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Cervical cancer remains a significant global health burden, necessitating accurate and
efficient diagnostic tools. This paper proposes a novel deep learning architecture, the
Squeeze-and-Excitation ~Attention-Guided Hybrid Network (SE-AG-HN), for the
classification of cervical cancer from Pap smear images. The proposed method effectively
addresses the challenges posed by image variability and subtle abnormalities by integrating
Squeeze-and-Excitation (SE) attention and a hybrid convolutional neural network (CNN) -
recurrent neural network (RNN) structure. The SE attention module recalibrates feature
channels to enhance discriminative information, while the hybrid architecture leverages
both local and global contextual features. Experimental results on a benchmark cervical
cancer dataset demonstrate the superior performance of SE-AG-HN compared to state-of-
the-art methods, highlighting its potential as a valuable tool for cervical cancer screening

and diagnosis.

1. INTRODUCTION

Cervical cancer is a malignancy arising from the cervix and
remains a significant global health concern, especially in
developing regions. It arises primarily due to the persistent
infection of high-risk Human Papillomavirus (HPV) types,
such as 16 and 18. The progression of cervical cancer is often
insidious, with early stages typically asymptomatic. As the
disecase advances, symptoms may manifest as abnormal
vaginal bleeding, pelvic pain, and persistent vaginal discharge.
Identifying and treating cervical cancer early significantly
enhances the chances of successful treatment and better patient
outcomes. Traditional screening methods, such as Pap smears
and HPV testing, have been instrumental in reducing cervical
cancer incidence. However, these methods show limitations,
including subjectivity in Pap smear interpretation and the
potential for false negatives. Additionally, the accessibility
and affordability of these screening modalities remain
challenges in many regions. Figure 1 illustrates the
pathogenesis of cervical cancer, highlighting the role of HPV
infection, risk factors, prevention methods, symptoms, and
treatment options. This highlights the critical role of
vaccination against HPV, regular screening tests, and early
detection of cervical cancer in effectively preventing and
managing this disease.

To address these limitations, there has been a growing
interest in developing automated diagnostic systems based on
deep learning. Existing deep learning models have achieved
promising results in cervical cancer classification. However,
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these models often struggle with the variability in image
quality, subtle abnormalities, and the complex interplay of
different image features.

This study proposes a novel deep learning architecture, the
Squeeze-and-Excitation Attention-Guided Hybrid Network, to
overcome these challenges. By integrating Squeeze-and-
Excitation attention and a hybrid convolutional neural network
recurrent neural network structure, our model effectively
captures both local and global image features, enabling more
accurate and robust classification of cervical cancer from Pap
smear images. The SE attention module enhances the model's
ability to focus on discriminative image regions, while the
hybrid architecture leverages the strengths of both CNNs and
RNNSs for comprehensive feature extraction. By addressing the
limitations of existing methods, the proposed SE-AG-HN
model has the potential to improve cervical cancer screening
and diagnosis, leading to earlier detection, reduced mortality
rates, and improved patient outcomes.

2. LITERATURE SURVEY

Pacal and Kilicarslan [1] developed a robust cervical cancer
classification system using CNN and ViT models, tested on
the SIPaKMeD pap-smear dataset. The model employed data
augmentation and ensemble learning techniques, finding that
ViT models outperformed CNN models in diagnostic accuracy
suggesting potential clinical application for early and precise
cancer identification. Kalbhor and Shinde [2] investigated


https://orcid.org/0000-0003-2014-8363
https://orcid.org/0000-0003-2971-2987
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300116&domain=pdf

cervical cancer diagnosis using deep learning approaches
using pre-trained models as feature extractors combined with
machine learning algorithms, achieving 92.03% accuracy with
ResNet-50. Additionally, they applied transfer learning, with
Google Net fine-tuning yielding a classification accuracy of
96.01%. Kumari et al. [3] proposed an automated cervical
cancer classification system using a Deep Neural Network
(DNN) to address early-stage prediction challenges. The
method involved four stages of pre-processing, outlier
elimination, dimensionality reduction via  Principal
Component Analysis (PCA) and classification. The DNN
classifier achieved effective performance in distinguishing
normal from abnormal cervical cells. Youneszade et al. [4]
proposed a cervical cancer detection model using
convolutional neural networks and colposcopy images. It
examined the impact of increasing the number of classes on
model accuracy, which reached 99% during training but
dropped to 43.11% during testing. Cheng et al. [5] explored
the application of deep learning in cervical cancer image
processing discussing the workflow of image acquisition,
preprocessing, feature extraction, and target detection, with a
focus on CNN, generative adversarial networks (GANs) and
autoencoders. Talpur et al. [6] proposed DeepCervixNet, an
advanced deep learning model for cervical cancer detection in
Pap smear images. By enhancing ResNetlOl and
DenseNet169 with sequence and excitation blocks and using
ensemble learning, the model achieved an accuracy of 99.89%.
Bueno-Crespo et al. [7] developed a deep learning model for
cervical cancer classification, combining CNNs with the Grad-
CAM technique for explainability. The heatmap from Grad-
CAM was merged with the original image, with a 10%
intensity fusion proving most effective. This hybrid model
achieved an accuracy of 94%, aiding pathologists by
highlighting regions of interest for review.

Devaraj et al. [8] employed pre-trained models like
ResNet50V2, InceptionV3, Xception to cervical smear images
for cervical cancer prediction. This analysis validated with
cross-validation, showed ResNet50V2 achieving the highest
accuracy. Metrics used included accuracy, precision,
sensitivity (or recall), and F1-score, demonstrating that deep
learning can accurately classify cervical cancer, thereby
enhancing early diagnosis without the need for invasive
procedures. Mathivanan et al. [9] investigated the use of pre-
trained deep neural networks such as AlexNet, InceptionV3,
ResNet-101 and ResNet-152 for feature extraction in cervical
cancer detection. Their methodology combined these features
with various machine learning algorithms. ResNet-152
outperformed other models tested, achieving an accuracy of
98.08% on the SIPaKMeD dataset. This hybrid approach of
DL and ML aims to enhance cervical cancer classification and
detection efficiency. Tan et al. [10] developed deep learning
models for automated cervical cancer detection without
segmentation or custom features, using transfer learning with
13 pre-trained CNN models on Pap smear images.
Performance evaluation was conducted on the Herlev dataset,
in which DenseNet-201 achieved the best performance. Their
approach demonstrated good accuracy and efficiency,
requiring minimal computing time.

Tripathi et al. [11] investigated the classification of cervical
cancer using deep learning algorithms. The deep learning
method, ResNet-152 was applied to the SIPAKMED pap-
smear image dataset and achieved a classification accuracy of
94.89%. Deo et al. [12] proposed CerviFormer, a cross-
attention-based Transformer model, for cervical cancer
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classification in pap smear images. The model effectively
handled large-scale input data and achieved competitive
results on two publicly available datasets. It showed potential
improvement in early detection and treatment of cervical
cancer. Jeyshri and Kowsigan [13] proposed attention-based
model effectively segmented and classified cervical cancer in
biomedical images. It combined Multiscale ResUNet++ with
Fuzzy C-means Clustering for segmentation and Serial
Cascaded Residual Attention with Long Short-Term Memory
for classification. Hyperparameters were tuned using Hybrid
Arithmetic Dolphin Swarm Optimization.

[ Pathogenesis of Cervical Cancer ]
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Figure 1. Pathogenesis of cervical cancer

Ganguly et al. [14] combined convolutional neural networks,
clustering, and pseudo-labeling, effectively detected and



classified cervical cancer using images from the ICAR-WHO
dataset. It addressed challenges related to limited labeling and
dataset availability, demonstrating promising results for early
diagnosis and treatment planning. Xia et al. [15] proposed
SPFNet, a novel network structure for cervical cancer cell
detection. It used different combination strategies and head
components, and incorporated data preprocessing techniques.
Experimental results demonstrated its superior performance in
detecting cervical cancer cells, potentially reducing the
workload of doctors and enhancing the accuracy of cervical
cancer diagnosis. Ghoneim et al. [16] proposed CNN-ELM-
based system which effectively detected and classified
cervical cancer cells, achieving high accuracy rates on the
Herlev database. It utilized deep-learned features extracted
through transfer learning and fine-tuning, and benefitted from
the efficiency of the Extreme Learning Machine (ELM)
classifier. Fan et al. [17] proposed CAM-VT framework,
combining Conjugated Attention Mechanism and Visual
Transformer, effectively identified cervical cancer nest images.
It outperformed other deep learning models and demonstrated
strong performance in both ablation and extended experiments,
highlighting its potential for practical clinical application in
cervical cancer screening. Habtemariam et al. [18] proposed a
deep learning-based system to classify cervix types and
diagnose cervical cancer. A lightweight MobileNetv2-
YOLOv3 model was used for region of interest (ROI)
extraction, while EfficientNetBO models were used for cervix
type and cervical cancer classification. Tanimu et al. [19]
employed a decision tree classifier to predict cervical cancer
outcomes based on risk factors. Recursive Feature Elimination
(RFE) and Least Absolute Shrinkage and Selection Operator
(LASSO) were used to select the most significant features,
while SMOTETomek addressed data imbalance and missing
values. With an accuracy of 98.72% and a sensitivity of 100%,
the model effectively predicted cervical cancer outcomes.
Feng et al. [20] developed the CT-YOLOv5 model to enhance
cervical lesion detection by improving the YOLOvVS5s
algorithm with transformers and a Convolutional Block
Attention Module (CBAM). Using PANet and CBAM for
refined feature extraction, the model achieved precision, recall,
and mAP scores of 93.97%, 92.94%, and 92.8%, respectively.
CT-YOLOVS outperformed models like SSD and YOLOVS,
aiding in accurate identification of affected areas and disease
severity in cervical images, thereby advancing cervical cancer
detection. Yi et al. [21] introduced the Multi-scale Window
Transformer (MWT) to improve cervical cytopathology image
recognition, aiming to address the challenge of manually
intensive cervical cancer screenings. The MWT incorporated
multi-scale window multi-head self-attention (MW-MSA) to
extract local and integrated cell features enhancing feature
interaction without needing whole-image self-attention. By
using convolutional feed-forward networks within a pyramid
architecture, the model achieved efficient and accurate
representation. Tested on large datasets with over 360,000
images across two- and four-category classifications, the
MWT  outperformed both general and specialized
cytopathology classifiers.

The aim of this research is to develop and assess an
innovative deep learning architecture, the Squeeze-and-
Excitation Attention-Guided Hybrid Network, designed to
enhance cervical cancer classification from Pap smear images.
This study integrates a sophisticated Squeeze-and-Excitation
attention mechanism with a hybrid convolutional neural
network and recurrent neural network framework to tackle
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challenges such as image variability and subtle abnormalities.
By refining the model’s ability to focus on critical features and
capture complex patterns, the research aims to demonstrate
that SE-AG-HN significantly improves classification accuracy
over current methods, ultimately offering a more effective tool
for cervical cancer screening and diagnosis. The key
contributions are:

e SE attention mechanism recalibrates feature channels
which improves the model's ability to focus on critical
regions within Pap smear images and accurately
distinguish between cervical cancer and other conditions.

e  The CNN-RNN hybrid combines convolutional layers for
spatial feature extraction with LSTM layers for sequential
pattern analysis, improving classification accuracy and
robustness.

This paper is organized into five sections. The Introduction
defines cervical cancer, explores its symptoms and highlights
the need for improved diagnostic tools. It introduces the
Squeeze-and-Excitation Attention-Guided Hybrid Network, a
novel deep learning architecture designed to enhance cervical
cancer classification from Pap smear images by addressing
challenges like image variability and subtle abnormalities. The
Literature Review examines recent research and existing
methods for cervical cancer detection using Pap smear images,
discussing the limitations of current approaches and the need
for advanced models. The Methodology section explains the
Squeeze-and-Excitation attention module and the hybrid
CNN-RNN structure. It covers preprocessing, normalization,
and feature extraction techniques and describes the model
training process, including loss functions and evaluation
metrics. In the Results and Analysis section, experimental
results are presented, demonstrating the model’s superior
performance compared to other methods. The analysis
includes strengths, limitations, and performance metrics.
Finally, the Conclusion summarizes the key findings,
evaluates the model’s effectiveness, and suggests areas for
future research and potential improvements to further enhance
diagnostic accuracy.

3. METHODOLOGY

The proposed SE-AG-HN method integrates a Squeeze-
and-Excitation attention mechanism with a hybrid
convolutional neural network and recurrent neural network
architecture to enhance cervical cancer classification from Pap
smear images. The model begins by applying a series of
convolutional layers, interspersed with max-pooling, to extract
hierarchical spatial features from the preprocessed input
images. The SE attention mechanism is then utilized to refine
these features by recalibrating the importance of each channel.
The refined feature maps are subsequently processed by an
LSTM layer, which captures sequential dependencies within
the spatial representations. This is followed by fully connected
layers that further transform the features, culminating in a final
dense layer with a softmax activation function that produces a
multiclass classification outcome, indicating three classes
cervical cancer, pre cervical cancer and noncervical cancer.
The model's training process employs the Adam optimization
algorithm and uses categorical cross-entropy to measure the
difference between the model's predictions and the actual
labels.

Figure 2 depicts the architecture of the Squeeze-and-
Excitation Attention-Guided Hybrid Network for classifying



Pap smear images into Normal, Abnormal, and Pre-Cancer
categories. The diagram shows the SE-AG-HN architecture
for cervical cancer classification using Pap smear images. It
extracts features through convolutional layers, refines them
with a Squeeze-and-Excitation block, and captures sequential
dependencies using an LSTM layer. The final classification
into Normal, Abnormal, and Pre-Cancer categories is done
through fully connected layer, combining spatial and
sequential information for improved accuracy.

h
1 1
1 1
Pap Smear Conv 2D Conv 2D
Image
1 1
4= {=m| SEBlock |{mm
Conv 2D Conv 2D Conv 2D

l
L.

Fully connected

Pooling 2D Network

LSTM

Abnormal

Pre-cancer

Figure 2. Architecture of the Squeeze-and-Excitation
Attention-Guided Hybrid Network

3.1 Preprocessing

3.1.1 Image resizing

To ensure consistency across the dataset and compatibility
with the input requirements of the neural network, all Pap
smear images are resized to a uniform dimension of 128x128
pixels. This resizing standardizes the input size, allowing the
model to process each image efficiently while maintaining the
essential features required for accurate classification.

3.1.2 Adaptive Histogram Equalization (CLAHE)

After resizing the images, a technique called Adaptive
Histogram Equalization (CLAHE) is used to improve the
image contrast, making it easier to distinguish between
different features. Unlike standard histogram equalization,
CLAHE operates on small regions (tiles) within the image,
adjusting the contrast locally to highlight subtle differences in
tissue structures. This localized contrast enhancement is
particularly effective in Pap smear images, where variations in
cell morphology and texture are critical for identifying
cancerous and non-cancerous regions. CLAHE also prevents
over-amplification of noise by limiting contrast in
homogeneous areas, ensuring that important features are
emphasized without introducing artifacts.

3.1.3 Normalization

After contrast enhancement, the pixel values of the images
are normalized to a common range, typically [0, 1]. This
normalization process involves dividing the pixel values by
255, which is the maximum value in an 8-bit grayscale image.

194

Normalization helps to stabilize the training process by
ensuring that the inputs to the neural network have a consistent
scale, allowing for faster convergence and improved model
performance.

3.2 SE attention mechanism

The SE attention block consists of two main operations:
squeeze and excitation. During the squeeze phase, global
average pooling compresses the spatial dimensions of the
input feature maps into a channel descriptor vector of size C
(the number of channels in the input tensor), where each value
represents global information about its corresponding channel.
This vector is reshaped to have dimensions (1, 1, C) to match
the input tensor format for further processing.

During the excitation phase, the reshaped vector is
processed by two dense layers. The first dense layer reduces
the dimensionality of the vector by a factor determined by the
reduction ratio, typically set to 16. This reduces the vector to
a size of C // reduction_ratio, allowing the network to learn a
more compact representation of the channels. The ReLU
activation function is employed to introduce non-linearity into
the model, enabling it to learn more complex relationships
within the data. The second fully connected layer in the model
reshapes the data back to its original number of channels (C).
Following this, a sigmoid activation function is applied,
generating channel-wise attention weights. These weights,
ranging from O to 1, indicate the significance of each channel
in the overall image information.

Finally, these attention weights are multiplied element-wise
with the original feature maps to recalibrate the channels,
emphasizing the more informative ones and suppressing less
relevant ones. This channel recalibration enhances the
network’s focus on critical features, which is particularly
useful for tasks like cervical cancer classification where
identifying fine-grained patterns in medical images is essential
for accurate diagnosis.

The SE block improves feature map by recalibrating
channel-wise weights which dynamically adjusts the
importance of each channel. Given an input tensor X with
dimensions (H, W, C), where C represents the number of
channels, H represent the height of the feature map and W be
the width of the feature map. The SE block works in the
following manner:

(1) Feature Map: Begin with the feature map obtained
from a convolutional layer.

(2) Squeeze Operation:

e Global Average Pooling: Compute the channel-wise
statistics by averaging over the spatial dimensions:

H
h=

H
1
% T H x Wz ZX"'W'C

1w=1

(1)

This results in a vector z of shape (C), where each element
z. represents the global average of the feature map across
spatial dimensions for each channel.

e Reshape: Reshape this vector z into the shape (1, 1, C).
This reshaping ensures that z can be used for channel-wise
scaling. The reshaped tensor has a shape of (1, 1, 128), which
matches the dimensions of the feature map X for the
subsequent operations.

(3) Excitation Operation:

e Fully Connected Network: Pass the reshaped vector z
through a fully connected network to compute channel-wise



attention weights. This involves:
e Dense Layer 1: Apply a dense layer with weights W, and
a ReLU activation function:
z' = ReLlUW, - z) 2)
e Dense Layer 2: Apply another dense layer with weights
W, and a sigmoid activation function:
s=a(W,-z") 3)
The result s is a vector of attention weights, indicating the
importance of each channel.
e Multiply with Feature Map: Scaling the original feature
map X by these attention weights s:
Xsg=X-s @)
This produces the final SE-enhanced feature map Xgg,

where each channel of the feature map has been recalibrated
according to its importance.

— — Reshape (1,1, channels)
Feature Map 2D Global
Average Pooling

(Feature

Map) %
> (Attention — = -
Weights) Attention Weights . °
o °

1 Fully Connected
F_‘ Network
SE Feature Map

Figure 3. Squeeze-and-Excitation attention architecture

Figure 3 shows the Squeeze-and-Excitation Attention
architecture processes the input feature map by applying
global average pooling and reshaping in the Squeeze phase. In
the Excitation phase, it uses fully connected networks to
compute channel-wise attention weights and multiplies these
weights with the original feature map to produce the final SE-
enhanced feature map.

3.3 SE-AG-HN

The SE-AG-HN model is designed for multiclass cervical
cancer classification by integrating convolutional neural
networks (CNNs) with recurrent neural networks (RNNs) and
fully connected network. SE attention mechanism in SE-AG-
HN model significantly enhances performance by
recalibrating feature maps through channel-wise attention. It
allows the model to focus on most significant features while
suppressing less relevant ones. This is especially beneficial in
identifying subtle and localized patterns which is crucial for
accurate classification. By dynamically adjusting the feature
importance, the SE block ensures the model emphasizes key
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discriminative features, thereby boosting accuracy and
robustness.

The hybrid network architecture integrates CNNs and
RNNs networks to leverage their complementary strengths.
CNNs capture spatial features and texture patterns from image
data, while RNNs effectively model sequential dependencies
such as morphological changes across image regions. This
enables the model to capture both fine grained local details and
broader contextual relationships which are essential for
reliable medical diagnoses. Inclusion of SE block further
enhances this hybrid structure by refining feature selection,
enabling better generalization to diverse and complex datasets.
This integration of precise spatial and temporal features along
with adaptive feature recalibration, makes SE-AG-HN model
a more reliable and innovative approach for cervical cancer
classification.

The model starts with five convolutional layers, using 32,
64, 128, 256, and 512 filters respectively, each with a kernel
size of (3, 3) and ReLU activation functions. MaxPooling2D
layers with a pool size of (2, 2) are applied after some
convolutional layers to reduce spatial dimensions. Following
the convolutional layers, a Squeeze-and-Excitation (SE) block
recalibrates feature importance by emphasizing the most
relevant features. After this, GlobalAveragePooling2D
compresses the spatial dimensions into a single feature vector.
This vector is then reshaped to (1, 512), preparing it for the
LSTM layer. The LSTM layer with 64 units processes this
reshaped vector to capture sequential dependencies and
patterns. This is followed by two fully connected layers with
128 and 64 neurons, respectively, to further refine the features.
The final output is a Dense layer with 3 neurons and a SoftMax
activation function, providing probabilities for three classes
(non-cervical cancer, pre-cervical cancer, and cervical cancer).

The CNN component extracts spatial features with multiple
convolutional layers followed by max-pooling layers:

(1) Convolutional Layers: For a convolutional layer with
k filters, kernel size (kh, kw), and ReLU activation function:

Xour = ReLU(W = X + b) 5)
where, W represents the filter weight matrix, * signifies the
convolution operation and b denotes the bias term.

(2) Max-Pooling Layers: Apply max-pooling with pool
size (2, 2):

Xpoor(1,J) = max X(2i +p,2j + q) (6)
where, (p,q) are the indices within the pooling window.

After convolutional and SE block processing, global
average pooling is applied:

H
)

H xW
h=1

Reshape z to fit the LSTM input shape (1, —1).

(3) LSTM Layer: The LSTM layer with 64 units processes
the reshaped feature vector. The LSTM's output at time step t,
denoted as h;, is defined as follows:

(7

H
7Z = ZXh,W

w=1

hy = LSTM (x¢, he—1) (®)

where, x; is the input at time ¢ and h;_; is the hidden state
from the previous time step.



(4) Fully Connected Network: After the LSTM layer, the
feature vector is passed through a fully connected network
consisting of two dense layers before reaching the final output
layer:

The initial dense layer comprises 128 neurons, each
employing a ReL U activation function:

hl = ReLU(W1 - h + bl) (9)

The second dense layer has 64 neurons, also with a ReLU

activation function:

hz = ReLU(WZ " h1 + bz) (10)
where, w; and b; are the weights and biases for the first dense
layer, w, and b, are for the second dense layer.

Table 1. Input and output shape for each layer in the
proposed SE-AG-HN

Layer Input Shape  Filters Output Shape
Conv 2D (128, 128, 3) 32 (128,128,32)
Conv 2D (128, 128, 32) 64 (128,128, 64)
Maxpooling 2D (128, 128, 64) - (64, 64, 64)
Conv 2D (64, 64, 64) 128 (64, 64, 128)
Globalavezrggepoolmg (64, 64, 128) ) (128)
Reshape (128) - (1,1, 128)
Dense (1,1, 128) - (1,1, 8)
Dense (1,1,8) - (1,1, 128)
. (1,1, 128) x (64,
Multiply 64, 128) - (64, 64, 128)
Conv 2D (64, 64, 128) 256 (64, 64,256)
Conv 2D (64, 64, 256) 512 (64, 64,512)
Maxpooling 2D (64, 64, 512) - (32,32,512)
Globalave;rggepoolmg (32,32, 512) ) (512)
Reshape (512) - (1,512)
LSTM (1,512) - (64)
Dense (64) - (128)
Dense (128) - (64)
Dense (64) - 3)

Output Layer: The final dense layer has 3 neurons
corresponding to the three classes, with a softmax activation
function to produce the multiclass output:

¥y = softmax(ws - h, + bs) (11)
where, w; and b; are the weights and biases of the output
layer, and ¥ represents the predicted probability distribution
across the three classes. The model is configured for training
with the Adam optimization algorithm and uses categorical
cross-entropy to measure the discrepancy between predicted
and actual class probabilities:

Loss = = %¢_ ylog(Fe) (12)
where, y. is the true label and j; is the predicted probability
for class c. Accuracy is used as the evaluation metric to
measure the model's performance. Table 1 represents the input

and output shape for each layer in the proposed hybrid network
(SE-AG-HN).

Algorithm — SE-AG-HN ()
1. Preprocessing
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Input: Pap smear image /
Output: Preprocessed image I
1.1. Image Resizing:
Resize image / to a fixed size (128, 128):

Lresizeq = Tesize(l,(128,128))

1.2. Adaptive Histogram Equalization (CLAHE):
Apply CLAHE to enhance local contrast of I¢;e4:

leiahe = CLAHE (Iyegizeq)

1.3. Normalization:
Normalize pixel values of I ;4p to the range [0, 1]:

Iclahe (X, y)

Lnormatizea (X, y) = 255

Output Image: I;re = Inormatized
2. Model Architecture
2.1. Convolutional Layers:
Apply 2D convolution with filters W and bias b:
Hony = Conv2D(Ipre,W,b) + b
Apply ReLU activation function:
Hyery = ReLU(Heony)

2.2. Squeeze-and-Excitation (SE) Block:
Squeeze: Global average pooling:

S = GlobalAveragePooling2D (H,ep,)
Excitation:
c
E, = Dense(S,E,ReLU)
E, = Dense(E,, C,Sigmoid)

Recalibrate: Multiply attention weights E, with
feature maps:

Hsp = Hypepy X E;

2.3. Max-Pooling:
Apply MaxPooling to reduce spatial dimensions:
Hpoo1 = MaxPooling (Hsg)

2.4. Flatten and Reshape for RNN Processing:
Flatten the output from the last layer:

Hpiqe = GlobalAveragePooling2D (Hpoor)
Reshape for RNN input:
Hreshaped = ReShape(Hflat: (1,-1)

2.5. Recurrent Layer (LSTM):
Apply LSTM to process the sequential data:

Hygry = LSTM (Hreshaped' 64)



2.6. Dense Layers:
Apply Dense layers:

Hgesnser = Dense(Hgry, 128, ReLU)
Hgesnsez = Dense(Hygry, 64, ReLU)

2.7. Output Layer:
Apply final Dense layer for classification:

Houtput = Dense(Hyesnsez, 3, Softmax)

Output: Predicted class probabilities for Cervical
Cancer, Non-Cervical Cancer, and Pre-Cervical Cancer.
3. Training
3.1. Loss Function:
Use categorical cross-entropy loss to measure the
discrepancy between predicted probabilities . and actual
labels y:

3
Loss = —Zyclog(ﬁc)

c=1
where, y, is the true label for class ¢ and ¥, is the predicted
probability for class c.
3.2. Optimization:
Update model parameters using Adam optimizer:

Bpew =60 — 7 - VOL

where, 7 is the learning rate and V6L is the gradient
of the loss function with respect to the parameters 6.
3.3. Iteration:
Repeat training for a specified number of epochs or
until convergence criteria are met.
4. Evaluation
4.1. Prediction on Test Data:
Predict class probabilities for test images /g :

Vtest = Predict(Ipest, 0)

4.2. Performance Assessment:
Assess model performance using metrics such as
accuracy, precision, recall, and F1 score.

3.4 Cervical cancer classification

Cervical Cancer Classification from pap smear images
involve meticulous preprocessing pipeline followed by the
application of a hybrid convolutional neural network and
recurrent neural network architecture. Initially, the raw Pap
smear images are resized to a uniform dimension of 128x128
pixels to standardize input size across the dataset.
Subsequently, Adaptive Histogram Equalization (CLAHE) is
employed to enhance the local contrast of the images,
improving the visibility of critical features such as cell
boundaries and morphological details. This contrast-enhanced
image is then normalized by scaling pixel values to the range
[0, 1], ensuring consistent input data for the neural network.

Once preprocessed, the image is passed through the hybrid
network. The CNN component extracts hierarchical spatial
features through a series of convolutional and pooling layers,
which are further refined using a Squeeze-and-Excitation (SE)
block to emphasize significant features. The output from the
CNN is then flattened and reshaped into a sequence suitable

197

for the LSTM layer of the RNN, which captures temporal
dependencies and patterns across the feature dimensions.
Subsequently, the fully connected network further refines the
features, culminating in a final dense layer with a softmax
activation function that outputs a probability distribution
across the three classes. Through this hybrid approach, the
network learns to classify each image based on its learned
features and patterns, distinguishing between cervical cancer,
non-cervical cancer and pre-cervical cancer with high
accuracy.

4. EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Dataset description

The dataset comprises three distinct collections of cytology
images used for classifying Pap smear and liquid-based
cytology (LBC) samples. The Herlev Pap Smear Dataset
contains 917 single-cell images, categorized into 7 classes.
Among these, 3 classes are normal, Class 1 (intermediate
squamous epithelial) with 70 images, Class 2 (columnar
epithelial) with 98 images, and Class 3 (superficial squamous
epithelial) with 74 images. The 4 abnormal classes include
Class 4 (mild squamous non-keratinizing dysplasia) with 182
images, Class 5 (squamous cell carcinoma in situ intermediate)
with 150 images, Class 6 (moderate squamous non-
keratinizing dysplasia) with 146 images, and Class 7 (severe
squamous non-keratinizing dysplasia) with 197 images.

The Mendeley Liquid-Based Cytology (LBC) Dataset
includes 963 whole slide images divided into 4 classes. Class
1, "negative for intraepithelial malignancy," is normal and
consists of 613 images. Class 2, "low-grade squamous
intraepithelial lesion (LSIL)," is abnormal with 163 images.
Class 3, "high-grade squamous intraepithelial lesion (HSIL),"
is abnormal and contains 113 images. Class 4, "squamous cell
carcinoma (SCC)," is abnormal with 74 images. The
SIPaKMeD Pap Smear Dataset features 4049 images of
isolated cells extracted from 966 whole slide images, spanning
5 classes. Class 1, "superficial and intermediate," and Class 2,
"parabasal," are normal with 831 and 787 images respectively.
Class 3, "koilocytotic," and Class 4, "dyskeratotic," are
abnormal with 825 and 813 images respectively. Finally, Class
5, "metaplastic," is categorized as benign and includes 793
images.

The combined dataset integrates images from the three
distinct collections, offering a comprehensive resource for
classifying Pap smear and liquid-based cytology samples into
three main categories: normal, abnormal, and benign. These
datasets include various image type such as single-cell images
and whole slide images which is captured under different
acquisition conditions. This provides an initial indication of
the model's robustness. The aggregated dataset consists of
5,929 images, including 2473 non-cervical cancer images,
2663 cervical cancer images and 793 benign images, which
represent non-cancerous but potentially precancerous
conditions. This extensive dataset provides a robust basis for
analyzing and improving classification models in cytology.

Table 2 shows sample images of three classes these datasets
offer a wide range of examples for training and testing models
using various types of cell images which helps in advancing
diagnostic tools for early detection and classification of
abnormal and normal cell types in cytology. The diversity in
classes and image types supports the development of strong



models capable of handling real-world variations in module for final classification. Preprocessing steps, including

cytological data. image resizing, contrast enhancement using Adaptive
Histogram Equalization, and normalization, prepare the

Table 2. Sample images of the three classes images for analysis. The CNN module captures spatial features,

while the SE module enhances the model's focus on relevant

Normal Pre Cancer Abnormal features, and the RNN module captures sequential
dependencies in the data. The model is compiled with the
Adam optimizer, categorical cross entropy as the loss function,
and accuracy as the evaluation metric. Training typically
involves running the model for 20 epochs, though this adjusted
based on performance. Learning rate provides balance
between stability and convergence speed and it is set to 0.001.
Table 3 shows the hyperparameters of the proposed SE-AG-
HN model.

Table 3. Hyperparameters of proposed SE-AG-HN model

Number of Epochs 20
Batch size 32
Optimizer Adam
Activation Relu
Learning Rate 0.001
Loss Categorical cross entropy

Table 4. Training and testing metrics of the proposed model
4.2 Experimental setup

' . . Epoch Training  Testing Training Testing
The research was carried out on a workstation equipped POCIS  Loss Loss Accuracy Accuracy
with an Intel i5-4300U Processor clocked at 1.90 GHz, 8 GB 1 0.215 0.235 0.956 0.945
of RAM, and a 64-bit operating system with x64-based 2 0.176 0.215 0.969 0.952
architecture, running the Microsoft Windows 10 Pro operating 3 0.238 0.21 0.951 0.954
system. Python implementation code was written using the 4 0.245 0.268 0.95 0.938
Anaconda integrated development environment (IDE), with > 0.253 0.205 0.949 0.955
TensorFlow and Keras libraries utilized for model 6 0221 0.168 0.953 0.96
. . 7 0.125 0.213 0.93 0.952
implementation. 8 0.182 0.275 0.968 0.934
9 0.205 0.192 0.958 0.965
4.3 Performance analysis 10 0.174 0.203 0.965 0.956
Overall  0.2034 0.2184 0.9549 0.9511
To ensure a thorough evaluation of the cervical cancer
classification, a 7-fold cross-validation strategy is applied to Table 4 provides a summary of the training and testing
the dataset of 5,929 images from three collections (Herlev Pap metrics across 10 epochs for the proposed model. The training
Smear, Mendeley Liquid-Based Cytology, and SIPaKMeD loss decreases from 0.215 in the first epoch to 0.174 in the
Pap Smear datasets). The dataset is split into seven folds, with tenth epoch, with an average of 0.2034, indicating that the
each containing about 847 images. Stratified sampling is used model is effectively learning and reducing errors. The testing
to maintain balanced class representation across all folds. The loss also shows a general decrease with some fluctuations,
SE-AG-HN model is trained and tested iteratively. Each fold starting at 0.235 and ending at 0.203, averaging 0.2184, which
serves as the test set once while the model is trained on the suggests that the model is improving its ability to generalize to
combined data of the remaining six folds totalling unseen data. Training accuracy increases from 95.6% in the
approximately 5,082 images. Performance metrics are first epoch to 96.5% in the tenth epoch, with an average of
assessed on the unseen fold during each iteration. This 95.49%, reflecting better performance on the training set over
approach, involving the averaging of metrics across all folds, time. Similarly, testing accuracy rises from 94.5% in the first
provides a more reliable assessment of the model's epoch to 95.6% in the tenth epoch, with an average of 95.11%,
performance by accounting for the variability inherent in demonstrating improved performance on unseen data. The
different data splits and offering a more robust evaluation of model also exhibits very high TPR at low FPR values for all
its ability to generalize to new, unseen data. classes, which indicates strong performance in identifying true
positives while maintaining minimal false positives. As the
4.4 Result analysis FPR increases slightly ranging from 0 to 0.091 for class 0,
0.078 for class 1, and 0.038 for class 2, the TPR rises
The proposed method utilizes a deep learning architecture significantly, showing high sensitivity while keeping false
called the Squeeze-and-Excitation Attention-Guided Hybrid positives low. The similarity in FPR and TPR patterns across
Network to classify cervical cancer from cytology images. The the different classes suggests that the model performs
model is designed to effectively handle the complexities of consistently.
Pap smear and liquid-based cytology samples by integrating Performance of the proposed method is compared with three
three key modules, CNN module for extracting feature maps, existing works, includes work of Pacal and Kilicarslan [1],
S&E module for recalibrating feature importance, and RNN Habtemariam et al. [18] and Tanimu et al. [19]. Pacal and
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Kilicarslan [1] compared the performance of 40 CNN-based
models and 20 ViT-based models on the SIPaKMeD pap-
smear dataset. Data augmentation and ensemble learning were
used to improve performance. They demonstrated ViT-based
model and it required higher computational resources when
comparing to CNN models. Habtemariam et al. [18] trained a
MobileNetv2-YOLOvV3 model for ROI extraction from cervix
images and used pre-trained EfficientNetB0 models for cervix
type and cervical cancer classification. This lightweight model

structure was advantageous for the deployment in resource
constrained settings but had limitations in capturing subtle
image variations due to its relatively shallow architecture.
Tanimu et al. [19] employed a decision tree to predict cervical
cancer outcomes, selecting important features using RFE and
LASSO and addressing data imbalances with SMOTE Tomek.
While this method achieves high accuracy in structured
datasets, its reliance on hand-crafted features limited its
adaptability to complex or unstructured image data.

Table 5. Comparative analysis of performance measures obtained by proposed work and the works of Pacal and Kilicarslan [1],
Habtemariam et al. [18] and Tanimu et al. [19]

= Proposed method Pacal and Kilicarslan [1] Habtemariam et al. [18] Tanimu et al. [19]
=
R =
TE K 2 2 X =2 =2 & = =2 ~2 & & & =2 = &
= N
" EtfezEEfz E E E ot EEOEoOZ
1 0.945 0.048 0.017 0.944 0.886 0.052 0.034 0.883 0.916 0.059 0.078 0.798 0.787 0.075 0.081 0.768
2 0.934 0.025 0.002 0.925 0.892 0.041 0.045 0.927 0.866 0.075 0.064 0.824 0.798 0.085 0.079 0.765
3 0.962 0.038 0.032 0.942 0.918 0.064 0.055 0.879  0.899 0.085 0.068 0.806 0.841 0.063 0.082 0.781
4 0.978 0.019 0.015 0.937 0.932 0.069 0.059 0.895  0.905 0.073 0.071 0.807 0.869 0.059 0.087 0.791
5 0.981 0.025 0.021 0.949 0.927 0.045 0.063 0.913  0.875 0.052 0.053 0.825 0.853 0.060 0.095 0.779
6 0.984 0.008 0.027 0.945 0.919 0.038 0.041 0.861 0.854 0.066 0.054 0.819 0.802 0.095 0.098 0.771
7 0.959 0.028 0.011 0.937 0.890 0.054 0.038 0.906 0.849 0.057 0.062 0.786 0.774 0.086 0.086 0.759
Overall 0.963 0.027 0.018 0.940 0.909 0.052 0.048 0.894 0.880 0.067 0.064 0.809 0.818 0.075 0.087 0.773
Table 6. Comparative analysis of validation sets among proposed work and existing works of Pacal and Kilicarslan [1],
Habtemariam et al. [18] and Tanimu et al. [19]
Proposed method Pacal and Kilicarslan [1] Habtemariam et al. [18] Tanimu et al. [19]
e &z > = A > = e &z > = e &z > =
s 3§ ¢ & & T ¥ § s £ =¥ % g s £ ¥ 3 g s &
= = = 2 9 = =) = Z > E= = = 2 ] s =) = 2 >
2 3 ¢ %2 2 % 3 5§ %2 4 % 3 & § 2 3 3 3 § @
S & 4 & B 2 & 2 &£ E 2 &2 2 £ B g2 &2 2 &£ &
0.945 0.944 0.945 0.972 0.958 0.957 0.946 0.889 0.906 0.946 0.856 0.761 0.857 0.902 0.873 0.789 0.755 0.876 0.842 0.748

=N vk WY~ | Validation Sets

0.934 0.925 0.929 0.970 0.952 0.936 0.912 0.892 0.892 0.938 0.882 0.740 0.862 0.854 0.884 0.749
0.962 0.942 0.952 0.959 0.961 0.896 0.897 0.946 0.901 0.933 0.892 0.798 0.891 0.849
0.978 0.937 0.958 0.934 0.956 0.928 0.861 0.918 0.926 0.928 0.887 0.892 0.945 0.824 0.914 0.795
0.981 0.949 0.965 0.930 0.955 0.883 0.923 0.867 0.877 0.908 0.919 0.876 0.856 0.878
0.975 0.933 0.944 0.962 0.968 0.978 0.886 0.901 0.923 0.927 0.911 0.857 0.932 0.861
0.966 0.924 0.969 0.944 0.945 0.961 0.908 0.899 0.905 0.918 0.882 0.864 0.911 0.841
Overall 0.963 0.936 0.952 0.953 0.956 0.934 0.905 0.902 0.904 0.923 0.890 0.827 0.893 0.858

0.721 0.856 0.851 0.782
0.644 0.791 0.802 0.849
0.679 0.768 0.846 0.828
0.713 0.881 0.799 0.816
0.694 0.777 0.846 0.799
0.782 0.798 0.789 0.808
0.713 0.821 0.825 0.804

0.908 0.812

0.902 0.842
0.884 0.837
0.862 0.806
0.890 0.804

Table 7. Comparative analysis of different categories among proposed work and existing works of Pacal and Kilicarslan [1],
Habtemariam et al. [18] and Tanimu et al. [19]

Proposed method Pacal and Kilicarslan [1] Habtemariam et al. [18] Tanimu et al. [19]
Classes 2 & £ £ 2 2z & £ Z 5§ 2z & £ F 5 2z & £ £ %
Z § § %t 2 T % §; 8 02 T % §g T 2 % % O g @
S @ Q = — = @ >} = — ] 3 > = — = ] S = —
3 & 2 £ E 3§ & ¢ £ 8 § & 2 £ &8 § & 2 £ =
Normal 0.969 0.936 0.946 0.958 0.954 0.929 0.906 0.911 0.875 0.916 0.878 0.838 0.886 0.846 0.910 0.794 0.691 0.786 0.795 0.806

Abnormal 0.964 0.925 0.958 0.947 0.951 0.938 0.919 0.893 0.914 0.945 0.882 0.827 0.903 0.869 0.876 0.801 0.709 0.846 0.841 0.789
Pre-cancer 0.957 0.948 0.951 0.955 0.963 0.935 0.889 0.901 0.924 0.924 0.911 0.815 0.890 0.859 0.883 0.818 0.738 0.813 0.839 0.817

Overall

0.963 0.936 0.952 0.953 0.956 0.934 0.905 0.902 0.904 0.923 0.890 0.827 0.893 0.858 0.890 0.804 0.713 0.821 0.825 0.804

In contrast, proposed SE-AG-HN model integrates a hybrid
CNN-RNN architecture with a Squeeze-and-Excitation (SE)
block, enabling it to capture both spatial and sequential
dependencies while adaptively focusing on critical image
features. This capability provides a distinct advantage in
handling subtle abnormalities and complex image variability
inherent in cervical cancer datasets. The SE Block in our
proposed SE-AG-HN model improved interpretability by
automatically identifying and recalibrating the importance of
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image features. By emphasizing critical features such as cell
boundaries, tissue textures, or morphological structures. SE
block allows the model to focus on the most informative
regions in the image. This process provides insight into which
features most significantly impact the model's classification
decisions, thereby enhancing transparency and offering a
clearer understanding of how the model arrives at its
conclusions.

Table 5 shows the comparative analysis performance



measures obtained by the proposed work and the works of
Pacal and Kilicarslan [1], Habtemariam et al. [18] and Tanimu
et al. [19]. across five validation sets using key metrics such as
True Positive Rate (TPR), False Positive Rate (FPR), False
Negative Rate (FNR), and True Negative Rate (TNR). These
results suggest that the proposed method offers a competitive
advantage in classification accuracy and reliability,
particularly in achieving higher TPR and TNR values, making
it a robust choice overall compared to the other methods.

Table 6 shows the comparative analysis of validation sets
among the proposed work and existing works of Pacal and
Kilicarslan [ 1], Habtemariam et al. [ 18] and Tanimu et al. [19].
The metrics assessed are Sensitivity, Specificity, Accuracy,
Precision, and F1 Score. The proposed method consistently
achieves high values in these metrics, with an overall accuracy
0f'94.98%, sensitivity of 96%, specificity of 93.94%, precision
of 95.3%, and an F1 score of 95.64%. Table 7 shows the
comparative analysis of different categories among the
proposed work and existing works of Pacal and Kilicarslan [1],
Habtemariam et al. [18] and Tanimu et al. [19].

0.969
0.959
0.949

0.939

0.929

1 2 3 4 5 6 7 8 9
EPOCHS

em@e= Training accuracy ==« == Testing accuracy

Figure 4. Graphical representation of training and testing
accuracy of the proposed model

Figure 4 shows the training and testing accuracy over
epochs. The pink line represents training accuracy, starting at
0.956, peaking at 0.969 in the second epoch, and ending at
0.965 in the tenth epoch. The violet line represents testing
accuracy, starting lower at 0.945, dipping to 0.938 around the
fourth epoch, and peaking at 0.965 in the ninth epoch. Both
accuracies fluctuate but remain high, with the second and ninth
epochs showing the highest values.

Figure 5 shows graphical representation of the training and
testing loss of the proposed model over epochs. The blue line
represents the training loss, which decreases from 0.215 in the
first epoch to 0.125 by the seventh epoch and then slightly
increases to 0.174 by the tenth epoch. The red line depicts the
testing loss, starting at 0.235, reaching a minimum of 0.168 by
the sixth epoch, peaking at 0.275 in the eighth epoch, and
ending at 0.203 by the tenth epoch. Both losses generally
decrease over time, with the testing loss showing more
fluctuations.

Based on the on the specificity and sensitivity values shown
in Figure 6, the proposed method consistently achieves the
highest values. It also achieves a remarkable 95.2% accuracy
compared with other methods indicating strong overall
performance. Figure 7 shows the graphical representation of
TPR, FPR, FNR, and TNR obtained by the proposed work and
the works of Pacal and Kilicarslan [1], Habtemariam et al. [18]
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and Tanimu et al. [19]. Figure 8 shows the graphical
representation of performance measures like sensitivity,
specificity, accuracy, precision and fl score obtained in
different categories by the proposed work and the works of
Pacal and Kilicarslan [1], Habtemariam et al. [ 18] and Tanimu
etal. [19].

1 2 3 4 5 6 7 8 9
EPOCHS

el Training Loss

==®== Testing Loss

Figure 5. Graphical representation of training and testing
loss of the proposed model
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Figure 6. Graphical representation of performance obtained
by the proposed work and the works of Pacal and Kilicarslan
[1], Habtemariam et al. [18] and Tanimu et al. [19]
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Figure 7. Graphical representation of TPR, FPR, FNR, TNR
obtained by the proposed work and the works of Pacal and
Kilicarslan [1], Habtemariam et al. [18] and Tanimu et al.
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Figure 8. Graphical representation of performance obtained in different categories by the proposed work and the works of Pacal
and Kilicarslan [1], Habtemariam et al. [18] and Tanimu et al. [19]

The proposed method outperforms other across all key
performance metrics. It achieves the highest TPR of 0.963,
indicating superior effectiveness in identifying positive cases.
Additionally, it has the lowest FPR 0f 0.027 and FNR 0f0.018,
demonstrating fewer errors in classifying cases. The method
also boasts a higher TNR of 0.94, reflecting better
performance in correctly identifying negative cases. Overall,
these metrics highlight the proposed method's robustness and
reliability, making it a more effective approach for accurate
classification.

5. CONCLUSION

The proposed method, a Squeeze-and-Excitation Attention-
Guided Hybrid Network effectively integrates a SE attention
mechanism with a hybrid CNN and RNN architecture to
enhance cervical cancer classification from Pap smear images.
The SE attention mechanism recalibrates the importance of
feature channels, allowing the model to focus on the most
critical parts of the image, while the hybrid CNN-RNN
architecture captures both spatial and sequential dependencies.
This approach was applied to a Herlev Pap Smear Dataset,
Mendeley Liquid-Based Cytology Dataset and SIPaKMeD
Pap Smear Dataset, where it successfully identified patterns
and features essential for distinguishing between cervical
cancer, pre-cervical cancer, and non-cervical cancer.

Compared to traditional methods, which often rely on either
CNN or RNN architectures alone, this hybrid approach
influences the strengths of both. The CNN component excels
at extracting local features, while the RNN captures temporal
and sequential relationships, providing a comprehensive
understanding of the data. The incorporation of the SE
attention mechanism further enhances the model’s ability to
identify subtle yet crucial features, improving its classification
accuracy. The experimental results demonstrated the
effectiveness of this proposed method, with consistent
improvements, showing a strong ability to correctly classify
cervical cancer cases when compared to other methods. This
would benefit the physicians to double their diagnostic
accuracy.

The proposed SE-AG-HN model's performance depends
significantly on high-quality input images, as noise, blur or
poor contrast can adversely affect the classification accuracy.
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Limited or homogeneous datasets may lead to overfitting and
reduce the model's generalizability. While the model has been
validated using Pap smear images, additional modifications
may be needed to adapt it to other medical imaging modalities.
Future work will focus on enhancing pre-processing
techniques, increasing dataset diversity, integrating
multimodal data, exploring advanced attention mechanisms,
and optimizing the model’s architecture for improved
efficiency, broader applicability, and better generalization
using transfer and few-shot learning strategies.
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