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 In the advancement of modern industry and technology, vacuum pressure relief valves play 

a pivotal role across various fields. Traditional physical experimental approaches face 

limitations such as high costs, limited flexibility, and incomplete data collection. This study 

leverages a virtual simulation platform to focus on the validation and refinement of fluid 

dynamics models for vacuum pressure relief valves. By innovatively employing a multi-

software integrated modeling and simulation strategy, the study optimizes models through 

data-driven analysis and establishes a dynamic adaptive correction mechanism. Based on 

the operating principles of vacuum pressure relief valves and fluid dynamics theory, the 

research involves model construction, simulation experiment design, and data collection. 

Techniques such as data correlation analysis and error metric evaluation are employed for 

model validation, and targeted correction strategies are developed to address error sources. 

The corrected model is further validated following intelligent parameter optimization. 

Results demonstrate significant improvements in key performance indicators, providing 

robust technical support for advancements in the vacuum pressure relief valve domain. 
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1. INTRODUCTION 

 

1.1 Research background and significance 

 

With the rapid development of modern industry and science 

and technology, vacuum pressure relief valves, as critical 

components in many fields, play an indispensable role. 

Whether in high-end industries such as semiconductor 

manufacturing, aerospace, chemical and pharmaceutical 

sectors, or in general industrial production and laboratory 

research scenarios, precisely controlling the pressure within 

vacuum systems is of great importance for ensuring the 

stability of production processes, improving product quality, 

and ensuring the accuracy of experimental data. 

Traditional research methods for vacuum pressure relief 

valves mainly rely on physical experimental testing. Although 

this approach can intuitively reflect the performance of the 

valves under actual working conditions, it also has many 

limitations. On the one hand, building a real experimental 

platform often requires significant manpower, material, and 

time costs. Every step, from purchasing and installing 

equipment to preparing samples and simulating working 

conditions, requires meticulous operations. Moreover, 

whenever experimental conditions need to be adjusted, such as 

changes in pressure range, fluid medium, or temperature 

environment, the entire experimental platform must be 

reconfigured, which results in poor flexibility. On the other 

hand, physical experiments lack comprehensiveness in data 

collection. Limited by the positioning and quantity of sensors, 

it is difficult to obtain detailed information on the flow field 

within the valve, making it challenging to accurately capture 

transient phenomena and microscopic flow mechanisms [1]. 

With the vigorous development of computer technology and 

numerical simulation methods, virtual simulation platforms 

have emerged, opening new avenues for the research of 

vacuum pressure relief valves. Through virtual simulation, it 

is possible to construct models in a computer environment that 

closely approximate real physical scenarios [2], allowing the 

flexible setting of diverse boundary conditions and working 

parameters. This approach enables rapid simulation of valve 

performance under different working conditions, greatly 

improving research efficiency. At the same time, the massive 

amount of data generated by virtual simulations, combined 

with advanced data analysis techniques, allows for in-depth 

exploration of the complex fluid dynamics principles within 

valves. This can precisely identify the key factors affecting 

performance, providing solid data support for model 

optimization and correction, and ultimately promoting the 

application of vacuum pressure relief valves in engineering 

practices towards greater efficiency and reliability [3, 4]. 

This study focuses on fully utilizing the convenience 

provided by virtual simulation platforms and systematically 

applying data analysis methods to scientifically validate and 

accurately refine the fluid dynamics model of vacuum pressure 

relief valves. It aims to address the shortcomings of traditional 

research methods and inject new vitality into the technological 

development of related fields. 
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1.2 Research innovations 

 

The innovations of this study are mainly reflected in the 

following three aspects: 

(1) The adoption of a multi-software integrated modeling 

and simulation strategy, leveraging the advantages of various 

specialized software. CAD software is used for precise valve 

modeling, CFD software is employed for flow field simulation 

calculations, and MATLAB and other software are applied for 

data analysis and post-processing of models. This approach 

fully utilizes the strengths of each software in different stages, 

breaking the functional limitations of a single software, and 

achieving efficient end-to-end processing from model 

construction to result analysis. 

(2) A data-driven model optimization method. Unlike 

traditional approaches relying on small-sample experimental 

validation and model refinement, this study uses the massive 

data generated by virtual simulations. Advanced technologies 

such as data mining and machine learning are employed to 

deeply explore the hidden physical laws behind the data and 

accurately identify the key factors affecting valve performance. 

This provides a comprehensive and scientific basis for model 

optimization, making the process more intelligent and precise. 

(3) The establishment of a dynamic adaptive model 

refinement mechanism. Considering the variability of working 

conditions for vacuum pressure relief valves in practical 

engineering, the model refinement system established in this 

study is not static but can adjust refinement strategies in real 

time based on validation results under different working 

conditions. The model dynamically adapts to complex changes 

in conditions, such as pressure transients, fluid medium 

switches, and valve wear, maintaining high prediction 

accuracy and providing strong assurance for the reliable 

application of vacuum pressure relief valves in complex and 

variable engineering environments. 

 

1.3 Research technical roadmap 

 

The technical roadmap of this study is shown in Figure 1. 

 

 
 

Figure 1. Research technical roadmap 

2. OPERATING PRINCIPLES OF VACUUM 

PRESSURE RELIEF VALVES AND FUNDAMENTALS 

OF FLUID DYNAMICS 

 

2.1 Structural analysis of vacuum pressure relief valves 

 

A typical vacuum pressure relief valve consists of core 

components such as the valve body, valve core, spring, and 

sealing elements. Taking a direct-acting pressure relief valve 

as an example, a three-dimensional exploded view (Figure 2) 

fully presents the structural components. The valve body 

serves as the casing that houses the internal components and 

connects the pipeline. The valve core moves flexibly in 

response to pressure changes, with its head shape significantly 

influencing flow characteristics. The spring provides a preload 

force, working in coordination to regulate pressure, while the 

sealing elements ensure no leakage occurs. The materials of 

each component are selected based on the severity of working 

conditions. For instance, high-temperature environments 

require high-temperature-resistant alloys while also 

considering the feasibility of mechanical processing to ensure 

excellent overall performance. For different structural types, 

such as pilot-operated pressure relief valves, a pilot valve is 

introduced to precisely control the main valve opening. This 

type shows advantages in high-pressure differential and large-

flow scenarios, with fast response speed and high adjustment 

accuracy. 

 

 
 

Figure 2. 3D exploded view of the vacuum pressure relief 

valve 

 

2.2 Analysis of operating principles 

 

Based on gas dynamics principles, when the inlet pressure 

acts on the valve core, it overcomes the spring force to push 

the valve core, thereby opening the pressure relief channel. 

The intake, regulation, and exhaust processes can be described 

as follows: At the initial stage of intake, the pressure 

overcomes the static friction of the valve core, allowing a 

small airflow to pass through. During the regulation stage, the 

valve core maintains a dynamic balance and adjusts the 

opening degree according to inlet pressure fluctuations to 

stabilize the outlet pressure, accurately controlling based on 

the force balance equation of the valve core (𝐹𝑝 − 𝐹𝑠 − 𝐹𝑓 =
𝑚𝑎, where 𝐹𝑝 is the fluid pressure, 𝐹𝑠 is the spring force, 𝐹𝑓 

is the frictional force, m is the mass of the valve core, and a is 

the acceleration). During exhaust, when the inlet pressure 

drops sharply, the spring force resets the valve core to close 
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the valve. Comparing gas and liquid mediums, liquids, due to 

their high viscosity and near-incompressibility, exhibit 

significantly different flow states within the valve, such as 

laminar flow being more likely, different boundary layer 

separation characteristics, and complex, variable flow patterns 

in multiphase flow scenarios involving gas-liquid mixtures. 

These characteristics pose substantial challenges for modeling. 

 

2.3 Application of core fluid dynamics theories 

 

The continuity equation (𝜌1𝜈1𝐴1 = 𝜌2𝜈2𝐴2), Bernoulli 

equation (𝑃1 +
1

2
𝜌𝜈12 + 𝜌𝑔ℎ1 = 𝑃2 +

1

2
𝜌𝜈22 + 𝜌𝑔ℎ2), and 

momentum equation are indispensable in the flow field 

analysis of vacuum pressure relief valves [5]. Combined with 

local simplifications in the valve, a flow formula suitable for 

the valve port contraction section is derived (𝑄 = 𝐶𝑑𝐴0√
2𝛥𝑃

𝜌
, 

where 𝐶𝑑 is the flow coefficient, 𝐴0 is the valve port area, ΔP 

is the pressure difference between inlet and outlet, and ρ is the 

fluid density). Turbulence models [6], such as the standard k-

ε model, are introduced, with equation being 
𝜕(𝜌𝜅)

𝜕𝑡
+

𝜕(𝜌𝜅𝜈𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 − 𝜌𝜀, where k is the turbulent kinetic 

energy, ε is the dissipation rate of turbulent kinetic energy, 𝐺𝑘 

is the turbulent energy production term, μ is dynamic viscosity, 

μt is turbulent viscosity, and 𝜎𝑘  is the Prandtl number of 

turbulent kinetic energy), to capture complex flows in high 

turbulence regions downstream of the valve core. Boundary 

layer theory explains low-speed flow dominated by viscous 

forces near the wall, guiding precise parameter settings for 

numerical simulations. 

 

 

3. CONSTRUCTION OF THE FLUID DYNAMICS 

MODEL FOR VACUUM PRESSURE RELIEF VALVES 

 

3.1 Construction of a 3D model of vacuum pressure relief 

valves 

 

The 3D model of a vacuum pressure relief valve can be 

constructed using professional 3D modeling software (such as 

SolidWorks) for detailed modeling of the valve body. This 

provides a comprehensive 3D perspective of the valve body 

structure. The valve body is shaped like a relatively regular 

cylinder with a complex and precise internal cavity. Through 

accurate dimension settings, the fluid can flow smoothly 

within. As shown in Figure 3. 

 

 
 

Figure 3. 3D model of a vacuum pressure relief valve 

3.2 Selection of fluid dynamics models 

 

Based on the Navier-Stokes equation system ( 𝜌(
𝜕𝜇

𝜕𝑡
+

𝑢. 𝛻𝑢) = −𝛻𝑝 + 𝑢𝛻2𝑢 + 𝑓 ), and considering the 

characteristics of the actual working conditions of vacuum 

pressure relief valves, appropriate turbulence models are 

carefully chosen [6]. For high Reynolds number turbulent 

regions within the valve and areas with significant anisotropy 

in the flow field, the Reynolds Stress Model is preferred, as it 

accurately captures turbulent fluctuation correlation terms. 

Boundary conditions are precisely set according to 

experimental conditions. For example, the inlet pressure is set 

to vary stepwise from 10 kPa to 100 kPa under actual 

conditions, and the temperature range is adjusted between 

25℃ and 150℃ [7]. Wall boundary conditions are carefully 

considered, with surface roughness parameters set based on 

measured roughness values of the valve body surface. This 

ensures that the mathematical model closely matches real 

working conditions, laying a foundation for accurate 

simulations. 

 

3.3 Optimization of model solving strategies 

 

In the CFD solver, choosing an appropriate solution 

algorithm is crucial [3]. The pressure-based algorithm is 

suitable for most subsonic flows, while the density-based 

algorithm is supplemented for enhanced stability in locally 

supersonic flow regions [8]. Iterative convergence criteria are 

finely set, with residual control standards set between 10-5 and 

10-6. Simultaneously, key physical quantities such as inlet and 

outlet flow and pressure convergence are monitored to ensure 

a highly efficient and stable solving process, significantly 

reducing computation cycles [9]. During the numerical 

calculation process, the built-in monitoring function of the 

solver is used to track the iterative convergence trends of key 

physical quantities such as pressure, flow, and velocity in real-

time. Computational resource allocation is dynamically 

adjusted, and a complete computation log is recorded to 

provide accumulated data and experience for in-depth analysis 

of simulation results and model optimization. 

 

 

4. SIMULATION EXPERIMENT DESIGN AND DATA 

COLLECTION 

 

4.1 Experimental plan design 

 

A multi-dimensional experimental plan is developed to 

comprehensively cover different inlet pressure ranges (from 

coarse vacuum at 1000 Pa to ultra-high vacuum at 10-4 Pa), a 

wide flow rate range (covering micro flow rates of 0.1 L/min 

to the rated maximum flow rate of 10 L/min), and diverse 

temperature conditions (from room temperature of 25℃ to 

special industrial high temperatures of 200℃), accurately 

simulating actual application scenarios in industries such as 

semiconductors, photovoltaics, and chemicals. The valve 

opening adjustment strategy is precisely planned, combining 

an electric actuator to implement various opening adjustment 

methods, including equal-step, logarithmic-step, and random-

step adjustments. This deeply explores the dynamic changes 

in valve flow and pressure characteristics with the valve 

opening. Multiple repeat experiments (no less than 8 times) are 

set up for each working condition, and statistical methods are 

used to strictly control experimental errors to ensure the 
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representativeness and reliability of the data. The entire 

experimental design process is shown in Figure 4. 

 

 
 

Figure 4. Simulation platform setup and experimental 

process 

 

4.2 Data collection and processing 

 

In the virtual simulation experiments of the vacuum 

pressure-reducing valve, multiple types of data must be 

collected to comprehensively reflect its performance. Pressure 

data covers key positions inside the valve, such as the 

throttling port, valve chamber, and inlet and outlet points, to 

analyze pressure drop and pressure distribution uniformity. 

Velocity data includes the magnitude and direction of fluid 

flow in various regions, aiding in understanding flow paths, 

potential backflow, and vortices. Flow rate data, involving the 

inlet and outlet flow rates, evaluates flow regulation 

characteristics. Displacement and force data of the valve core 

are crucial for investigating the dynamic response and stability 

of the valve. 

Using the built-in data acquisition tools in simulation 

software, the sampling frequency is set at 0.01 seconds per 

interval to capture transient changes in flow field parameters. 

For steady-state simulations, data is collected continuously for 

100–200 points after the flow field stabilizes, averaging the 

values to reduce random errors. For transient simulations, data 

is collected throughout the process to record dynamic changes 

during valve opening or sudden changes in operating 

conditions. 

The collected data needs preprocessing to exclude obvious 

outliers caused by factors such as mesh distortion or non-

convergence. Filtering algorithms are applied to remove high-

frequency noise, using methods such as moving averages or 

low-pass filtering to smooth the data while preserving trend 

features. During feature extraction, pressure fluctuation 

amplitudes and frequencies are calculated to reflect the 

intensity and periodicity of pressure fluctuations. Turbulence 

characteristics are quantified by calculating turbulence 

intensity and Reynolds stress tensor components. Additionally, 

the peak, mean, and standard deviation of valve core 

displacement are analyzed to evaluate its motion stability, 

providing precise data for subsequent model validation and 

refinement [10]. 

 

 

5. MODEL VALIDATION BASED ON DATA 

ANALYSIS 

 

5.1 In-depth correlation analysis of data 

 

Using multivariate statistical methods such as Pearson 

correlation coefficients and Spearman rank correlation 

coefficients, a comprehensive analysis of experimental and 

numerical simulation data is performed for key variables like 

inlet and outlet pressure, flow rate, and velocity [11, 12]. The 

linear or non-linear correlation degree is accurately quantified, 

and high-resolution scatter plots are drawn to visually present 

data distribution patterns and trends. For example, under a 

specific inlet pressure-flow condition, a Pearson correlation 

coefficient of 0.95 indicates a high linear correlation between 

simulation and experimental data. However, under extreme 

high-temperature conditions, the correlation for some 

variables drops sharply to 0.7, suggesting potential model 

deviations under such conditions. Based on the correlation 

analysis results, the model's consistency with actual conditions 

is deeply assessed. If weak correlation regions are identified, 

the sources of deviations are investigated by combining fluid 

dynamics principles and experimental details, such as 

inappropriate model geometric simplifications or inaccuracies 

in turbulence simulation. 

 

5.2 Precise calculation and evaluation of error metrics 

 

A set of rigorous error metrics is defined and calculated, 

including root mean square error (RMSE), mean absolute error 

(MAE), relative error (RE), and Nash efficiency coefficient 

(NSE), to measure the deviation between model predictions 

and experimental values from various dimensions. For 

instance, the RMSE is calculated as 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)𝑛
i=1

2

𝑛
, 

where 𝑦𝑖  represents experimental values, �̂�𝑖  denotes 

simulation values, and n is the number of data points. Based 

on statistical results of error metrics, error bar charts and line 

graphs are plotted for different operating conditions to 

intuitively compare the magnitude and fluctuation trends of 

model errors. Significant error conditions are precisely 

identified, and the root causes of errors are thoroughly 

explored to provide targeted insights for model refinement 

[13]. 

 

5.3 Analysis of model validation results 

 

Integrating the conclusions from correlation analysis and 

error metric evaluations, a comprehensive and in-depth 

discussion is conducted on the validation effectiveness of the 

fluid dynamics model in simulating the operating process of 

the vacuum pressure-reducing valve. The reliability and 

limitations of the model in describing various physical 

quantities under conventional and extreme operating 

conditions are clarified. 

In the comparison between the simulation data and actual 

data of the vacuum pressure relief valve: For the flow 

coefficient, in most operating conditions, the simulation 

calculation values have a deviation of less than 5% compared 

to the theoretical formula values or empirical data. Under 

extreme operating conditions, the deviation reaches up to 8%, 

which is due to the failure of the simplified assumptions in the 

traditional theoretical formulas caused by high viscosity fluids 

and very small valve core openings. For the pressure loss 

coefficient, the deviation is generally controlled within 10%, 

but it increases to 15% under transonic conditions, due to the 

model's difficulty in accurately describing the complex 

changes in transonic flow. The valve outlet pressure stability 

index highly matches the actual data under steady-state 

conditions, with fluctuation amplitude controlled within ±2% 
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of the set value. However, during dynamic condition switching, 

overshoot or undershoot occurs, with the maximum overshoot 

reaching 5% of the set value. 

In summary, the model demonstrates high reliability under 

conventional conditions. However, problems arise under 

extreme conditions and during dynamic transient processes. 

Improvements are needed in handling special flow states, 

optimizing the valve core's dynamic response model, and 

enhancing the accuracy of transient simulations to improve the 

model's accuracy and reliability. 

 

 

6. MODEL CORRECTION STRATEGIES AND 

IMPLEMENTATION 

 

6.1 Analysis of error sources 

 

Based on the diagnostic of model verification results and 

deviation analysis, a systematic correction strategy is 

formulated for different types of root cause problems. If 

excessive geometric simplification is found in the model, the 

original design drawings should be carefully reviewed, and 

key structural details should be appropriately restored, such as 

small fillets and gap channels, followed by remeshing for 

recalculation. If the turbulence model's applicability is 

inadequate, extensive research should be conducted on new 

improved turbulence models [14], such as the separation 

vortex model, or optimize the existing model parameters based 

on experimental data, using genetic algorithms to optimize the 

constants in the k-ε model, thereby enhancing the model's 

ability to simulate complex turbulence. A data-driven 

correction concept should be established, introducing machine 

learning algorithms to create an intelligent mapping from 

experimental data to model correction parameters. Various 

machine learning algorithms should be compared in the model 

correction scenario, and a backpropagation neural network 

architecture should be selected due to its powerful nonlinear 

mapping capability, which can efficiently capture complex 

relationships in the data. 

 

6.2 Intelligent optimization of model parameters 

 

The preprocessed experimental data is divided into training, 

validation, and test sets in appropriate proportions. The 

selected machine learning algorithm is driven by the training 

set data [12], with the core objective of minimizing model 

prediction errors. The algorithm iteratively learns the model 

correction parameters, and the validation set dynamically 

monitors the risk of overfitting, adjusting algorithm 

hyperparameters in a timely manner. After multiple rounds of 

high-intensity training and optimization, the optimal model 

correction parameters are extracted and seamlessly integrated 

into the original fluid dynamics model. The model equation 

coefficients, boundary condition parameters, or turbulence 

model constants are precisely updated, reshaping the high-

precision corrected model [15]. For example, correction 

coefficients for a turbulence model obtained through neural 

network training reduce prediction errors by 30% under high 

Reynolds number conditions. 

 

 
(a) 

 

 
(b) 

 

Figure 5. (a) RMSE values before and after correction; (b) Coefficient deviation comparison before and after correction 
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6.3 Verification of the corrected model 

 

To comprehensively evaluate the effectiveness of the 

corrective measures, a systematic validation of the fluid 

dynamics model for the vacuum pressure reducing valve was 

conducted [16]. In terms of the flow coefficient, simulations 

were re-conducted under various working conditions, 

comparing the pre- and post-correction model calculations 

with theoretical formula derivations or empirical data. After 

correction, the deviation of the flow coefficient under extreme 

conditions such as high-viscosity fluids and minimal valve 

openings was significantly reduced, dropping from a 

maximum of 8% to within 3%, achieving accuracy comparable 

to that of conventional working conditions. This strongly 

demonstrates the effectiveness of parameter optimization and 

structural adjustments in improving the accuracy of complex 

flow state simulations. 

For the validation of the pressure loss coefficient, emphasis 

was placed on testing special conditions such as transonic flow. 

The deviation between the corrected model's predicted 

pressure loss and actual energy loss data under transonic 

conditions was significantly reduced from approximately 15% 

to within 8%. This improvement highlights the model's 

enhanced handling of fluid compressibility changes, 

shockwaves, and other nonlinear phenomena, enabling a more 

precise reflection of the valve's internal flow resistance 

characteristics. 

The validation of downstream pressure stability focused on 

dynamic working conditions during transitions. Simulations 

were performed for scenarios such as sudden changes in inlet 

pressure and rapid flow adjustments, monitoring the 

downstream pressure change curves. The corrected model 

effectively suppressed overshoot or undershoot phenomena in 

downstream pressure during dynamic transitions, reducing the 

maximum overshoot from up to 5% of the set value to within 

2%. The characteristics of fluctuations, such as amplitude and 

frequency, also showed improved consistency with actual 

experimental or engineering operation data, further 

demonstrating the model's optimization of valve dynamic 

response characteristics. The verification data results are 

shown in Figures 5(a) and 5(b). 

In summary, the corrected model shows significant 

improvements in all key performance indicators and greatly 

enhances conformity with actual working conditions. 

However, there are still areas for refinement, such as 

predicting accuracy under extreme complex conditions like 

multiphase flow and high-temperature/high-pressure coupling. 

Future research could further explore the depth and breadth of 

multi-physics coupling, optimize the model's dynamic 

adaptability, and introduce more advanced turbulence models 

and numerical algorithms to continuously improve the model's 

universality and accuracy, meeting the demands of 

increasingly complex engineering applications for vacuum 

pressure reducing valves. 

 

 

7. CONCLUSIONS AND OUTLOOK 

 

7.1 Research summary 

 

The full process of validation and correction of the vacuum 

pressure reducing valve's fluid dynamics model based on data 

analysis encompasses key stages such as theoretical 

foundation, model construction, experimental design, data 

analysis, model optimization, and engineering verification. 

Systematic achievements at each stage include the 

construction of a high-precision model, collection of massive 

experimental data, extraction of critical data patterns, 

implementation of precise model corrections, and successful 

application to engineering cases. The study emphasizes the 

core challenges addressed, such as overcoming the limitations 

of traditional model validation, resolving the root causes of 

model deviations, and pioneering data-driven model 

optimization pathways, providing strong theoretical and 

practical support for technological innovation in vacuum 

pressure reducing valves and the vacuum technology field. 

 

7.2 Research limitations and outlook 

 

Research Limitations: Although significant progress has 

been made in the validation and correction of the fluid 

dynamics model for vacuum pressure reducing valves, there 

are still areas for improvement, such as model accuracy under 

extreme conditions, real-time dynamic response, multiphysics 

coupling simulations, limitations of data-driven methods, and 

computational resource consumption. For example, prediction 

accuracy under extremely complex conditions (e.g., 

multiphase flow and high-temperature/high-pressure 

coupling) still requires enhancement. The model's 

responsiveness and accuracy during dynamic condition 

transitions also need further improvement. Additionally, the 

current study focuses mainly on fluid dynamics while 

neglecting the comprehensive consideration of multiphysics 

effects such as thermodynamics and electromagnetism. The 

data-driven model correction relies on high-quality 

experimental data, and obtaining datasets that 

comprehensively cover various conditions is challenging. 

High-precision numerical simulations and large-scale data 

analysis require substantial computational resources, limiting 

the model's application scope. 

Future Outlook: Future research will focus on deepening 

modeling for extreme conditions, developing specialized 

turbulence and multiphase flow models for complex flow 

phenomena, enhancing dynamic response simulations, 

exploring real-time simulation technologies and online 

monitoring methods to improve transient prediction 

capabilities and response speed, constructing multiphysics 

coupling models, and integrating models across domains for 

full-condition precise simulation. The fusion of data-driven 

and physical models will be advanced, leveraging big data and 

machine learning technologies to uncover hidden patterns 

while ensuring model interpretability and generalization 

capabilities. Computational resource management will be 

optimized by exploring efficient parallel and distributed 

computing methods to reduce time costs. Application 

scenarios will be expanded to include new material 

development, intelligent manufacturing, energy conversion, 

and other fields, driving technological innovation and 

development. These efforts aim to achieve greater 

breakthroughs in theoretical innovation and technological 

application, contributing to the progress of vacuum pressure 

reducing valves and related fields. 
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