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Rice (Oryza sativa) is a linchpin of global food security, feeding most of the world’s 

population, especially in Asia and Africa. Nitrogen (N), Phosphorus (P), and Potassium (K) 

must be held in precise equilibrium for rice to grow right and produce well. A lack of these 

nutrients can put plant health at risk, causing poor yields that result in huge economic losses 

to farmers. This means it is important to have an accurate diagnosis done on time so that 

corrective measures can be taken to ensure the sustainability of rice cultivation. 

Conventional techniques used to detect nutrient deficiencies in rice plants like manual 

inspection and biochemical testing are frequently inadequate. Manual inspection may be 

effective, but it is laborious, subjective, and unworkable when working on a large-scale 

farm. On the other hand, the accuracy of biochemical tests does not compensate for their 

time-consuming nature, their cost as well as the need for specialized equipment and 

expertise; this makes them inaccessible to many smallholder farmers. This research 

proposes Attention SqueezeNet-a streamlined deep learning model aimed at overcoming 

such limitations. Attention SqueezeNet leverages the Kaggle “Nutrient Deficiency 

Symptoms in Rice” dataset by including an attention mechanism that focuses on significant 

visual features associated with N P K deficiency on rice leaves. Compared with traditional 

methods, therefore, these focused areas enable more accurate diagnostic results from the 

model as opposed to conventional methods which diagnose diseases broadly rather than 

focusing on specific symptoms. In this context, we propose: i) developing a robust Attention 

SqueezeNet model specifically aimed at categorizing nutrient deficiencies in rice plants; ii) 

making the model more robust against unseen data variations through pre-processing and 

augmenting existing dataset; iii) comparing the performance of Attention SqueezeNet with 

existing deep learning models in terms of accuracy and efficiency per computational unit 

utilized (CU). The results show that Attention SqueezeNet has better classification accuracy 

compared to state-of-the-art models and is more computationally efficient than them. This 

has resulted in the transformation of agriculture through automation and objectivity in 

diagnosis of nutrient deficiency which ensures sustainable crop management practices 

towards global food security. 
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1. INTRODUCTION

The global food security is dependent on the presence of 

rice (Oryza sativa), a crop that feeds over 50% of the world’s 

population with its main consumption in places like Asia, and 

Africa. Proper growth of rice has to do with ensuring that 

critical nutrients including Nitrogen (N), Phosphorus(P), and 

Potassium(K) [1] are well balanced in the soil. Any deficiency 

in any of these elements is disastrous for the health of rice 

plants [2], resulting in low yields, as well as high losses to 

farmers. Therefore, there is a need to promptly diagnose 

nutrient deficiencies to apply appropriate remedial measures 

and ensure sustainable rice production. Traditional methods 

[3-8] for diagnosis of nutritional disorders in rice plants are 

mainly based on manual observation by agronomists and some 

biochemical tests. Although manual observation may be 

successful; however, it is labor intensive, subjective, and 

limited in terms of scale. On the other hand, while biochemical 

tests have been proven to be accurate, they are often 

expensive, time-consuming and require specialized laboratory 

facilities that are not available to small-scale farmers [9-11]. 

Therefore, there is a need for new diagnostic techniques that 

are automated, objective, cost-effective, and adaptable across 

different farming environments. 

Recently developed deep learning techniques can solve this 

problem by enabling automatic detection of plant nutrient 

deficiencies at high accuracy rates. Convolutional Neural 

Networks (CNNs) [12-16] have widely demonstrated their 

effectiveness in plant pathology applications [17-25]. 

Nevertheless, these models continuously face several 

challenges such as being computationally burdensome [26-29] 

requiring huge computational abilities [20-35] that are not 
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readily available an inability to classify subtle changes seen in 

symptoms caused by nutrient deficiency [36-38]. This paper 

discusses Attention SqueezeNet as a deep learning model 

customized for identifying nutritional disorders through leaf 

images captured from rice plants. Attention SqueezeNet 

provides several advantages compared to conventional CNN 

architectures including its lightweight nature which takes less 

processor power and memory. Also, it includes an attention 

mechanism that guides the model to focus on the most 

important parts in the rice leaves images, hence capturing 

minute visual dissimilarities caused by specific nutrient 

deficiencies. 

The objectives of this research are: 

1. Develop a strong variation of the Attention SqueezeNet 

model, for the identification and categorization of nutrient 

deficiencies in the leaves of rice plants regarding nitrogen (N), 

phosphorus (P), and potassium (K) nutrients with a 

classification threshold of precisely 95 percent on the 

“Nutrient-Deficiency-Symptoms-in-Rice” dataset. 

2. Further, augment the Kaggle dataset on “Nutrient-

Deficiency-Symptoms-in-Rice” and select advanced 

techniques to augment the dataset so that the drop in the 

performance of the model on unseen data is less than 2%. 

3. Compare the performance of the proposed model in 

accuracy, computational complexity, and resource 

requirements of the proposed Attention SqueezeNet model 

with other advanced deep learning models such as ResNet and 

MobileNet. The proposed model of comparison should be not 

only acceptable in its accuracy but also at least 10% more 

efficient than the other models. 

4. To understand how effective the attention mechanism is 

in improving feature extraction and the final classification, 

additional experiments should be made that measure the 

contribution of this mechanism to the overall classification 

accuracy, at least a 5% increase compared with a model 

without an attention mechanism. 

5. Perform an error analysis of the proposed model’s 

predictions, get specific examples of failure cases (e.g., 

misclassification of nutrient deficiencies), and evaluate the 

model’s performance for different categories of deficiencies to 

ensure equal performance without NOM class that has less 

than 5 % class imbalance. 

The organization of this article is in the following order: a 

literature survey discussed in section 2, which provides an 

overview of existing approaches and their limitations. The 

proposed work is explained in section 3, where Attention 

SqueezeNet architecture and experimental setup are discussed. 

Results and discussions are presented in Section 4, which puts 

more emphasis on the performance of the proposed model vis-

vis other deep learning models. Finally, section five 

summarizes the findings in this paper and suggests further 

research directions”.  

 

 

2. LITERATURE SURVEY 

 

The automated system that Asraf et al. [15] developed for 

the purpose of detecting deficiencies in oil palm plants was 

focused on nitrogen, phosphorus, and magnesium. This was 

done by applying an SVM with various kernels such as linear 

and polynomial along with hard and soft margins, which 

reached 95% accuracy classification rate using polynomial 

kernel functions. The findings illustrate that the geographical 

production region is an important factor in predicting 

nutritional deficiencies based on their study. Sethy et al. [16] 

formulated a technique that can be used to diagnose mineral 

shortages in rice crops. In this way, they employed K-Means 

and fuzzy C-Means clustering techniques for feature 

extraction and combined it with an SVM classifier. They were 

85% accurate at diagnosing the deficiency of these mineral 

elements from the soil samples given. 

Despite showing some promising results, supervised 

machine learning has been less effective than ANN or CNN 

when it comes to image classification tasks. Tomatoes 

suffering from deficiencies of nitrogen, phosphate, or 

potassium were diagnosed via a CNN model as an example by 

Cevallos et al. [17]. This model attained an accuracy rate of 

86.57% since it had applied a data augmentation process to 

increase the number of training samples available for this 

approach as well as tweaking hyper-parameters until optimal 

results could be achieved. However, transfer learning can help 

to solve issues related to the lack of large datasets in 

agricultural settings. In recent research carried out by Han and 

Watchareeruetai [18], pre-trained ResNet50 using transfer 

learning was adopted to determine nutrient imbalances among 

black gram varieties. On a test dataset containing six types 

represented by 4088 images, the model returned a testing 

accuracy value equaling 65.44 percent. 

When it comes to analyzing vast quantities of features from 

unstructured data, deep learning is very effective. In the study 

by Sethy et al. [19], six different DL architectures were used 

in conjunction with SVM to detect nitrogen insufficiency. 

ResNet50+SVM achieved the highest level of accuracy, which 

was 99.84%. A similar approach was used by Bahtiar et al. 

[20], who identified nutritional deficits in chili plants by using 

an R-CNN Inception v2 mask model and achieved an accuracy 

rate of 82.6%. Wulandhari et al. [5] proved that fine-tuning 

further increases the accuracy of deep learning models.  

Recent studies on deep learning have investigated a variety 

of CNN models that have already been pre-trained for image 

processing. According to recommendation [21], InceptionV3, 

ResNet50, NasNet-Large, and DenseNet121 models were 

used in conjunction with transfer learning and fine-tuning to 

identify eleven distinct nutritional deficits in rice. 

DenseNet121 achieved an accurate rate of 97.44%. Using 

SegNet (segmentation) and InceptionV3 (classifier) on 3000 

pictures, Taha et al. [22] compared a DCNN model against 

standard machine learning for the purpose of determining the 

nutritional quality of lettuce grown in aquaponics. They were 

able to achieve 96.5% accuracy in their identification of the 

classification. 

In addition, the combination of CNN and LSTM models has 

shown results that are encouraging. An example of this would 

be a CNN-LSTM combo that categorized oilseed rape crops 

according to their nutritional status, with InceptionV3-LSTM 

attaining an accuracy rate of 95% [23]. Additionally, to 

identify shortages in nitrogen, phosphorus, potassium, and 

calcium in sugar beet plants, six transfer learning models were 

used in conjunction with data augmentation. These models 

were AlexNet, VGG16, ResNet101, DenseNet161, and 

SqueezeNet [24]. 

Overall, different machine learning and deep learning 

models have been successfully used to estimate nutrient 

deficiency in plants with certain merits as follows, though 

there also are certain drawbacks. In image-based tasks, 

especially in complex agriculture scenario, conventional 

supervised machine learning like SVM and mainly clustering 

methodology have issues related to scalability and 
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generalization. CNNs are deep learning models that work very 

well when there is sufficient data for training and validation 

with variation in the dataset which is not always available in 

agriculture, which at times results in overfitting. This problem 

has been somewhat reduced by transfer learning and fine-

tuning, yet even models such as ResNet50 and DenseNet121 

depend on the quantity and quality of the input data, as well as 

accompanying data augmentation. Moreover, the 

incorporation of architectures including CNN-LSTM or other 

variants includes higher computational demands and resources 

which may be hard to suit in resource challenged agricultural 

systems. In addition, most research is crop or region-specific 

and there is limited evidence for their versatility across 

different regions and crops thereby restricting their usage of 

such systems across different geographic and agricultural 

domains. 

 

 

3. PROPOSED WORK 

 

This research proposes an Attention SqueezeNet model for 

classifying nutrient deficiencies in rice plant leaves. The 

model leverages the efficiency of SqueezeNet architecture 

while incorporating an attention mechanism to focus on 

critical visual features associated with deficiencies (Figure 1). 

 

 
 

Figure 1. Proposed Attention SqueezeNet 

 

3.1 Input layer 

 

𝑖𝑛𝑝𝑢𝑡𝑑𝑎𝑡𝑎 which represents an image of a rice plant, to the 

variable x. This image will be processed by the network to 

predict the presence or absence of nutrient deficiencies. 

 

𝑥 = 𝑖𝑛𝑝𝑢𝑡𝑑𝑎𝑡𝑎 

 

3.2 Squeeze layer 

 

The squeeze layer aims to reduce the number of channels in 

the input data. 

It performs a convolution operation with the input x using 

the squeeze layer weights 𝑊𝑠 and adds the squeeze layer bias 

𝑏𝑠. This convolution process extracts features from the input. 

The resulting output 𝑜𝑢𝑡𝑐  is then passed through an 

activation function (e.g., ReLU) to introduce non-linearity and 

improve model performance. 

 

𝑜𝑢𝑡𝑐 = 𝑊𝑠 ∗ 𝑥 + 𝑏𝑠 

 

𝑜𝑢𝑡𝑐  =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑜𝑢𝑡𝑐)  # ReLU or other activation 

function 

𝑜𝑢𝑡𝑐: Output channels 

𝑊𝑠: Squeeze layer weights 

𝑏𝑠: Squeeze layer bias 

activation: Activation function ReLU 

 

3.3 Expand layer (without attention) 

 

The expand layer aims to increase the number of channels 

in the data processed by the squeeze layer. 

It performs another convolution operation with the previous 

output 𝑜𝑢𝑡𝑐  using the expand layer weights 𝑊𝑒 and adds the 

expand layer bias 𝑏𝑒. 

Like the squeeze layer, an activation function is applied to 

introduce non-linearity. 

 

𝑜𝑢𝑡𝑐 = 𝑊𝑒 ∗ 𝑜𝑢𝑡𝑐 + 𝑏𝑒 

𝑜𝑢𝑡𝑐 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑜𝑢𝑡𝑐) 

 

𝑜𝑢𝑡𝑐: Output channels 

𝑊𝑒: Expand layer weights 

𝑏𝑒: Expand layer bias 

 

3.4 Expand layer (with attention) 

 

This version of the expand layer incorporates an attention 

mechanism to focus on relevant features. 

It first computes attention weights using a separate 

convolution operation with 𝑜𝑢𝑡𝑐, weights 𝑊𝑎, and bias 𝑏𝑎. 

The sigmoid activation function normalizes these attention 

weights between 0 and 1, indicating the importance of each 

channel. 

Subsequently, the informative features are intensified by the 

attention weights that are multiplied elementwise with 𝑜𝑢𝑡𝑐. 

Lastly, a standard convolution which is activated with 𝑊𝑒, 

bias 𝑏𝑒 and is applied to the weighted output. 

 

𝑜𝑢𝑡𝑐 = 𝑊𝑒 ∗ (𝑜𝑢𝑡𝑐 ∗ 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛) + 𝑏𝑒  

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑎 ∗ 𝑜𝑢𝑡𝑐 + 𝑏𝑎) 

𝑜𝑢𝑡𝑐 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑜𝑢𝑡𝑐) 
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𝑊𝑎: Attention layer weights 

𝑏𝑎: Attention layer bias 

 

3.5 Average pooling 

 

There is an alternative method for reducing the spatial 

dimensions of 𝑜𝑢𝑡𝑐 (height and width). 

Average pooling computes the mean of values in over a 

specified window size (𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒) in 𝑜𝑢𝑡𝑐. 

This minimizes overfitting by allowing the model to adjust 

better even with minor shifts between images. 

 

𝑝𝑜𝑜𝑙𝑒𝑑𝑜𝑢𝑡 = 𝑎𝑣𝑔𝑝𝑜𝑜𝑙(𝑜𝑢𝑡𝑐, 𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒) 

 

3.6 Concatenation 

 

This is another possible choice that joins the initial output 

𝑜𝑢𝑡𝑐 , with pooled output 𝑝𝑜𝑜𝑙𝑒𝑑𝑜𝑢𝑡  by joining them across 

one axis (usually the channel dimension). In this way, the 

model can learn from both original feature maps and reduced 

spatial information captured during pooling. 

 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑜𝑢𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒([𝑜𝑢𝑡𝑐, 𝑝𝑜𝑜𝑙𝑒𝑑𝑜𝑢𝑡]) 

 

3.7 Dense layer 

 

The dense layer is the final layer before the output layer. It 

aims to map the extracted features in 𝑜𝑢𝑡𝑐 to a set of logits, 

one for each possible nutrient deficiency class (C). 

This is achieved by a fully connected operation with the 

output from the previous layer (𝑜𝑢𝑡𝑐) and weights specific to 

the dense layer. 

 

𝑙𝑜𝑔𝑖𝑡𝑠 = 𝑑𝑒𝑛𝑠𝑒(𝑜𝑢𝑡𝑐 , 𝐶) 

 

C: Number of output classes 

 

3.8 SoftMax function 

 

The SoftMax function takes the logits from the dense layer 

and converts them into class probabilities. 

These probabilities represent the likelihood of each possible 

nutrient deficiency class, ensuring they sum to 1. 

The class with the highest probability is predicted as the 

deficiency present in the rice plant image. 

 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(log𝑖𝑡𝑠) 

 

3.9 Loss function 

 

𝑙𝑜𝑠𝑠 = 𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 𝑡𝑟𝑢𝑒𝑙𝑎𝑏𝑙𝑒) 

 

Algorithm 1 illustrates the Attention SqueezeNet model. 

The model takes pre-processed rice leaf images as input. These 

images are typically resized to a standard size of 224×224 

pixels with three channels representing RGB color 

information. Conv1: The first convolutional layer extracts 

initial features from the input image. It uses a 7×7 filter with 

96 output channels and a stride of 2. This means the filter scans 

the image with a stride of 2 pixels in both width and height, 

reducing the spatial resolution of the feature maps. A ReLU 

(Rectified Linear Unit) activation function is then applied to 

introduce non-linearity and improve model learning. Finally, 

a 3×3 max pooling operation with a stride of 2 further reduces 

the spatial resolution while capturing the maximum activation 

within a local region. 

Fire Modules: These are the repeated building blocks of 

SqueezeNet, responsible for learning complex features from 

the data. The model contains several Fire Modules (Fire2-

FireN) that are stacked one after another. Each of these Fire 

Modules has two major components namely, Squeeze Layer: 

This layer uses a 1×1 convolutional layer with fewer filters 

than Conv1 (for instance, 16 filters). It is meant to reduce the 

feature maps’ dimensionality for computational efficiency. 

Expand Layer: This layer is used for identifying more complex 

features using less information and it has two branches 

namely, expand 1×1: This sub-branch employs a small size 

filter compared to squeeze layer such as 64 filters. 

Expand 3×3: On the other hand, this part uses a filter with 

similar number of filters as the previous branch yet bigger size 

i.e. 64 filters only. In short, applying both the convolutions of 

size 1 by 1 and convolutions of size 3 by 3 enables the network 

to take care of local as well as global properties within an 

image. By merging both expand Branches results in richer 

informative feature representation. Attention Mechanism: 

This is a key innovation incorporated into the standard 

SqueezeNet architecture. It aims to direct the model's focus 

towards critical regions of the rice leaf image that are most 

relevant for nutrient deficiency classification. While specific 

implementations may vary, the general approach involves: 

 

Algorithm 1: Attention Squeeznet 

1. Initialize weights and biases: 

𝑊𝑠, 𝑏𝑠: Initialize squeeze layer weights and biases 

𝑊𝑒 , 𝑏𝑒: Initialize expand layer weights and biases 

𝑊𝑎 , 𝑏𝑎: Initialize attention layer weights and biases 

𝑊𝑑𝑒𝑛𝑠𝑒 , 𝑏𝑑𝑒𝑛𝑠𝑒: Initialize dense layer weights and biases 

# Initialize weights and biases for the squeeze, expand, 

attention, and dense layers. 

# Loop through the Dataset: 

2. For each image in the dataset: 

a. # Perform the Squeeze Layer operations. 

b. 𝑜𝑢𝑡𝑐 = 𝑐𝑜𝑛𝑣(𝑥, 𝑊𝑠, 𝑏𝑠)  

c. 𝑜𝑢𝑡𝑐 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑜𝑢𝑡𝑐)  

d. Check if attention is to be used: 

e. 𝑢𝑠𝑒𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒  

f. If yes, compute attention weights and 

apply them. 

i. 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑐𝑜𝑛𝑣(𝑜𝑢𝑡𝑐 , 𝑊𝑎, 𝑏𝑎))  

ii. 𝑜𝑢𝑡𝑐 = 𝑜𝑢𝑡𝑐 ∗ 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  

g. # Perform the Expand Layer operations. 

h. 𝑜𝑢𝑡𝑐 = 𝑐𝑜𝑛𝑣(𝑜𝑢𝑡𝑐, 𝑊𝑒 , 𝑏𝑒)  

i. 𝑜𝑢𝑡𝑐 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑜𝑢𝑡𝑐)  

j. # Perform average pooling. 

k. 𝑝𝑜𝑜𝑙𝑒𝑑𝑜𝑢𝑡 = 𝑎𝑣𝑔𝑝𝑜𝑜𝑙(𝑜𝑢𝑡𝑐 , 𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒)  

l. Perform the Dense Layer operations. 

m. 𝑙𝑜𝑔𝑖𝑡𝑠 =
𝑑𝑒𝑛𝑠𝑒(𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑜𝑢𝑡 , 𝑊𝑑𝑒𝑛𝑠𝑒 , 𝑏𝑑𝑒𝑛𝑠𝑒)  

n. Apply the SoftMax function to obtain 

probabilities. 

o. 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(log𝑖𝑡𝑠)  

p. Compute the loss using the cross-entropy 

function. 

q. 𝑙𝑜𝑠𝑠 = −𝑛𝑝. 𝑠𝑢𝑚(𝑡𝑟𝑢𝑒𝑙𝑎𝑏𝑒𝑙 ∗
𝑛𝑝. 𝑙𝑜𝑔(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠))  

r. Update weights using backpropagation  

3. Prediction: 

184



 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑐𝑙𝑎𝑠𝑠 = 𝑛𝑝. 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)  

 

Integrating the Attention Module: Typically placed after 

Squeeze layer in each fire module. Attention Map Generation 

-This generates attention map that highlights important 

channels or location within feature maps predominantly in 

identifying nutritional deficiencies. Feature Refinement –In 

addition, this attention map is element wise multiplied by 

original feature map coming out from same fire module which 

ultimately emphasizes on critical features relying upon 

guidance provided by attention mechanism thereby possibly 

leading to enhanced classification accuracy. Conv10 – The last 

convolutional layer that uses 1×1 filter which is aimed to 

reduce the feature map size into few channels corresponding 

to number of nutrient deficiency classes (usually 3 for 

Nitrogen, Phosphorus, and Potassium deficiencies). 

Global Average Pooling – This reduces dimensionality of 

the feature maps further by averaging on channel values so that 

outcome becomes a single vector. SoftMax: This function will 

convert the output vector elements into probabilities which 

reflect how confident the model is in each nutrient-deficiency 

class. In such cases, there may be higher or lower confidence 

levels on specific types of deficiencies. Conv10: The final 

convolutional layer is regarded as one of a kind, it employs 

1×1 filters and shrinks the feature map dimensions to several 

channels matching different nutrient deficiency types usually 

up to 3 for Nitrogen, Phosphorous and Potassium deficiencies. 

Global Average Pooling: Dimensionality of feature maps 

decreases through this layer by averaging over values within 

each channel to obtain a single feature vector. SoftMax: 

Lastly, applying this function computes a probability from 

every element in the resultant vector so that we can determine 

how many nutrient-deficiency cases have been predicted with 

high or low confidence levels amongst other things. Overall, 

the proposed Attention SqueezeNet model combines the 

efficiency of SqueezeNet with the benefits of an attention 

mechanism. It allows these models to focus on crucial visual 

cues in rice leaf images hence leading to improved diagnosis 

accuracies for malnutrition. 

 

 

4. RESULTS AND DISCUSSIONS  

 

4.1 Dataset 

 

The "Nutrient-Deficiency-Symptoms-in-Rice" dataset used 

in this study was sourced from Kaggle and contains 1,156 

labeled images of rice plant leaves showing deficiencies in 

three essential nutrients: These are the three main Plant 

nutrients that are usually referred to by acronym NPK. The 

Nitrogen deficiency has 440 images, Phosphorus deficiency 

333 and Potassium deficiency has 383 images. These images 

differ concerning their resolution and file type: On the one 

hand, these images show various visual manifestations of 

nutrient deficiencies. I believe that the data set established here 

can be used effectively to develop Markov models for 

diagnosing these deficiencies so that appropriate interferences 

can be taken to ensure the right crop is grown, at the right time, 

at the right place and in the right manner meeting the desired 

yields. 

To ensure a fair and reliable evaluation of the proposed 

models, the dataset was split into training, validation, and 

testing sets using an 80:10:10 ratio. The samples were selected 

using a stratified technique to retain the class distribution in 

each of the sub-sets, therefore the proportions of each type of 

deficiency remained the same. This division will help the 

training set build up the model, the validation set fine tune the 

hyperparameters and finally the testing set to test the model. 

The size and categorization of this dataset is beneficial for the 

construction of more comprehensive solutions to detect 

nutrient deficiencies in rice crops. 

SqueezeNet, InceptionResNetV2, and DCNN models’ 

performance are shown in the Figure 2 over ten epochs. From 

90 percent at the beginning, DCNN model shows a gradual 

increase to reach 94.5 percent at the end. This indicated little 

but steady progress in nutrient deficiency diagnoses. On the 

other hand, InceptionResNetV2 starts at about ninety-one 

percent and has some growing pains that take it up as high as 

94.9%. Nonetheless there is some instability in it because its 

last value is 93%. In contrast to this, Squeeze Net begins with 

an eighty nine percent accuracy rate but then goes through 

most impressive growth until about 98% by end of tenth 

epoch. The steadily increasing percentage values indicate that 

SqueezeNet has the highest ability to accurately detect any 

shortage of food substances within rice plants. 

 

 
 

Figure 2. Accuracy 

 

 
 

Figure 3. Precision 

 

Three models are evaluated for their precision, which is the 

ratio of true positives to positive predictions in Figure 3. The 

DCNN model on the other hand has a starting precision of 89% 

and this steadily increases into a final epoch of 94.2%. This 

slow increase suggests that DCNN is getting better at 

identifying true nutrient deficiencies more accurately. 

InceptionResNetV2 starts at 90%, peaks at 94.6%, but drops 

slightly to 94% by the end thus indicating its inconsistency and 

volatility respectively. However, SqueezeNet commences 

with an initial accuracy rate of 92%, and gradually rises to be 

185



 

as high as 96%. This regularity points out how well 

SqueezeNet can identify nutrient deficiencies correctly 

reducing false positive errors. 

The Figure 4 shows the recall rates which measure that 

fraction of real positives correctly classified by the models. 

DCNN begins at 90% and grows steadily, achieving 94.6% by 

the last epoch, suggesting the improved ability to identify 

actual positive cases as time goes by. InceptionResNetV2 

commences at 91% and reaches a maximum of 94.5% but has 

some slight fluctuations indicating less stable recall 

performance. SqueezeNet is better than both; it starts at 93% 

and rises consistently to 97%. Therefore, SqueezeNet is more 

accurate in detecting true positive cases of nutrient 

deficiencies, making it an extremely dependable diagnostic 

tool. 

 

 
 

Figure 4. Recall 

 

 
 

Figure 5. F1-score 

 

Figure 5 shows the F1-Score which is a harmonic mean of 

precision and recall, therefore balancing the two metrics. 

DCNN begins with an F1-Score of 89.2%, rising slowly to 

reach 94% at the last epoch, thus advancing both precision and 

recall uniformly. InceptionResNetV2 commences at 90%, 

rises to peak at 94.2% but has oscillations resulting in it ending 

at 93%. This indicates its poor ability to maintain balanced 

precision and recall over time. SqueezeNet opens up with a 

value of 92% that increases monotonously up to the highest 

F1-Score value of 96% throughout the epochs. This reflects 

how well SqueezeNet performs in correctly identifying true 

positive cases while minimizing false positives during 

evaluation or learning process. 

A decreasing flow of error predictions shows an improved 

performance in models as shown in Figure 6. There is a higher 

initial loss value for DCNN (0.153) and a significant drop to 

0.115 which is still the highest among all the other models, 

implying that it learnt less effectively than others. For 

InceptionResNetV2, there was a huge improvement from 0.15 

to 0.112 with little variations. At the beginning, SqueezeNet 

started at a value of 0.14 and gradually reduced up to 0.10 

indicating that this has brought about the least loss values 

across epochs. The lowering loss values of SqueezeNet 

underscores its superior learning efficiency and excellent 

performance on minimizing prediction errors, thus making it 

the best model for diagnosis of nutrient deficiencies in rice 

plants. 

DCNNs excel in image recognition tasks by extracting 

features from raw pixel data hierarchically. In Figure 7, SHAP 

plots for feature impact analysis for DCNN has been shown, if 

“Leaf Area” or “Texture Smoothness” have high SHAP 

values, it means that they strongly predict nutrient deficiencies 

in rice plants. Multiple convolutional layers alternate with 

non-linearities to learn multiple levels of abstraction, allowing 

these networks to efficiently represent complex patterns in 

images. Interpreting DCNNs is hard due to their black-box 

nature. The SHAP plots help understand the importance of 

different features and specific visual cues like leaf morphology 

or colour distribution affecting nutrient deficiency predictions. 

 

 
 

Figure 6. Loss 
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Figure 7. Impact of features for training DCNN on N, P, K 

deficiency in paddy 

 

 

 

 
 

Figure 8. Impact of features for training InceptionResNetV2 

on N, P, K deficiency in paddy 

The inceptionResNetV2 merges the virtues of inception 

modules with residual connections that uplift feature 

extraction and gradient flow in the network. 

InceptionResNetV2 SHAP plots may show strong SHAP 

values for features such as “Leaf Perimeter” or “Vein Pattern 

Density”, which indicate their importance in diagnosing 

nutrient deficiencies. The architecture of this model enables it 

to efficiently learn fine details and diverse patterns in images 

of rice plants. This thus helps understand how these specific 

features are affecting predictions, thereby illustrating what the 

model thinks about image features associated with nutritional 

deficiency symptoms. InceptionResNetV2 does well on 

complex visual patterns as a result it is good for agricultural 

image analysis tasks (Figure 8). 

 

 

 

 
 

Figure 9. Impact of features for training proposed Attention-

SqueezeNet on N, P, K deficiency in paddy 

 

SqueezeNet’s lightweight architecture is meant to give high 

accuracy by reducing model size and computational cost. In 

SHAP plots for SqueezeNet, the features ‘Color Intensity’ and 

‘Spots Count’ may display large SHAP values, thus indicating 

their relevance in predicting nutrient deficiencies. This model 
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utilizes feature information efficiently yet retains its predictive 

accuracy, a trait that makes it ideal for resource-scarce 

situations like embedded systems or mobile applications. 

SHAP plots are useful because they show which visual 

characteristics of rice plant leaves best reveal nutrient 

deficiencies. The straightforward design of SqueezeNet 

ensures faster inference without compromising 

interpretability, hence making it useful in real-time 

agricultural decision support systems (Figure 9). 

 

 

5. CONCLUSIONS 

 

This work established that deep learning models, with 

especial focus to the SqueezeNet, could be used to predict 

nutrient deficiencies of potted Rice plants by analyzing 

pictures of the plants. For this reason, SqueezeNet was 

selected due to its ability to save computation and memory 

space through design features such as small size 1×1 

convolution and other non-redundant parts, ideal for 

agricultural scenarios with limited resources. The application 

of Explainable AI methods allowed obtaining insights into 

specific features: it was revealed that for nutrient deficiency 

detection, information about the morphology of the leaves, 

their color distribution, and texture are valuable. This 

explainability not only increases the transparency of the model 

but also gives farmers and agronomists a tool for making 

proper decisions on crop health and productivity based on 

data, strengthening the use of technology for sustainable 

agriculture purposes. 

However, several limitations and drawbacks need further 

consideration for the proposed model in realistic applications. 

Firstly, high-quality images with a good annotation of various 

plant species represents a valuable resource that might be 

difficult to gather due to the variability in image quality, light 

intensity, as well as variability in plant morphology across 

different geographic regions. Another issue is the cost of 

annotations which is highly impracticable for labeling big 

training sets. Future work can try to develop other learning 

paradigms such as semi-supervised learning and unsupervised 

learning in order to reduce dependence on labeled data and 

enhance generalization capability. Furthermore, it requires 

domain adaptations to acquire methods that can be adapted for 

the various geographical and climatic agro-ecological zones 

that exist in the country. 

The other significant factor that needs to be examined is the 

applicability of this method in real field operations. To achieve 

all of the objectives mentioned, the proposed approach should 

complement the current and future agricultural management 

platforms and sensor systems to aggregate, process, and 

analyze data. If the diagnostic results are fed to smart farming 

platforms and real-time data acquisition through IoT-based 

sensor networks, the former can issue recommendations to the 

latter. Also enhancing technical translations of the diagnostic 

outputs into accurate, localized fertilization advice will 

improve the applicability and feasibility of the system and 

hence directly lead to better crop yields and sustainability. 

Altogether, one can state that the presented work proves the 

applicability of SqueezeNet and Explainable AI for the 

automated identification of nutrient deficiencies; however, 

addressing issues connected to data quantity and quality as 

well as the adaptation of the model for practical use is 

important. Subsequent research should seek to develop more 

effective, sustainable systems that not only improve model 

performance, and reduce under estimation, but also closes the 

gap between theoretical AI applications and their practical 

implementation in the agricultural industry. Any such attempts 

will help achieve a higher outcome in tackling food insecurity 

in the global arena and improving sustainable farming 

practices including productivity in the light of growing 

necessities for food. 
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