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Cervical cancer remains a significant global health burden, necessitating accurate and 
efficient diagnostic tools. This paper proposes a novel deep learning architecture, the 
Squeeze-and-Excitation Attention-Guided Hybrid Network (SE-AG-HN), for the 
classification of cervical cancer from Pap smear images. The proposed method effectively 
addresses the challenges posed by image variability and subtle abnormalities by integrating 
Squeeze-and-Excitation (SE) attention and a hybrid convolutional neural network (CNN) - 
recurrent neural network (RNN) structure. The SE attention module recalibrates feature 
channels to enhance discriminative information, while the hybrid architecture leverages 
both local and global contextual features. Experimental results on a benchmark cervical 
cancer dataset demonstrate the superior performance of SE-AG-HN compared to state-of-
the-art methods, highlighting its potential as a valuable tool for cervical cancer screening 
and diagnosis.  
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1. INTRODUCTION

Cervical cancer is a malignancy arising from the cervix and
remains a significant global health concern, especially in 
developing regions. It arises primarily due to the persistent 
infection of high-risk Human Papillomavirus (HPV) types, 
such as 16 and 18. The progression of cervical cancer is often 
insidious, with early stages typically asymptomatic. As the 
disease advances, symptoms may manifest as abnormal 
vaginal bleeding, pelvic pain, and persistent vaginal discharge. 
Identifying and treating cervical cancer early significantly 
enhances the chances of successful treatment and better patient 
outcomes. Traditional screening methods, such as Pap smears 
and HPV testing, have been instrumental in reducing cervical 
cancer incidence. However, these methods show limitations, 
including subjectivity in Pap smear interpretation and the 
potential for false negatives. Additionally, the accessibility 
and affordability of these screening modalities remain 
challenges in many regions. Figure 1 illustrates the 
pathogenesis of cervical cancer, highlighting the role of HPV 
infection, risk factors, prevention methods, symptoms, and 
treatment options. This highlights the critical role of 
vaccination against HPV, regular screening tests, and early 
detection of cervical cancer in effectively preventing and 
managing this disease. 

To address these limitations, there has been a growing 
interest in developing automated diagnostic systems based on 
deep learning. Existing deep learning models have achieved 
promising results in cervical cancer classification. However, 

these models often struggle with the variability in image 
quality, subtle abnormalities, and the complex interplay of 
different image features. 

This study proposes a novel deep learning architecture, the 
Squeeze-and-Excitation Attention-Guided Hybrid Network, to 
overcome these challenges. By integrating Squeeze-and-
Excitation attention and a hybrid convolutional neural network 
recurrent neural network structure, our model effectively 
captures both local and global image features, enabling more 
accurate and robust classification of cervical cancer from Pap 
smear images. The SE attention module enhances the model's 
ability to focus on discriminative image regions, while the 
hybrid architecture leverages the strengths of both CNNs and 
RNNs for comprehensive feature extraction. By addressing the 
limitations of existing methods, the proposed SE-AG-HN 
model has the potential to improve cervical cancer screening 
and diagnosis, leading to earlier detection, reduced mortality 
rates, and improved patient outcomes. 

2. LITERATURE SURVEY

Pacal and Kılıcarslan [1] developed a robust cervical cancer
classification system using CNN and ViT models, tested on 
the SIPaKMeD pap-smear dataset. The model employed data 
augmentation and ensemble learning techniques, finding that 
ViT models outperformed CNN models in diagnostic accuracy 
suggesting potential clinical application for early and precise 
cancer identification. Kalbhor and Shinde [2] investigated 
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cervical cancer diagnosis using deep learning approaches 
using pre-trained models as feature extractors combined with 
machine learning algorithms, achieving 92.03% accuracy with 
ResNet-50. Additionally, they applied transfer learning, with 
Google Net fine-tuning yielding a classification accuracy of 
96.01%. Kumari et al. [3] proposed an automated cervical 
cancer classification system using a Deep Neural Network 
(DNN) to address early-stage prediction challenges. The 
method involved four stages of pre-processing, outlier 
elimination, dimensionality reduction via Principal 
Component Analysis (PCA) and classification. The DNN 
classifier achieved effective performance in distinguishing 
normal from abnormal cervical cells. Youneszade et al. [4] 
proposed a cervical cancer detection model using 
convolutional neural networks and colposcopy images. It 
examined the impact of increasing the number of classes on 
model accuracy, which reached 99% during training but 
dropped to 43.11% during testing. Cheng et al. [5] explored 
the application of deep learning in cervical cancer image 
processing discussing the workflow of image acquisition, 
preprocessing, feature extraction, and target detection, with a 
focus on CNN, generative adversarial networks (GANs) and 
autoencoders. Talpur et al. [6] proposed DeepCervixNet, an 
advanced deep learning model for cervical cancer detection in 
Pap smear images. By enhancing ResNet101 and 
DenseNet169 with sequence and excitation blocks and using 
ensemble learning, the model achieved an accuracy of 99.89%. 
Bueno-Crespo et al. [7] developed a deep learning model for 
cervical cancer classification, combining CNNs with the Grad-
CAM technique for explainability. The heatmap from Grad-
CAM was merged with the original image, with a 10% 
intensity fusion proving most effective. This hybrid model 
achieved an accuracy of 94%, aiding pathologists by 
highlighting regions of interest for review.  

Devaraj et al. [8] employed pre-trained models like 
ResNet50V2, InceptionV3, Xception to cervical smear images 
for cervical cancer prediction. This analysis validated with 
cross-validation, showed ResNet50V2 achieving the highest 
accuracy. Metrics used included accuracy, precision, 
sensitivity (or recall), and F1-score, demonstrating that deep 
learning can accurately classify cervical cancer, thereby 
enhancing early diagnosis without the need for invasive 
procedures. Mathivanan et al. [9] investigated the use of pre-
trained deep neural networks such as AlexNet, InceptionV3, 
ResNet-101 and ResNet-152 for feature extraction in cervical 
cancer detection. Their methodology combined these features 
with various machine learning algorithms. ResNet-152 
outperformed other models tested, achieving an accuracy of 
98.08% on the SIPaKMeD dataset. This hybrid approach of 
DL and ML aims to enhance cervical cancer classification and 
detection efficiency. Tan et al. [10] developed deep learning 
models for automated cervical cancer detection without 
segmentation or custom features, using transfer learning with 
13 pre-trained CNN models on Pap smear images. 
Performance evaluation was conducted on the Herlev dataset, 
in which DenseNet-201 achieved the best performance. Their 
approach demonstrated good accuracy and efficiency, 
requiring minimal computing time.  

Tripathi et al. [11] investigated the classification of cervical 
cancer using deep learning algorithms. The deep learning 
method, ResNet-152 was applied to the SIPAKMED pap-
smear image dataset and achieved a classification accuracy of 
94.89%. Deo et al. [12] proposed CerviFormer, a cross-
attention-based Transformer model, for cervical cancer 

classification in pap smear images. The model effectively 
handled large-scale input data and achieved competitive 
results on two publicly available datasets. It showed potential 
improvement in early detection and treatment of cervical 
cancer. Jeyshri and Kowsigan [13] proposed attention-based 
model effectively segmented and classified cervical cancer in 
biomedical images. It combined Multiscale ResUNet++ with 
Fuzzy C-means Clustering for segmentation and Serial 
Cascaded Residual Attention with Long Short-Term Memory 
for classification. Hyperparameters were tuned using Hybrid 
Arithmetic Dolphin Swarm Optimization.  

Figure 1. Pathogenesis of cervical cancer 

Ganguly et al. [14] combined convolutional neural networks, 
clustering, and pseudo-labeling, effectively detected and 
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classified cervical cancer using images from the ICAR-WHO 
dataset. It addressed challenges related to limited labeling and 
dataset availability, demonstrating promising results for early 
diagnosis and treatment planning. Xia et al. [15] proposed 
SPFNet, a novel network structure for cervical cancer cell 
detection. It used different combination strategies and head 
components, and incorporated data preprocessing techniques. 
Experimental results demonstrated its superior performance in 
detecting cervical cancer cells, potentially reducing the 
workload of doctors and enhancing the accuracy of cervical 
cancer diagnosis. Ghoneim et al. [16] proposed CNN-ELM-
based system which effectively detected and classified 
cervical cancer cells, achieving high accuracy rates on the 
Herlev database. It utilized deep-learned features extracted 
through transfer learning and fine-tuning, and benefitted from 
the efficiency of the Extreme Learning Machine (ELM) 
classifier. Fan et al. [17] proposed CAM-VT framework, 
combining Conjugated Attention Mechanism and Visual 
Transformer, effectively identified cervical cancer nest images. 
It outperformed other deep learning models and demonstrated 
strong performance in both ablation and extended experiments, 
highlighting its potential for practical clinical application in 
cervical cancer screening. Habtemariam et al. [18] proposed a 
deep learning-based system to classify cervix types and 
diagnose cervical cancer. A lightweight MobileNetv2-
YOLOv3 model was used for region of interest (ROI) 
extraction, while EfficientNetB0 models were used for cervix 
type and cervical cancer classification. Tanimu et al. [19] 
employed a decision tree classifier to predict cervical cancer 
outcomes based on risk factors. Recursive Feature Elimination 
(RFE) and Least Absolute Shrinkage and Selection Operator 
(LASSO) were used to select the most significant features, 
while SMOTETomek addressed data imbalance and missing 
values. With an accuracy of 98.72% and a sensitivity of 100%, 
the model effectively predicted cervical cancer outcomes. 
Feng et al. [20] developed the CT-YOLOv5 model to enhance 
cervical lesion detection by improving the YOLOv5s 
algorithm with transformers and a Convolutional Block 
Attention Module (CBAM). Using PANet and CBAM for 
refined feature extraction, the model achieved precision, recall, 
and mAP scores of 93.97%, 92.94%, and 92.8%, respectively. 
CT-YOLOv5 outperformed models like SSD and YOLOv5, 
aiding in accurate identification of affected areas and disease 
severity in cervical images, thereby advancing cervical cancer 
detection. Yi et al. [21] introduced the Multi-scale Window 
Transformer (MWT) to improve cervical cytopathology image 
recognition, aiming to address the challenge of manually 
intensive cervical cancer screenings. The MWT incorporated 
multi-scale window multi-head self-attention (MW-MSA) to 
extract local and integrated cell features enhancing feature 
interaction without needing whole-image self-attention. By 
using convolutional feed-forward networks within a pyramid 
architecture, the model achieved efficient and accurate 
representation. Tested on large datasets with over 360,000 
images across two- and four-category classifications, the 
MWT outperformed both general and specialized 
cytopathology classifiers. 

The aim of this research is to develop and assess an 
innovative deep learning architecture, the Squeeze-and-
Excitation Attention-Guided Hybrid Network, designed to 
enhance cervical cancer classification from Pap smear images. 
This study integrates a sophisticated Squeeze-and-Excitation 
attention mechanism with a hybrid convolutional neural 
network and recurrent neural network framework to tackle 

challenges such as image variability and subtle abnormalities. 
By refining the model’s ability to focus on critical features and 
capture complex patterns, the research aims to demonstrate 
that SE-AG-HN significantly improves classification accuracy 
over current methods, ultimately offering a more effective tool 
for cervical cancer screening and diagnosis. The key 
contributions are: 
• SE attention mechanism recalibrates feature channels

which improves the model's ability to focus on critical
regions within Pap smear images and accurately
distinguish between cervical cancer and other conditions.

• The CNN-RNN hybrid combines convolutional layers for
spatial feature extraction with LSTM layers for sequential
pattern analysis, improving classification accuracy and
robustness.

This paper is organized into five sections. The Introduction 
defines cervical cancer, explores its symptoms and highlights 
the need for improved diagnostic tools. It introduces the 
Squeeze-and-Excitation Attention-Guided Hybrid Network, a 
novel deep learning architecture designed to enhance cervical 
cancer classification from Pap smear images by addressing 
challenges like image variability and subtle abnormalities. The 
Literature Review examines recent research and existing 
methods for cervical cancer detection using Pap smear images, 
discussing the limitations of current approaches and the need 
for advanced models. The Methodology section explains the 
Squeeze-and-Excitation attention module and the hybrid 
CNN-RNN structure. It covers preprocessing, normalization, 
and feature extraction techniques and describes the model 
training process, including loss functions and evaluation 
metrics. In the Results and Analysis section, experimental 
results are presented, demonstrating the model’s superior 
performance compared to other methods. The analysis 
includes strengths, limitations, and performance metrics. 
Finally, the Conclusion summarizes the key findings, 
evaluates the model’s effectiveness, and suggests areas for 
future research and potential improvements to further enhance 
diagnostic accuracy.  

3. METHODOLOGY

The proposed SE-AG-HN method integrates a Squeeze-
and-Excitation attention mechanism with a hybrid 
convolutional neural network and recurrent neural network 
architecture to enhance cervical cancer classification from Pap 
smear images. The model begins by applying a series of 
convolutional layers, interspersed with max-pooling, to extract 
hierarchical spatial features from the preprocessed input 
images. The SE attention mechanism is then utilized to refine 
these features by recalibrating the importance of each channel. 
The refined feature maps are subsequently processed by an 
LSTM layer, which captures sequential dependencies within 
the spatial representations. This is followed by fully connected 
layers that further transform the features, culminating in a final 
dense layer with a softmax activation function that produces a 
multiclass classification outcome, indicating three classes 
cervical cancer, pre cervical cancer and noncervical cancer. 
The model's training process employs the Adam optimization 
algorithm and uses categorical cross-entropy to measure the 
difference between the model's predictions and the actual 
labels. 

Figure 2 depicts the architecture of the Squeeze-and-
Excitation Attention-Guided Hybrid Network for classifying 
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Pap smear images into Normal, Abnormal, and Pre-Cancer 
categories. The diagram shows the SE-AG-HN architecture 
for cervical cancer classification using Pap smear images. It 
extracts features through convolutional layers, refines them 
with a Squeeze-and-Excitation block, and captures sequential 
dependencies using an LSTM layer. The final classification 
into Normal, Abnormal, and Pre-Cancer categories is done 
through fully connected layer, combining spatial and 
sequential information for improved accuracy. 

Figure 2. Architecture of the Squeeze-and-Excitation 
Attention-Guided Hybrid Network 

3.1 Preprocessing 

3.1.1 Image resizing 
To ensure consistency across the dataset and compatibility 

with the input requirements of the neural network, all Pap 
smear images are resized to a uniform dimension of 128x128 
pixels. This resizing standardizes the input size, allowing the 
model to process each image efficiently while maintaining the 
essential features required for accurate classification. 

3.1.2 Adaptive Histogram Equalization (CLAHE) 
After resizing the images, a technique called Adaptive 

Histogram Equalization (CLAHE) is used to improve the 
image contrast, making it easier to distinguish between 
different features. Unlike standard histogram equalization, 
CLAHE operates on small regions (tiles) within the image, 
adjusting the contrast locally to highlight subtle differences in 
tissue structures. This localized contrast enhancement is 
particularly effective in Pap smear images, where variations in 
cell morphology and texture are critical for identifying 
cancerous and non-cancerous regions. CLAHE also prevents 
over-amplification of noise by limiting contrast in 
homogeneous areas, ensuring that important features are 
emphasized without introducing artifacts. 

3.1.3 Normalization 
After contrast enhancement, the pixel values of the images 

are normalized to a common range, typically [0, 1]. This 
normalization process involves dividing the pixel values by 
255, which is the maximum value in an 8-bit grayscale image. 

Normalization helps to stabilize the training process by 
ensuring that the inputs to the neural network have a consistent 
scale, allowing for faster convergence and improved model 
performance. 

3.2 SE attention mechanism 

The SE attention block consists of two main operations: 
squeeze and excitation. During the squeeze phase, global 
average pooling compresses the spatial dimensions of the 
input feature maps into a channel descriptor vector of size C 
(the number of channels in the input tensor), where each value 
represents global information about its corresponding channel. 
This vector is reshaped to have dimensions (1, 1, C) to match 
the input tensor format for further processing. 

During the excitation phase, the reshaped vector is 
processed by two dense layers. The first dense layer reduces 
the dimensionality of the vector by a factor determined by the 
reduction ratio, typically set to 16. This reduces the vector to 
a size of C // reduction_ratio, allowing the network to learn a 
more compact representation of the channels. The ReLU 
activation function is employed to introduce non-linearity into 
the model, enabling it to learn more complex relationships 
within the data. The second fully connected layer in the model 
reshapes the data back to its original number of channels (C). 
Following this, a sigmoid activation function is applied, 
generating channel-wise attention weights. These weights, 
ranging from 0 to 1, indicate the significance of each channel 
in the overall image information.  

Finally, these attention weights are multiplied element-wise 
with the original feature maps to recalibrate the channels, 
emphasizing the more informative ones and suppressing less 
relevant ones. This channel recalibration enhances the 
network’s focus on critical features, which is particularly 
useful for tasks like cervical cancer classification where 
identifying fine-grained patterns in medical images is essential 
for accurate diagnosis.  

The SE block improves feature map by recalibrating 
channel-wise weights which dynamically adjusts the 
importance of each channel. Given an input tensor X with 
dimensions (H, W, C), where C represents the number of 
channels, H represent the height of the feature map and W be 
the width of the feature map. The SE block works in the 
following manner: 

(1) Feature Map: Begin with the feature map obtained
from a convolutional layer. 

(2) Squeeze Operation:
• Global Average Pooling: Compute the channel-wise

statistics by averaging over the spatial dimensions: 

𝑧𝑧𝑐𝑐 =
1

𝐻𝐻 × 𝑊𝑊
��𝑋𝑋ℎ,𝑤𝑤,𝑐𝑐

𝐻𝐻

𝑤𝑤=1

𝐻𝐻

ℎ=1

 (1) 

This results in a vector z of shape (C), where each element 
𝑧𝑧𝑐𝑐  represents the global average of the feature map across 
spatial dimensions for each channel. 
• Reshape: Reshape this vector z into the shape (1, 1, C).

This reshaping ensures that z can be used for channel-wise 
scaling. The reshaped tensor has a shape of (1, 1, 128), which 
matches the dimensions of the feature map X for the 
subsequent operations. 

(3) Excitation Operation:
• Fully Connected Network: Pass the reshaped vector z

through a fully connected network to compute channel-wise 
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attention weights. This involves: 
• Dense Layer 1: Apply a dense layer with weights 𝑊𝑊1 and

a ReLU activation function: 

𝑧𝑧′ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑊𝑊1 ∙ 𝑧𝑧) (2) 

• Dense Layer 2: Apply another dense layer with weights
𝑊𝑊2 and a sigmoid activation function: 

𝑠𝑠 = 𝜎𝜎(𝑊𝑊2 ∙ 𝑧𝑧′) (3) 

The result 𝑠𝑠 is a vector of attention weights, indicating the 
importance of each channel. 
• Multiply with Feature Map: Scaling the original feature

map 𝑋𝑋 by these attention weights 𝑠𝑠: 

𝑋𝑋𝑆𝑆𝑆𝑆 = 𝑋𝑋 ∙ 𝑠𝑠 (4) 

This produces the final SE-enhanced feature map 𝑋𝑋𝑆𝑆𝑆𝑆 , 
where each channel of the feature map has been recalibrated 
according to its importance. 

Figure 3. Squeeze-and-Excitation attention architecture 

Figure 3 shows the Squeeze-and-Excitation Attention 
architecture processes the input feature map by applying 
global average pooling and reshaping in the Squeeze phase. In 
the Excitation phase, it uses fully connected networks to 
compute channel-wise attention weights and multiplies these 
weights with the original feature map to produce the final SE-
enhanced feature map. 

3.3 SE-AG-HN 

The SE-AG-HN model is designed for multiclass cervical 
cancer classification by integrating convolutional neural 
networks (CNNs) with recurrent neural networks (RNNs) and 
fully connected network. SE attention mechanism in SE-AG-
HN model significantly enhances performance by 
recalibrating feature maps through channel-wise attention. It 
allows the model to focus on most significant features while 
suppressing less relevant ones. This is especially beneficial in 
identifying subtle and localized patterns which is crucial for 
accurate classification. By dynamically adjusting the feature 
importance, the SE block ensures the model emphasizes key 

discriminative features, thereby boosting accuracy and 
robustness. 

The hybrid network architecture integrates CNNs and 
RNNs networks to leverage their complementary strengths. 
CNNs capture spatial features and texture patterns from image 
data, while RNNs effectively model sequential dependencies 
such as morphological changes across image regions. This 
enables the model to capture both fine grained local details and 
broader contextual relationships which are essential for 
reliable medical diagnoses. Inclusion of SE block further 
enhances this hybrid structure by refining feature selection, 
enabling better generalization to diverse and complex datasets. 
This integration of precise spatial and temporal features along 
with adaptive feature recalibration, makes SE-AG-HN model 
a more reliable and innovative approach for cervical cancer 
classification. 

The model starts with five convolutional layers, using 32, 
64, 128, 256, and 512 filters respectively, each with a kernel 
size of (3, 3) and ReLU activation functions. MaxPooling2D 
layers with a pool size of (2, 2) are applied after some 
convolutional layers to reduce spatial dimensions. Following 
the convolutional layers, a Squeeze-and-Excitation (SE) block 
recalibrates feature importance by emphasizing the most 
relevant features. After this, GlobalAveragePooling2D 
compresses the spatial dimensions into a single feature vector. 
This vector is then reshaped to (1, 512), preparing it for the 
LSTM layer. The LSTM layer with 64 units processes this 
reshaped vector to capture sequential dependencies and 
patterns. This is followed by two fully connected layers with 
128 and 64 neurons, respectively, to further refine the features. 
The final output is a Dense layer with 3 neurons and a SoftMax 
activation function, providing probabilities for three classes 
(non-cervical cancer, pre-cervical cancer, and cervical cancer). 

The CNN component extracts spatial features with multiple 
convolutional layers followed by max-pooling layers: 

(1) Convolutional Layers: For a convolutional layer with
k filters, kernel size (kh, kw), and ReLU activation function: 

𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑊𝑊 ∗ 𝑋𝑋 + 𝑏𝑏)  (5) 

where, W represents the filter weight matrix, ∗ signifies the 
convolution operation and b denotes the bias term. 

(2) Max-Pooling Layers: Apply max-pooling with pool
size (2, 2): 

𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖, 𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋(2𝑖𝑖 + 𝑝𝑝, 2𝑗𝑗 + 𝑞𝑞) (6) 

where, (p,q) are the indices within the pooling window. 
After convolutional and SE block processing, global 

average pooling is applied: 

𝑧𝑧 =
1

𝐻𝐻 × 𝑊𝑊
��𝑋𝑋ℎ,𝑤𝑤

𝐻𝐻

𝑤𝑤=1

𝐻𝐻

ℎ=1

 (7) 

Reshape 𝑧𝑧 to fit the LSTM input shape (1, −1). 
(3) LSTM Layer: The LSTM layer with 64 units processes

the reshaped feature vector. The LSTM's output at time step t, 
denoted as ℎ𝑡𝑡, is defined as follows: 

ℎ𝑡𝑡 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑡𝑡 , ℎ𝑡𝑡−1) (8) 

where, 𝑥𝑥𝑡𝑡  is the input at time t and ℎ𝑡𝑡−1  is the hidden state 
from the previous time step.  
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(4) Fully Connected Network: After the LSTM layer, the 
feature vector is passed through a fully connected network 
consisting of two dense layers before reaching the final output 
layer: 

The initial dense layer comprises 128 neurons, each 
employing a ReLU activation function: 
 

ℎ1 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑤𝑤1 ∙ ℎ + 𝑏𝑏1) (9) 
 

The second dense layer has 64 neurons, also with a ReLU 
activation function: 
 

ℎ2 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑤𝑤2 ∙ ℎ1 + 𝑏𝑏2)  (10) 
 
where, 𝑤𝑤1 and 𝑏𝑏1 are the weights and biases for the first dense 
layer, 𝑤𝑤2 and 𝑏𝑏2 are for the second dense layer. 
 

Table 1. Input and output shape for each layer in the 
proposed SE-AG-HN 

 
Layer Input Shape Filters Output Shape 

Conv 2D  (128, 128, 3) 32 (128, 128, 32) 
Conv 2D  (128, 128, 32) 64 (128, 128, 64) 

Maxpooling 2D  (128, 128, 64) - (64, 64, 64) 
Conv 2D  (64, 64, 64) 128 (64, 64, 128) 

Globalaveragepooling 
2D  (64, 64, 128) - (128) 

Reshape (128) - (1, 1, 128) 
Dense  (1, 1, 128) - (1, 1, 8) 
Dense  (1, 1, 8) - (1, 1, 128) 

Multiply (1, 1, 128) x (64, 
64, 128) - (64, 64, 128) 

Conv 2D  (64, 64, 128) 256 (64, 64, 256) 
Conv 2D  (64, 64, 256) 512 (64, 64, 512) 

Maxpooling 2D  (64, 64, 512) - (32, 32, 512) 
Globalaveragepooling 

2D  (32, 32, 512) - (512) 

Reshape (512) - (1, 512) 
LSTM (1, 512) - (64) 
Dense  (64) - (128) 
Dense  (128) - (64) 
Dense  (64) - (3) 

 
Output Layer: The final dense layer has 3 neurons 

corresponding to the three classes, with a softmax activation 
function to produce the multiclass output: 
 

𝑦𝑦� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤3 ∙ ℎ2 + 𝑏𝑏3) (11) 
 
where, 𝑤𝑤3  and 𝑏𝑏3  are the weights and biases of the output 
layer, and 𝑦𝑦� represents the predicted probability distribution 
across the three classes. The model is configured for training 
with the Adam optimization algorithm and uses categorical 
cross-entropy to measure the discrepancy between predicted 
and actual class probabilities: 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −∑ 𝑦𝑦𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑐𝑐� )𝐶𝐶
𝑐𝑐=1   (12) 

 
where, 𝑦𝑦𝑐𝑐 is the true label and 𝑦𝑦𝑐𝑐�  is the predicted probability 
for class c. Accuracy is used as the evaluation metric to 
measure the model's performance. Table 1 represents the input 
and output shape for each layer in the proposed hybrid network 
(SE-AG-HN). 
 

Algorithm – SE-AG-HN () 
1. Preprocessing 

   Input: Pap smear image I 
   Output: Preprocessed image 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 
   1.1. Image Resizing: 
       Resize image I to a fixed size (128, 128): 
 

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐼𝐼, (128,128)) 
 
   1.2.  Adaptive Histogram Equalization (CLAHE): 
       Apply CLAHE to enhance local contrast of 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 : 
 

𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 
 
   1.3. Normalization: 
       Normalize pixel values of 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒  to the range [0, 1]: 
 

𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥, 𝑦𝑦) =  
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒(𝑥𝑥, 𝑦𝑦)

255
 

 
       Output Image: 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  
2. Model Architecture 
   2.1. Convolutional Layers: 
       Apply 2D convolution with filters W and bias b: 
 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑊𝑊, 𝑏𝑏) + 𝑏𝑏 
 
       Apply ReLU activation function: 
 

𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
 
   2.2. Squeeze-and-Excitation (SE) Block: 
       Squeeze: Global average pooling: 
 

𝑆𝑆 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2𝐷𝐷(𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 
 
       Excitation: 
 

𝐸𝐸1 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑆𝑆,
𝐶𝐶
𝑅𝑅

,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) 
𝐸𝐸2 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐸𝐸1,𝐶𝐶, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

 
       Recalibrate: Multiply attention weights 𝐸𝐸2  with 

feature maps: 
 

𝐻𝐻𝑆𝑆𝑆𝑆 = 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝐸𝐸2 
 
   2.3. Max-Pooling: 
       Apply MaxPooling to reduce spatial dimensions: 
 

𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝑆𝑆𝑆𝑆) 
 
   2.4. Flatten and Reshape for RNN Processing: 
       Flatten the output from the last layer: 
 

𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2𝐷𝐷(𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 
 
       Reshape for RNN input: 
 

𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , (1,−1)) 
 
   2.5. Recurrent Layer (LSTM): 
       Apply LSTM to process the sequential data: 
 

𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 64) 
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   2.6. Dense Layers: 
       Apply Dense layers: 
 

𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 , 128,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) 
𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 , 64,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) 

 
   2.7. Output Layer: 
       Apply final Dense layer for classification: 
 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2, 3, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 
 
       Output: Predicted class probabilities for Cervical 

Cancer, Non-Cervical Cancer, and Pre-Cervical Cancer. 
3. Training 
   3.1. Loss Function: 
       Use categorical cross-entropy loss to measure the 

discrepancy between predicted probabilities 𝑦𝑦𝑐𝑐�  and actual 
labels y: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −�𝑦𝑦𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑐𝑐� )
3

𝑐𝑐=1

 

where, 𝑦𝑦𝑐𝑐 is the true label for class c and 𝑦𝑦𝑐𝑐�  is the predicted 
probability for class c. 

   3.2. Optimization: 
       Update model parameters using Adam optimizer: 
 

𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜃𝜃 − 𝜂𝜂 ⋅ 𝛻𝛻𝛻𝛻𝛻𝛻 
 
     where, 𝜂𝜂 is the learning rate and 𝛻𝛻𝛻𝛻𝛻𝛻 is the gradient 

of the loss function with respect to the parameters 𝜃𝜃. 
   3.3. Iteration: 
       Repeat training for a specified number of epochs or 

until convergence criteria are met. 
4. Evaluation 
   4.1. Prediction on Test Data: 
       Predict class probabilities for test images 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: 
 

𝑦𝑦�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝜃𝜃) 
 
   4.2. Performance Assessment: 
       Assess model performance using metrics such as 

accuracy, precision, recall, and F1 score. 
 
3.4 Cervical cancer classification 

 
Cervical Cancer Classification from pap smear images 

involve meticulous preprocessing pipeline followed by the 
application of a hybrid convolutional neural network and 
recurrent neural network architecture. Initially, the raw Pap 
smear images are resized to a uniform dimension of 128x128 
pixels to standardize input size across the dataset. 
Subsequently, Adaptive Histogram Equalization (CLAHE) is 
employed to enhance the local contrast of the images, 
improving the visibility of critical features such as cell 
boundaries and morphological details. This contrast-enhanced 
image is then normalized by scaling pixel values to the range 
[0, 1], ensuring consistent input data for the neural network. 

Once preprocessed, the image is passed through the hybrid 
network. The CNN component extracts hierarchical spatial 
features through a series of convolutional and pooling layers, 
which are further refined using a Squeeze-and-Excitation (SE) 
block to emphasize significant features. The output from the 
CNN is then flattened and reshaped into a sequence suitable 

for the LSTM layer of the RNN, which captures temporal 
dependencies and patterns across the feature dimensions. 
Subsequently, the fully connected network further refines the 
features, culminating in a final dense layer with a softmax 
activation function that outputs a probability distribution 
across the three classes. Through this hybrid approach, the 
network learns to classify each image based on its learned 
features and patterns, distinguishing between cervical cancer, 
non-cervical cancer and pre-cervical cancer with high 
accuracy.  

 
 

4. EXPERIMENTAL RESULTS AND ANALYSIS 
 

4.1 Dataset description 
 
The dataset comprises three distinct collections of cytology 

images used for classifying Pap smear and liquid-based 
cytology (LBC) samples. The Herlev Pap Smear Dataset 
contains 917 single-cell images, categorized into 7 classes. 
Among these, 3 classes are normal, Class 1 (intermediate 
squamous epithelial) with 70 images, Class 2 (columnar 
epithelial) with 98 images, and Class 3 (superficial squamous 
epithelial) with 74 images. The 4 abnormal classes include 
Class 4 (mild squamous non-keratinizing dysplasia) with 182 
images, Class 5 (squamous cell carcinoma in situ intermediate) 
with 150 images, Class 6 (moderate squamous non-
keratinizing dysplasia) with 146 images, and Class 7 (severe 
squamous non-keratinizing dysplasia) with 197 images.  

The Mendeley Liquid-Based Cytology (LBC) Dataset 
includes 963 whole slide images divided into 4 classes. Class 
1, "negative for intraepithelial malignancy," is normal and 
consists of 613 images. Class 2, "low-grade squamous 
intraepithelial lesion (LSIL)," is abnormal with 163 images. 
Class 3, "high-grade squamous intraepithelial lesion (HSIL)," 
is abnormal and contains 113 images. Class 4, "squamous cell 
carcinoma (SCC)," is abnormal with 74 images. The 
SIPaKMeD Pap Smear Dataset features 4049 images of 
isolated cells extracted from 966 whole slide images, spanning 
5 classes. Class 1, "superficial and intermediate," and Class 2, 
"parabasal," are normal with 831 and 787 images respectively. 
Class 3, "koilocytotic," and Class 4, "dyskeratotic," are 
abnormal with 825 and 813 images respectively. Finally, Class 
5, "metaplastic," is categorized as benign and includes 793 
images. 

The combined dataset integrates images from the three 
distinct collections, offering a comprehensive resource for 
classifying Pap smear and liquid-based cytology samples into 
three main categories: normal, abnormal, and benign. These 
datasets include various image type such as single-cell images 
and whole slide images which is captured under different 
acquisition conditions. This provides an initial indication of 
the model's robustness. The aggregated dataset consists of 
5,929 images, including 2473 non-cervical cancer images, 
2663 cervical cancer images and 793 benign images, which 
represent non-cancerous but potentially precancerous 
conditions. This extensive dataset provides a robust basis for 
analyzing and improving classification models in cytology. 

Table 2 shows sample images of three classes these datasets 
offer a wide range of examples for training and testing models 
using various types of cell images which helps in advancing 
diagnostic tools for early detection and classification of 
abnormal and normal cell types in cytology. The diversity in 
classes and image types supports the development of strong 
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models capable of handling real-world variations in 
cytological data. 

 
Table 2. Sample images of the three classes 

 
Normal Pre Cancer Abnormal 

   

   

   
 

4.2 Experimental setup 
 
The research was carried out on a workstation equipped 

with an Intel i5-4300U Processor clocked at 1.90 GHz, 8 GB 
of RAM, and a 64-bit operating system with x64-based 
architecture, running the Microsoft Windows 10 Pro operating 
system. Python implementation code was written using the 
Anaconda integrated development environment (IDE), with 
TensorFlow and Keras libraries utilized for model 
implementation. 

 
4.3 Performance analysis 
 

To ensure a thorough evaluation of the cervical cancer 
classification, a 7-fold cross-validation strategy is applied to 
the dataset of 5,929 images from three collections (Herlev Pap 
Smear, Mendeley Liquid-Based Cytology, and SIPaKMeD 
Pap Smear datasets). The dataset is split into seven folds, with 
each containing about 847 images. Stratified sampling is used 
to maintain balanced class representation across all folds. The 
SE-AG-HN model is trained and tested iteratively. Each fold 
serves as the test set once while the model is trained on the 
combined data of the remaining six folds totalling 
approximately 5,082 images. Performance metrics are 
assessed on the unseen fold during each iteration. This 
approach, involving the averaging of metrics across all folds, 
provides a more reliable assessment of the model's 
performance by accounting for the variability inherent in 
different data splits and offering a more robust evaluation of 
its ability to generalize to new, unseen data. 

 
4.4 Result analysis 

 
The proposed method utilizes a deep learning architecture 

called the Squeeze-and-Excitation Attention-Guided Hybrid 
Network to classify cervical cancer from cytology images. The 
model is designed to effectively handle the complexities of 
Pap smear and liquid-based cytology samples by integrating 
three key modules, CNN module for extracting feature maps, 
S&E module for recalibrating feature importance, and RNN 

module for final classification. Preprocessing steps, including 
image resizing, contrast enhancement using Adaptive 
Histogram Equalization, and normalization, prepare the 
images for analysis. The CNN module captures spatial features, 
while the SE module enhances the model's focus on relevant 
features, and the RNN module captures sequential 
dependencies in the data. The model is compiled with the 
Adam optimizer, categorical cross entropy as the loss function, 
and accuracy as the evaluation metric. Training typically 
involves running the model for 20 epochs, though this adjusted 
based on performance. Learning rate provides balance 
between stability and convergence speed and it is set to 0.001. 
Table 3 shows the hyperparameters of the proposed SE-AG-
HN model. 

 
Table 3. Hyperparameters of proposed SE-AG-HN model 
 

Number of Epochs 20 
Batch size 32 
Optimizer Adam 
Activation Relu 

Learning Rate 0.001 
Loss Categorical cross entropy 

 
Table 4. Training and testing metrics of the proposed model 

 
Epochs Training 

Loss 
Testing 

Loss 
Training 
Accuracy 

Testing 
Accuracy 

1 0.215 0.235 0.956 0.945 
2 0.176 0.215 0.969 0.952 
3 0.238 0.21 0.951 0.954 
4 0.245 0.268 0.95 0.938 
5 0.253 0.205 0.949 0.955 
6 0.221 0.168 0.953 0.96 
7 0.125 0.213 0.93 0.952 
8 0.182 0.275 0.968 0.934 
9 0.205 0.192 0.958 0.965 

10 0.174 0.203 0.965 0.956 
Overall 0.2034 0.2184 0.9549 0.9511 

 
Table 4 provides a summary of the training and testing 

metrics across 10 epochs for the proposed model. The training 
loss decreases from 0.215 in the first epoch to 0.174 in the 
tenth epoch, with an average of 0.2034, indicating that the 
model is effectively learning and reducing errors. The testing 
loss also shows a general decrease with some fluctuations, 
starting at 0.235 and ending at 0.203, averaging 0.2184, which 
suggests that the model is improving its ability to generalize to 
unseen data. Training accuracy increases from 95.6% in the 
first epoch to 96.5% in the tenth epoch, with an average of 
95.49%, reflecting better performance on the training set over 
time. Similarly, testing accuracy rises from 94.5% in the first 
epoch to 95.6% in the tenth epoch, with an average of 95.11%, 
demonstrating improved performance on unseen data. The 
model also exhibits very high TPR at low FPR values for all 
classes, which indicates strong performance in identifying true 
positives while maintaining minimal false positives. As the 
FPR increases slightly ranging from 0 to 0.091 for class 0, 
0.078 for class 1, and 0.038 for class 2, the TPR rises 
significantly, showing high sensitivity while keeping false 
positives low. The similarity in FPR and TPR patterns across 
the different classes suggests that the model performs 
consistently. 

Performance of the proposed method is compared with three 
existing works, includes work of Pacal and Kılıcarslan [1], 
Habtemariam et al. [18] and Tanimu et al. [19]. Pacal and 
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Kılıcarslan [1] compared the performance of 40 CNN-based 
models and 20 ViT-based models on the SIPaKMeD pap-
smear dataset. Data augmentation and ensemble learning were 
used to improve performance. They demonstrated ViT-based 
model and it required higher computational resources when 
comparing to CNN models. Habtemariam et al. [18] trained a 
MobileNetv2-YOLOv3 model for ROI extraction from cervix 
images and used pre-trained EfficientNetB0 models for cervix 
type and cervical cancer classification. This lightweight model 

structure was advantageous for the deployment in resource 
constrained settings but had limitations in capturing subtle 
image variations due to its relatively shallow architecture. 
Tanimu et al. [19] employed a decision tree to predict cervical 
cancer outcomes, selecting important features using RFE and 
LASSO and addressing data imbalances with SMOTE Tomek. 
While this method achieves high accuracy in structured 
datasets, its reliance on hand-crafted features limited its 
adaptability to complex or unstructured image data. 

Table 5. Comparative analysis of performance measures obtained by proposed work and the works of Pacal and Kılıcarslan [1], 
Habtemariam et al. [18] and Tanimu et al. [19] 

V
al
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n 
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ts

 Proposed method Pacal and Kılıcarslan [1] Habtemariam et al. [18] Tanimu et al. [19] 
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1 0.945 0.048 0.017 0.944 0.886 0.052 0.034 0.883 0.916 0.059 0.078 0.798 0.787 0.075 0.081 0.768 
2 0.934 0.025 0.002 0.925 0.892 0.041 0.045 0.927 0.866 0.075 0.064 0.824 0.798 0.085 0.079 0.765 
3 0.962 0.038 0.032 0.942 0.918 0.064 0.055 0.879 0.899 0.085 0.068 0.806 0.841 0.063 0.082 0.781 
4 0.978 0.019 0.015 0.937 0.932 0.069 0.059 0.895 0.905 0.073 0.071 0.807 0.869 0.059 0.087 0.791 
5 0.981 0.025 0.021 0.949 0.927 0.045 0.063 0.913 0.875 0.052 0.053 0.825 0.853 0.060 0.095 0.779 
6 0.984 0.008 0.027 0.945 0.919 0.038 0.041 0.861 0.854 0.066 0.054 0.819 0.802 0.095 0.098 0.771 
7 0.959 0.028 0.011 0.937 0.890 0.054 0.038 0.906 0.849 0.057 0.062 0.786 0.774 0.086 0.086 0.759 

Overall 0.963 0.027 0.018 0.940 0.909 0.052 0.048 0.894 0.880 0.067 0.064 0.809 0.818 0.075 0.087 0.773 

Table 6. Comparative analysis of validation sets among proposed work and existing works of Pacal and Kılıcarslan [1], 
Habtemariam et al. [18] and Tanimu et al. [19] 
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1 0.945 0.944 0.945 0.972 0.958 0.957 0.946 0.889 0.906 0.946 0.856 0.761 0.857 0.902 0.873 0.789 0.755 0.876 0.842 0.748 
2 0.934 0.925 0.929 0.970 0.952 0.936 0.912 0.892 0.892 0.938 0.882 0.740 0.862 0.854 0.884 0.749 0.721 0.856 0.851 0.782 
3 0.962 0.942 0.952 0.959 0.961 0.896 0.897 0.946 0.901 0.933 0.892 0.798 0.891 0.849 0.908 0.812 0.644 0.791 0.802 0.849 
4 0.978 0.937 0.958 0.934 0.956 0.928 0.861 0.918 0.926 0.928 0.887 0.892 0.945 0.824 0.914 0.795 0.679 0.768 0.846 0.828 
5 0.981 0.949 0.965 0.930 0.955 0.883 0.923 0.867 0.877 0.908 0.919 0.876 0.856 0.878 0.902 0.842 0.713 0.881 0.799 0.816 
6 0.975 0.933 0.944 0.962 0.968 0.978 0.886 0.901 0.923 0.927 0.911 0.857 0.932 0.861 0.884 0.837 0.694 0.777 0.846 0.799 
7 0.966 0.924 0.969 0.944 0.945 0.961 0.908 0.899 0.905 0.918 0.882 0.864 0.911 0.841 0.862 0.806 0.782 0.798 0.789 0.808 

Overall 0.963 0.936 0.952 0.953 0.956 0.934 0.905 0.902 0.904 0.923 0.890 0.827 0.893 0.858 0.890 0.804 0.713 0.821 0.825 0.804 

Table 7. Comparative analysis of different categories among proposed work and existing works of Pacal and Kılıcarslan [1], 
Habtemariam et al. [18] and Tanimu et al. [19] 

Classes 

Proposed method Pacal and Kılıcarslan [1] Habtemariam et al. [18] Tanimu et al. [19] 
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Normal 0.969 0.936 0.946 0.958 0.954 0.929 0.906 0.911 0.875 0.916 0.878 0.838 0.886 0.846 0.910 0.794 0.691 0.786 0.795 0.806 
Abnormal 0.964 0.925 0.958 0.947 0.951 0.938 0.919 0.893 0.914 0.945 0.882 0.827 0.903 0.869 0.876 0.801 0.709 0.846 0.841 0.789 
Pre-cancer 0.957 0.948 0.951 0.955 0.963 0.935 0.889 0.901 0.924 0.924 0.911 0.815 0.890 0.859 0.883 0.818 0.738 0.813 0.839 0.817 

Overall 0.963 0.936 0.952 0.953 0.956 0.934 0.905 0.902 0.904 0.923 0.890 0.827 0.893 0.858 0.890 0.804 0.713 0.821 0.825 0.804 

In contrast, proposed SE-AG-HN model integrates a hybrid 
CNN-RNN architecture with a Squeeze-and-Excitation (SE) 
block, enabling it to capture both spatial and sequential 
dependencies while adaptively focusing on critical image 
features. This capability provides a distinct advantage in 
handling subtle abnormalities and complex image variability 
inherent in cervical cancer datasets. The SE Block in our 
proposed SE-AG-HN model improved interpretability by 
automatically identifying and recalibrating the importance of 

image features. By emphasizing critical features such as cell 
boundaries, tissue textures, or morphological structures. SE 
block allows the model to focus on the most informative 
regions in the image. This process provides insight into which 
features most significantly impact the model's classification 
decisions, thereby enhancing transparency and offering a 
clearer understanding of how the model arrives at its 
conclusions. 

Table 5 shows the comparative analysis performance 
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measures obtained by the proposed work and the works of 
Pacal and Kılıcarslan [1], Habtemariam et al. [18] and Tanimu 
et al. [19]. across five validation sets using key metrics such as 
True Positive Rate (TPR), False Positive Rate (FPR), False 
Negative Rate (FNR), and True Negative Rate (TNR). These 
results suggest that the proposed method offers a competitive 
advantage in classification accuracy and reliability, 
particularly in achieving higher TPR and TNR values, making 
it a robust choice overall compared to the other methods. 

Table 6 shows the comparative analysis of validation sets 
among the proposed work and existing works of Pacal and 
Kılıcarslan [1], Habtemariam et al. [18] and Tanimu et al. [19]. 
The metrics assessed are Sensitivity, Specificity, Accuracy, 
Precision, and F1 Score. The proposed method consistently 
achieves high values in these metrics, with an overall accuracy 
of 94.98%, sensitivity of 96%, specificity of 93.94%, precision 
of 95.3%, and an F1 score of 95.64%. Table 7 shows the 
comparative analysis of different categories among the 
proposed work and existing works of Pacal and Kılıcarslan [1], 
Habtemariam et al. [18] and Tanimu et al. [19]. 

 

 
 

Figure 4. Graphical representation of training and testing 
accuracy of the proposed model 

 
Figure 4 shows the training and testing accuracy over 

epochs. The pink line represents training accuracy, starting at 
0.956, peaking at 0.969 in the second epoch, and ending at 
0.965 in the tenth epoch. The violet line represents testing 
accuracy, starting lower at 0.945, dipping to 0.938 around the 
fourth epoch, and peaking at 0.965 in the ninth epoch. Both 
accuracies fluctuate but remain high, with the second and ninth 
epochs showing the highest values. 

Figure 5 shows graphical representation of the training and 
testing loss of the proposed model over epochs. The blue line 
represents the training loss, which decreases from 0.215 in the 
first epoch to 0.125 by the seventh epoch and then slightly 
increases to 0.174 by the tenth epoch. The red line depicts the 
testing loss, starting at 0.235, reaching a minimum of 0.168 by 
the sixth epoch, peaking at 0.275 in the eighth epoch, and 
ending at 0.203 by the tenth epoch. Both losses generally 
decrease over time, with the testing loss showing more 
fluctuations. 

Based on the on the specificity and sensitivity values shown 
in Figure 6, the proposed method consistently achieves the 
highest values. It also achieves a remarkable 95.2% accuracy 
compared with other methods indicating strong overall 
performance. Figure 7 shows the graphical representation of 
TPR, FPR, FNR, and TNR obtained by the proposed work and 
the works of Pacal and Kılıcarslan [1], Habtemariam et al. [18] 

and Tanimu et al. [19]. Figure 8 shows the graphical 
representation of performance measures like sensitivity, 
specificity, accuracy, precision and f1 score obtained in 
different categories by the proposed work and the works of 
Pacal and Kılıcarslan [1], Habtemariam et al. [18] and Tanimu 
et al. [19]. 

 

 
 

Figure 5. Graphical representation of training and testing 
loss of the proposed model 

 

 
 

Figure 6. Graphical representation of performance obtained 
by the proposed work and the works of Pacal and Kılıcarslan 

[1], Habtemariam et al. [18] and Tanimu et al. [19] 
 

 
 

Figure 7. Graphical representation of TPR, FPR, FNR, TNR 
obtained by the proposed work and the works of Pacal and 
Kılıcarslan [1], Habtemariam et al. [18] and Tanimu et al. 

[19] 
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Figure 8. Graphical representation of performance obtained in different categories by the proposed work and the works of Pacal 

and Kılıcarslan [1], Habtemariam et al. [18] and Tanimu et al. [19] 
 

The proposed method outperforms other across all key 
performance metrics. It achieves the highest TPR of 0.963, 
indicating superior effectiveness in identifying positive cases. 
Additionally, it has the lowest FPR of 0.027 and FNR of 0.018, 
demonstrating fewer errors in classifying cases. The method 
also boasts a higher TNR of 0.94, reflecting better 
performance in correctly identifying negative cases. Overall, 
these metrics highlight the proposed method's robustness and 
reliability, making it a more effective approach for accurate 
classification. 
 
 
5. CONCLUSION 

 
The proposed method, a Squeeze-and-Excitation Attention-

Guided Hybrid Network effectively integrates a SE attention 
mechanism with a hybrid CNN and RNN architecture to 
enhance cervical cancer classification from Pap smear images. 
The SE attention mechanism recalibrates the importance of 
feature channels, allowing the model to focus on the most 
critical parts of the image, while the hybrid CNN-RNN 
architecture captures both spatial and sequential dependencies. 
This approach was applied to a Herlev Pap Smear Dataset, 
Mendeley Liquid-Based Cytology Dataset and SIPaKMeD 
Pap Smear Dataset, where it successfully identified patterns 
and features essential for distinguishing between cervical 
cancer, pre-cervical cancer, and non-cervical cancer. 

Compared to traditional methods, which often rely on either 
CNN or RNN architectures alone, this hybrid approach 
influences the strengths of both. The CNN component excels 
at extracting local features, while the RNN captures temporal 
and sequential relationships, providing a comprehensive 
understanding of the data. The incorporation of the SE 
attention mechanism further enhances the model’s ability to 
identify subtle yet crucial features, improving its classification 
accuracy. The experimental results demonstrated the 
effectiveness of this proposed method, with consistent 
improvements, showing a strong ability to correctly classify 
cervical cancer cases when compared to other methods. This 
would benefit the physicians to double their diagnostic 
accuracy. 

The proposed SE-AG-HN model's performance depends 
significantly on high-quality input images, as noise, blur or 
poor contrast can adversely affect the classification accuracy. 

Limited or homogeneous datasets may lead to overfitting and 
reduce the model's generalizability. While the model has been 
validated using Pap smear images, additional modifications 
may be needed to adapt it to other medical imaging modalities. 
Future work will focus on enhancing pre-processing 
techniques, increasing dataset diversity, integrating 
multimodal data, exploring advanced attention mechanisms, 
and optimizing the model’s architecture for improved 
efficiency, broader applicability, and better generalization 
using transfer and few-shot learning strategies. 
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