing sequential data. The architecture of 1D PBCRNN
is shown in Figure 5.

Initialize Population Parameters

if epoch==

Create IDCNN Model with
random hyper parameters

y
Train the new Model using
training data

v

Evaluate Model Performance

I Create new model with
~ updated hyper parameters

if ran_value <
exp_ratio

True

False

Sort and select top performing
models

A
Return and evaluate the final
Models

Figure 4. Architecture of 1D PBCNN
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Evaluate Model Performance
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Create new model with

False

Sort and select top performing
models

Return and evaluate the final
Models

Figure 5. Architecture of 1D PBCRNN

4. EXPERIMENTAL RESULTS

The study employed EEG signals Datasets from the Isfahan
MISP database, involving 61 participants aged 55, categorized
into Healthy Control (29) and Mild Cognitive Impairment (32)
groups. EEG recordings were made during morning sessions
with closed eyes, utilizing a Galileo NT device with 19
electrodes (C3, Cz, C4, Fpl, Fp2, F7, F3, Fz, F4, F§, O1, 02,
P3, Pz, P4, T3, T4, T5 and T6). Data was saved in EDF format
[26, 27].

A 5-second epoch duration was employed with an overlap
of 1 second. Each epoch contained N = 1280 (5 x 256) samples,
resulting in a total of 28,402 input EEG data points, which
included data from 14,757 MCI subjects and 13,645 HC
subjects.

4.1 Performance metrics

Table 1. Confusion matrix

MCI HC
MCI  True Positive (TP)  False Positive (FP)
HC  False Negative (FP)  True Negative (TN)

Performance metrics are important because they allow us to



objectively assess the model's performance and make
comparisons with other models or benchmarks function is
shown in the Table 1.

e Accuracy: It is a performance metric that calculates the
ratio of accurate predictions to the total number of predictions
generated by a model. The Accuracy formula is shown in Eq.

(5).

TP+TN
TP+TN + FP+ FN

Accuracy =

)

where, TP stands for true positives, TN represents true
negatives, FP signifies false positives, and FN denotes false
negatives.

e Precision: This metric is employed to assess the precision
of positive predictions generated by a classification model.
The precision calculation is shown in Eq. (6).

P

Precision =——
TP+ FP

(6)

e Recall: It signifies the ratio of actual positive instances
that the model correctly classifies as positive. Recall formula
is shown in Eq. (7).

TP

Recall=——
TP+ FP

()

e F1 score: It provides a balance between precision and
recall. F1 score calculation is shown in Eq. (8).

2* Precision * Recall
TP+ FN

F1 score=

®)

4.2 1D CNN for feature extraction and classification

The dataset mainly contains training and testing subsets
using the "train_test split" method with 75% and 25%
respectively. Initially, the model extracts important patterns or
features from the EEG data through convolutional and pooling
layers. Then, it uses these learned features to classify the EEG
data into control or patient groups through the dense layers.
The model is constructed with the 'adam' optimizer,
responsible for adapting the model's internal parameters
during the training process to minimize the
'binary_crossentropy' loss function. The model's prediction
accuracy against the real labels (0 or 1) is gauged by the loss
function. The accuracy that we achieved using 1DCNN is
79.43%.

4.3 1D CRNN for feature extraction and classification

The input data is divided into training with 25% and testing
75%. This modified architecture (1D CRNN) incorporates
LSTM layers alongside convolutional layers. The CNN part
extracts features, and the LSTM part captures temporal
dependencies in the EEG data. The model is configured with
'adam' as the optimizer and 'binary_crossentropy' as the loss
function. As a result, it achieves an accuracy of 81.12%.

4.4 Time-domain features with 1D CNN

Time-domain features like Kurtosis, Zero Crossing Rate
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(ZCR), and Hjorth parameters are very important in studying
EEG signals. They capture key details that help to differentiate
Healthy Controls (HC) and people with Mild Cognitive
Impairment (MCI). When these features are used as inputs for
different models—such as 1D CNN, 1D CRNN, 1D PBCNN
and 1D PBCRNN—the results show how these features affect
the accuracy of classification. The analysis compares how
these features contribute are useful in detecting MCI.
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Figure 6. Utilizing time domain features as input for 1D
CNN to classify HC and MCI classes

When each feature Kurtosis, ZCR, and Hjorth was tested
separately with the 1D CNN, the Hjorth parameter had the
highest validation accuracy of 89.70%, when compared to
both Kurtosis and ZCR. This shows that Hjorth features, which
measure mobility and complexity in EEG signals, are better at
telling the difference between Healthy Controls (HC) and
people with Mild Cognitive Impairment (MCI) when using the
1D CNN. Although Kurtosis and ZCR are useful, they don’t
capture enough changes or variability in the signals to perform
as well as Hjorth features in this model. The time domain
features giving as input to IDCNN model is shown in Figure
6.

The major advantage of the model is its capability of
effectively mining spatial features from the EEG data using
the convolutional layers. Through recognizing both the local
and global patterns, the 1D CNN is able to extract significant
information from time-series features. Additionally, the 1D
CNN works well with smaller datasets but the model cannot
effectively capture long-term temporal patterns, which is
difficult for analyzing EEG signals and detecting MCI. This
limitation makes it unable to utilize the sequential information
contained in the data.

4.5 Time-domain features with 1D CRNN

When the same time-domain features were used with 1D
CRNN, similar results were seen. The Hjorth parameter once
again had the best accuracy, reaching 88.29%, which was
slightly lower than its performance with the 1D CNN. This
shows that the CRNN can understand time-based patterns and
find useful details in EEG signals. Although Kurtosis and ZCR
performed reasonably well, they didn’t capture the complexity
of EEG signals as effectively as Hjorth, which likely affected



their classification accuracy. IDCRNN Model with time
domain features is shown in Figure 7.

This allows the model to study EEG signals more
completely by capturing both spatial and time-based details,
which are important for telling MCI apart from HC. However,
adding recurrent layers makes the model more complex, which
means it takes longer to train and needs more computer power.
Also, the large number of parameters can lead to overfitting,
especially when using smaller EEG datasets. Even with these
challenges, CRNNs are useful for classifying EEG signals
because they can analyze time-based patterns so well.

4.6 Time-domain features with 1D PBCNN

Using Population-Based Training (PBT) improved the
models a lot by fine-tuning their hyperparameters to find the

Time Domain
Features

best settings. When the time-domain features were used with
these optimized models, the results were as follows:

With PBT optimization, the Hjorth parameter showed better
performance, reaching a validation accuracy of 88.39%. This
small improvement compared to the 1D CNN model. This
process tune hyperparameters helps the model do a better job
of picking out important features and classifying EEG signals.

However, like the 1D CNN, the PBCNN cannot understand
long-term patterns in the data since it doesn’t model temporal
dependencies. Another downside is that PBT requires a lot of
computational power because multiple models need to be
trained and tested at the same time. Even with these challenges,
the PBCNN’s ability to adjust its settings dynamically makes
it a strong model for finding spatial features in EEG signals.
The architecture of IDPBCNN with time domain features is
shown in Figure 8.
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Figure 7. Utilizing time-domain features as input for 1D CRNN to classify HC and MCI classes

Time Domain
Features

| Kurtosis

Hjorth ..
‘ e » 75% for training
Parameters >
and
Zero Crossing 25% for testing
Rate >

Divide the Features into

1D Population Based
Convolutional Neural
Network
(IDPBCNN) Model

Figure 8. Utilizing time domain features as input for optimized 1D PBCNN to classify HC and MCI classes
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4.7 Time-domain features with 1D PBCRNN

The optimized 1D PBCRNN model achieved the highest
overall accuracy of 90.01% when using the Hjorth parameter
as input. This result shows that the Hjorth parameter is very
good at capturing detailed time-based patterns in EEG signals.
The convolution layers focus on spatial features while the
recurrent layers focus on long term patterns and Population
Based Training which makes it effective for analyzing EEG
signals. With PBT, the model’s hyperparameters are adjusted

Time Domain
Features

Kurtosis I

v

25% for testing

A4

ero Crossing
Rate

during training to find the best settings. This process improves
the model settings and leads for better performance. Although
the PBCRNN performs the best, it requires a lot of
computational power, taking more time and memory to train.
The high complexity of the model also means it needs to be
carefully controlled to avoid overfitting. Despite these
challenges, the PBCRNN’s ability to capture both spatial and
temporal details makes it the most effective model for
detecting MCI. The IDPBCRNN with Time domain features
is shown in Figure 9.
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Figure 9. Utilizing time domain features as input for optimized 1D PBCRNN to classify HC and MCI classes
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Table 2. Deep learning models result (IN %)

Deep Learning Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)
1D CNN 79.43 79.40 77.22 78.29
1D PBCNN 80.60 79.98 79.53 79.75
1D CRNN 81.12 78.78 83.08 80.87
1D PBCRNN 82.59 85.59 76.6 6 80.88

Table 3. Different feature extraction techniques and deep learning models classification accuracy (IN %)

DL Models Time Domain Features Accuracy (%)  Precision (%) Recall (%) F1-Score (%)
1D CNN Kurtosis 79.67 78.75 78.64 78.70
ZCR 87.16 86.61 87.30 86.95
Hjorth 89.70 89.05 90.17 89.60
1D PBCNN Kurtosis 80.62 79.62 77.54 78.15
ZCR 87.90 87.10 88.37 87.73
Hjorth 88.39 87.55 88.96 88.25
1D CRNN Kurtosis 80.58 75.57 87.64 81.16
ZCR 87.47 87.81 86.66 87.23
Hjorth 88.29 87.35 88.96 88.15
1D PBCRNN Kurtosis 81.77 80.46 79.32 80.13
ZCR 87.24 86.56 87.51 87.03
Hjorth 90.01 89.73 90.11 89.92

Table 4. The comparison accuracy of existing models with our proposed model

Author Features Classifier Accuracy (in %)
Khatun et al. [28] Time-frequency Features SVM 87.90
Morabito et al. [29] - Deep Learning on Convolutional Neural 80%
Networks (CNN)
Our Proposed Method Time domain Features IDPBCRNN 90.01

The accuracy, precision, recall and Fl-score results
comparison for 1D CNN and 1DCRNN with 1D PBCNN and
1D PBCRNN is shown in Table 2 and the pie chart
representation of these results is shown in Figure 10.

The classification results of various time domain features
along with deep learning and optimized deep learning models
is shown in Table 3. And its pie chart representation is shown
in Figure 11.

The comparison of existing models with our proposed model
are in Table 4.

5. CONCLUSION

The proposed methods IDCNN, IDCRNN, 1DPBCNN, 1D
PBCRNN presents unique advantages and disadvantages
based on its structure and complexity. The 1D CNN stands out
for its simplicity and efficiency in spatial feature extraction,
while the 1D CRNN introduces the ability to model temporal
dependencies. The optimized models, 1D PBCNN and 1D
PBCRNN, leverage PBT to dynamically tune hyperparameters,
particularly the 1D PBCRNN model, have significant clinical
application value in the early screening and diagnosis of Mild
Cognitive Impairment (MCI). The high classification accuracy
0f 90.01 is achieved using 1D PBCRNN with Hjorth features
proves that these methods have the capacity of offering
accurate and non-invasive diagnostic assistance. Early
detection of MCI is critical in clinical practice, as it allows
timely intervention to delay or prevent the progression to
Alzheimer’s disease. In this study, EEG-based approaches are
used and these are especially useful because they are
affordable, readily available and can be transported to different
locations while other expensive and inaccessible imaging
methods like MRI or PET scans are not. The application of
these sophisticated models integrated with clinical practices
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can help the neurologists and other healthcare personnel
providers by offering objective, data-driven insights into
cognitive function.

There are some limitations to the proposed methods. A
significant problem is that they require a lot of data for training
which can be overcome by using better data augmentation
strategies or transfer learning. Combing EEG data with other
datas like MRI or clinical biomarkers can help in accurate
analysis. Another area of future research could also involve the
enhancement of computational efficiency and also increasing
the generality of these models for their effective application in
the clinical setting as well.
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