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With the rapid development of Artificial Intelligence (AI) and deep learning technologies, 

image recognition has become a key research direction in the field of product design. 

Traditional product design relies heavily on human expertise, facing challenges such as low 

efficiency and unstable quality. In contrast, automated techniques based on image 

recognition can significantly improve the efficiency and accuracy of the design process. The 

automatic extraction and classification of product design elements not only help designers 

quickly acquire information about the structure and layout of a product but also optimize 

design decisions, accelerating innovation and enhancing market responsiveness. However, 

existing image recognition methods often depend on shallow, handcrafted feature extraction, 

which struggles to handle the deep feature extraction and accurate classification of complex 

design images, especially in situations involving complex backgrounds, occlusions, or 

diverse design elements, where recognition performance is often suboptimal. To address 

these challenges, this paper proposes a deep learning-based method for automated extraction 

and classification of product design elements. First, a deep feature extraction method based 

on residual networks is introduced, which effectively captures the complex features of 

design elements through a multi-level network structure. Next, a classification method based 

on a spatial pyramid attention mechanism is designed, enabling efficient classification and 

localization of design elements at different scales and perspectives. Experimental results 

demonstrate that the proposed method significantly outperforms traditional approaches in 

terms of accuracy and robustness, effectively handling the challenges of complex design 

images. This research not only provides an efficient and accurate automation tool for the 

product design field but also offers new insights into the application of image recognition 

technology in design optimization. 
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1. INTRODUCTION

With the rapid development of AI technology, computer 

vision and deep learning methods have been widely applied in 

various fields, especially in product design, where image 

recognition technology provides strong support for product 

innovation and optimization [1-4]. In traditional product 

design processes, designers rely on experience and intuition to 

select and arrange elements, but this process is often limited 

by personal perspective, time constraints, and efficiency issues 

[5-7]. With the accumulation of large amounts of product 

image data, how to automatically extract effective design 

elements from design images, analyze and optimize design 

solutions, has become a key issue that needs to be addressed 

in the current product design field. Therefore, the research on 

automated extraction and classification of product design 

elements based on image recognition technology has gradually 

become an important research direction in both academia and 

industry. 

The application of image recognition technology in product 

design can help designers quickly obtain structural features 

and layout information of design elements, provide data 

support for product innovation, and improve design efficiency 

and quality through automation [8-11]. By automatically 

analyzing and classifying product design images, manual 

intervention can be reduced, design consistency and accuracy 

can be improved, and the product design process can be 

optimized. In addition, this research can help enterprises 

reduce product development cycles, lower costs, and improve 

market responsiveness and competitiveness [12-15]. 

Therefore, developing image recognition-based automated 

product design element extraction and classification 

technology has important academic value and broad 

application prospects. 

Although existing research has made some progress in the 

image recognition and classification of product design 

elements, there are still some shortcomings in current methods 

[16-19]. Traditional image feature extraction methods often 
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rely on shallow, handcrafted features, lacking the ability to 

accurately identify deeper, more complex design elements. 

Furthermore, existing classification methods often face issues 

of low accuracy and insufficient robustness when dealing with 

complex design patterns [20-25]. Especially when processing 

design images with diversity, complex backgrounds, or partial 

occlusions, traditional algorithms often perform 

unsatisfactorily. Therefore, how to maintain high accuracy 

while improving the robustness of the method has become a 

significant challenge in current research. 

This paper addresses the shortcomings of existing methods 

and proposes a deep learning-based image recognition 

technology aimed at improving the automated extraction and 

classification of product design elements. The main content of 

the study includes two aspects: first, the residual network for 

deep feature extraction of product design elements, which 

effectively captures the complex design features in images 

through a multi-level deep learning model; second, the design 

element classification method based on the spatial pyramid 

attention mechanism, which enables efficient classification 

and localization of design elements at different scales and 

perspectives. Through the combination of these two 

technologies, this paper not only improves the accuracy of 

design element recognition but also enhances the adaptability 

and robustness of the method. The research results are 

expected to provide an efficient and accurate automated tool 

for the product design industry, promote the intelligentization 

of product design, and offer valuable references for related 

research fields. 

 

 

2. DEEP FEATURE EXTRACTION OF PRODUCT 

DESIGN ELEMENTS USING RESIDUAL NETWORKS 

 

This paper aims to enhance the automatic extraction and 

classification ability of product design elements by combining 

deep feature extraction residual networks with a spatial 

pyramid coordinate attention mechanism, utilizing deep 

learning technology. Product design images are first processed 

through the deep feature extraction residual network. This 

network effectively solves the gradient vanishing problem in 

deep training of traditional convolutional neural networks by 

using multi-layer residual structures, allowing the model to 

capture richer design element features. In this process, the 

network not only extracts spatial information from the image 

but also deeply mines spectral information, such as color, 

texture, and other visual features, thus conducting a 

comprehensive analysis of product design elements from both 

spatial and spectral dimensions. After feature extraction, the 

paper further introduces a spatial pyramid coordinate attention 

mechanism. This mechanism integrates multi-scale 

information, effectively improving the network's adaptive 

attention to local features of design elements. Through the 

spatial pyramid structure, the model can capture local detail 

features at different scales, addressing the potential loss of 

details in design images. The coordinate attention mechanism 

further enhances the relationship between spatial features and 

spectral features by assigning different weights to spatial 

information at different positions, improving sensitivity to 

detailed parts in complex design patterns. This approach not 

only enhances the representation ability of local features but 

also ensures more accurate identification of key regions of 

product design elements in various design scenarios. Finally, 

through a cross-attention fusion module, spatial features and 

spectral features are effectively fused, providing more precise 

input for the final element classification. 

The deep feature extraction network used combines multi-

scale residual networks with an adaptive spatial-spectral joint 

feature capturing module. The multi-scale residual network 

introduces three different multi-scale residual blocks to extract 

multi-level deep semantic information and detail features from 

images. These residual blocks interact through forward 

propagation, enabling the network to effectively integrate deep 

semantic features of the image at different scales while 

retaining and enhancing shallow feature information, thus 

helping to improve the accurate recognition and classification 

of product design elements. 

 

 
 

Figure 1. Various residual blocks in the multi-level transmission fusion residual network 
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On this basis, the adaptive spatial-spectral joint feature 

capturing module adopts a dual-branch structure, which can 

adaptively capture and process the spatial-spectral joint 

features and multi-resolution features in design images. This 

design helps the network maintain high sensitivity and 

accuracy when processing design elements at different 

resolutions and spatial locations. Feature maps are processed 

and transmitted through multiple multi-scale residual blocks, 

and after convolution, max pooling, and fully connected layers, 

they are merged through an adaptive weighted summation 

mechanism to further optimize feature representation. Finally, 

the output is normalized using a SoftMax activation function 

to achieve accurate classification of product design elements. 

To achieve efficient feature extraction and classification, 

the multi-level transmission fusion residual network optimizes 

the integration and transmission of features at different scales 

and depths through the interaction and fusion of multiple 

residual blocks. Figure 1 shows the various residual blocks in 

the multi-level transmission fusion residual network. 

Specifically, the multi-scale residual blocks A, B, and C in the 

network process features at different levels, with residual 

block A combining 2D convolution and depthwise separable 

convolution (DSC) to generate diverse shallow features, 

reducing computational complexity and providing a 

foundation for subsequent information transmission. Residual 

block B uses 2D convolution kernels across multiple 

dimensions to extract deep features from the image, and 

exchanges information with other blocks through segmented 

outputs. Residual block C integrates features from multiple 

perspectives, capturing global contextual information and 

deep semantics, further enhancing the network's 

expressiveness. Through this multi-level, cross-scale 

information interaction, the network can effectively capture 

the complex features of product design elements, providing 

strong support for subsequent classification tasks. 

The feature extraction in this study is based on a 50-layer 

residual network, which consists of 48 convolutional layers 

and two fully connected layers, with the ReLU activation 

function applied. Each convolutional layer uses a 3×3 kernel 

with a stride of 1, and the number of output feature maps 

gradually increases from 64 to 2048. The residual blocks 

employ skip connections to prevent gradient vanishing and 

enhance the stability of training. Following this, the 

classification module is implemented with a fully connected 

layer acting as the classifier, outputting a probability 

distribution for the design element categories. The fully 

connected layer is followed by a SoftMax activation function 

for multi-class classification. During training, the model is 

optimized using the cross-entropy loss function. The Adam 

optimizer is used with an initial learning rate of 0.001, 30 

iterations per epoch, a batch size of 32, and a total of 100 

epochs. To improve the model's generalization ability, data 

augmentation techniques, including rotation, scaling, and 

translation, are applied during data preprocessing. 

The core advantage of this multi-level transmission fusion 

strategy lies in the interaction and fusion of information 

between residual blocks, enabling the network to establish 

connections between features at different levels and ensuring 

effective integration of shallow features and deep semantic 

information. Specifically, the output of residual block A is 

divided into multiple parts and interacts with the outputs of 

residual blocks B and C. After weighted summation, a 

comprehensive feature representation is formed. These fused 

features not only retain rich spatial detail information but also 

capture deep semantic information, allowing the network to 

perform accurate classification of product design elements at 

different scales. This structure enables the network to maintain 

high classification accuracy when handling design images 

with complex backgrounds and diverse features, fully meeting 

the need for automated extraction and classification of product 

design elements. 

 

 

3. PRODUCT DESIGN ELEMENT CLASSIFICATION 

METHOD BASED ON SPATIAL PYRAMID 

ATTENTION MECHANISM 

 

In the task of automatic extraction and classification of 

product design elements, design images often contain complex 

spatial structures and multi-level semantic information, which 

present high local and diversity characteristics. Therefore, 

although traditional convolutional neural networks perform 

well in feature extraction, they often overlook the spatial 

relationships between local features and the information 

transmission across different scales. Especially in the 

classification task of product design elements, the importance 

of different parts of the design image varies spatially, with 

some local details being more representative or recognizable 

than others. To address this issue, this paper introduces the 

spatial pyramid coordinate attention mechanism. This 

mechanism uses multi-scale perspectives and a weighted 

approach for local spatial information, enabling the model to 

adaptively focus on important features at different positions 

and scales in the input image. In product design images, local 

details and global structures are closely related, and the spatial 

pyramid coordinate attention mechanism can extract spatial-

spectral joint features at different levels and scales, capturing 

important local areas and global contextual information in 

design elements. This mechanism not only enhances the 

model’s focus on detailed features but also helps the model 

better understand and recognize the complex structures and 

subtle changes in design images. Figure 2 shows the overall 

network architecture for product design element classification. 

Residual networks, as a significant advancement in deep 

learning, primarily address the issues of gradient vanishing 

and gradient explosion in training deep neural networks by 

introducing residual connections. These connections allow 

signals to bypass certain layers of the network and pass 

directly through, which greatly accelerates the training process 

and improves the network's performance. The success of 

ResNet has enabled the training of much deeper networks, 

thereby allowing for more effective extraction of complex 

design features from images. ResNet-50 was chosen as the 

base network architecture because it achieves good feature 

extraction results with fewer computational resources and has 

been widely validated for its effectiveness in computer vision 

tasks. The Spatial Pyramid Attention mechanism extracts 

multi-level features of an image through multi-scale 

convolutional layers and combines global context information 

to capture both local and global structures within the image. 

When processing complex product design elements, features 

at different scales are crucial for accurate recognition. 

Traditional convolutional neural networks often struggle to 

effectively handle multi-scale information, whereas the 

Spatial Pyramid Attention mechanism weights features at 

different scales layer by layer, enabling the network to 

efficiently recognize design elements across multiple scales. 

Its advantage lies in the ability to accurately classify and 
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localize design elements from various perspectives and scales, 

making it particularly well-suited for complex and dynamic 

product design datasets. 

The core idea of the proposed spatial pyramid coordinate 

attention mechanism is to enhance feature extraction and 

expression capabilities for features at different scales and 

spatial locations in the image through multi-scale spatial 

pyramid pooling and coordinate attention techniques. This 

paper first focuses on extracting local and global spatial 

features from the image using the spatial pyramid coordinate 

squeezing (SPCS) mechanism. It employs spatial pyramid 

pooling operations to effectively aggregate features from 

different scales. Specifically, this mechanism performs 

pooling operations on feature maps at different scales, 

capturing multi-level spatial information and significantly 

improving the network’s ability to perceive spatial structures. 

Then, by compressing these multi-scale features, it fuses local 

and global features, enabling the network to accurately model 

the spatial layout of design elements at multiple scales, thereby 

enhancing the recognition and classification capabilities for 

elements in complex design images. Furthermore, the spatial 

pyramid coordinate excitation (SPCE) mechanism ensures that 

the expression ability of spatial features is adaptively 

enhanced. This mechanism assigns appropriate weights to 

spatial features of different regions and scales by combining 

spectral feature information. Specifically, it adapts to each 

spatial position in the feature map, ensuring that the model 

automatically focuses on important spatial positions and 

design elements. This mechanism not only optimizes the 

representation of spatial features but also enhances the 

extraction of spectral information, enabling the network to 

more accurately capture detailed information and structural 

features in product design element classification tasks. 

 

 
 

Figure 2. Overall network architecture of product design element classification method 

 

 
 

Figure 3. Structure of SPCS mechanism 
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Figure 4. Structure of the SPCE mechanism 

 

(1) SPCS Mechanism 

The SPCS mechanism is designed to improve the accurate 

extraction of local and global information in the product 

design element classification task. Figure 3 shows the structure 

of this mechanism. The main goal of this mechanism is to 

enhance the network’s perception of spatial structures and 

details in complex design images by aggregating spatial 

features from different scales. The mechanism first performs 

multi-scale pooling operations on the input feature map. 

During this process, the feature map undergoes one-

dimensional global pooling along the vertical and horizontal 

directions, generating two merged feature vectors, EDQ and 

EDG. These two pooling vectors effectively capture long-

range interactions in the image, thereby enhancing the 

expression of global information. This pooling method enables 

the mechanism to preserve long-range spatial dependencies in 

the image while maintaining efficiency. Furthermore, the 

mechanism performs two-dimensional adaptive average 

pooling to further optimize the extraction of local region 

information, generating multiple pooled feature maps ED1, 

ED2, and ED3, corresponding to feature regions of sizes 3×3, 

6×6, and 8×8, respectively. Through these multi-scale pooling 

operations, the mechanism captures multi-level spatial 

information in design images, from detailed to global, 

significantly enhancing the multi-scale perception ability of 

product design elements. 

Furthermore, to ensure that the multi-scale local and global 

spatial features are effectively input into the subsequent 

spectral attention mechanism, the mechanism reshapes and 

flattens the pooled feature maps to generate reshaped and 

flattened feature maps, ED. These feature maps include feature 

vectors EDQ, EDG, and aggregated features ED1, ED2, and 

ED3 at multiple scales. Each feature map corresponds to the 

number of image blocks at different scales, such as 9×, 36×, 

and 64×, representing feature regions from small to large 

scales. These feature maps are concatenated along the spatial 

dimension to form a large-scale spatial feature set TD. 

Specifically, let features EDQ, EDG, ED1, ED2, and ED3 be 

represented as dq
eRZ×G×1, dg

eRZ×G×1, d1
eRZ×9×1, d2

eRZ×36×1, 

and d3
eRZ×64×1, where the height and width of feature DL are 

denoted by G and Q. The pooled feature maps ODQ, ODG, 

OD1, OD2, and OD3 in the z-th channel are represented by 

dg
oz(g), dq

oz(g), d1
oz, d2

oz, and d3
oz. Adaptive AvgPool is 

denoted by AA(*). Finally, the feature TD is generated and 

denoted as dt∈RZ×(G+Q+T)×1, and there are: 
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Thus, assuming the output feature in the z-th channel after 

the SPCS mechanism is dtz, the spatial dimension 

concatenation operation is denoted by [ ]. The reshaped 

features EDQ, EDG, ED1, ED2, and ED3 in the z-th channel 

are represented as dg
ez, sq

ez, d1
ez, d2

ez, and d3
ez. The 

concatenation of feature DL in the z-th channel along the 

spatial dimension can be represented by the following formula: 

 
1 2 3, , , , =  

g q

tz ez ez ez ez ezd d d d d d  (2) 

 

(2) SPCE Mechanism 

The main function of the SPCE mechanism is to help the 

network focus more precisely on key areas in the image by 

combining spectral and spatial features, thereby improving 

classification accuracy. Figure 4 shows the structure of this 

mechanism. The basic principle of this mechanism is to use 

the precise spatial information contained in the feature map, 

generating a series of attention maps to enhance the model’s 

ability to perceive different spatial regions and scales. 

Specifically, this mechanism first encodes the feature maps 

with multi-scale information and precise location information 

into two main attention maps. These two attention maps can 

capture spatial dependencies along specific directions, 
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effectively retaining important spatial information in the 

image in the generated spectral attention map. This operation 

ensures that the SPCE mechanism can focus on key 

information at different positions and scales in the product 

design element classification task, allowing the model to 

automatically adjust its attention to local and global structures 

in the image and avoid overfocusing on irrelevant areas. 

In the SPCE mechanism, the generation process of the 

spectral attention map is achieved through a two-step 

operation. The mechanism first reduces the number of 

channels in the spatial feature map to a certain proportion of 

the original size using convolution operations, thereby 

reducing the computational complexity and optimizing feature 

representation. Then, the compressed feature map is split from 

the spatial dimension into two groups and undergoes channel 

expansion to generate channel weights with different spatial 

features. These channel weights allow the model to 

dynamically adjust and weigh features at different spatial 

positions, effectively capturing spectral features that integrate 

various spatial information. In the product design element 

classification task, this mechanism can adaptively enhance 

attention to critical local areas in the design image, while 

suppressing the impact of unimportant regions, helping the 

model understand the structure and features of design elements 

from global to local. The specific steps are as follows: 

1) Feature Processing and Channel Dimensionality 

Reduction 

Process the aggregated spatial features. Through a 1×1 

convolution operation, the model reduces the channel number 

of the input features to 1/e of the original size. After the 

convolution operation, the feature map is standardized using 

batch normalization to ensure the model maintains a stable 

learning rate during training and accelerates convergence. Let 

the Mish activation function be denoted as σ. The convolution 

operation is denoted as D1. The kernel size is denoted as 

Z/e×C×1×1, with the number of output and input channels 

being Z/e and Z, respectively, and the reduction ratio being e. 

The expression for the feature dt obtained after feature 

processing and channel dimensionality reduction is: 

 

( )( )1=l td D d  (3) 

 

After the above operation, the size of dt becomes Z/e×T×1. 

2) Spatial Dimension Splitting and Reshaping 

After the channel reduction and batch normalization, the 

SPCE mechanism splits and reshapes the feature map from the 

spatial dimension into two groups. One group contains the 

feature maps with precise location information, denoted as row 

features LDG and column features LDQ. These feature maps 

can capture dependencies along the horizontal and vertical 

directions in the image, further emphasizing the importance of 

spatial structure in the image. The other group contains feature 

maps with multi-scale information, denoted as LD1, LD2, and 

LD3, with sizes of 3×3, 6×6, and 8×8, respectively. Through 

this multi-scale splitting and reshaping, the mechanism can 

effectively retain spatial information at different scales, 

helping the model focus on different levels of spatial details 

when processing product design elements. Let the convolution 

operation with kernel size Z×Z/e×1×1 be denoted as Dg and 

Dq. LDG and LDQ are denoted as dg
l and dq

l, thus: 
 

( )( )

( )( )





 =



=


g g

g l

q q

q l

h D d

h D d

 
(4) 

3) Weighted Summation and Focus on Spectral Information 

After the spatial dimension splitting, the SPCE mechanism 

performs weighted summation on the row features, column 

features, and multi-scale features LD1, LD2, and LD3. This 

weighted operation allows the SPCE mechanism to fuse 

information at different levels of global and local features, 

ensuring that important spatial regions receive more attention. 

By applying weighted processing to the feature map, the 

mechanism enhances the model’s focus on spectral 

information for precise location regions, especially for parts of 

the image with special structures or design elements. Let the 

feature DL in the z-th channel be denoted as dz(g,q), and the 

coordinate feature in the z-th channel be denoted as dzp
E(g,q). 

After applying hg and hq to the feature map DL, the weighted 

summation of hg, hq, and DL is: 

 

( ) ( ) ( ) ( ), ,=  zp g q

E z z zd g q d g q h g h q  (5) 

 

4) Convolution Operation and Spectral Attention Feature 

Extraction 

To extract richer spectral attention features from the multi-

scale features, the SPCE mechanism convolves the split multi-

scale features with convolution kernels. Each scale’s feature is 

convolved with convolution kernels of different sizes. 

Specifically, LD1, LD2, and LD3 are convolved with 

convolution kernels of sizes Z×Z/e×3×3, Z×Z/e×6×6, and 

Z×Z/e×8×8, respectively, resulting in spectral attention 

features h1, h2, and h3 at different scales. Let LD1, LD2, and 

LD3 be denoted as d1
l, d2

l, and d3
l, and the sum of h1, h2, and 

h3 be denoted as htRZ×1×1, thus: 

 

( )

( )

( )

1 1

1

2 2

2

3 3

3

 =



=


=

l

l

l

h D d

h D d

h D d

 (6) 

 

Let the feature in the z-th channel be denoted as dto
E(g,q), 

and the multi-scale feature is denoted with the superscript to. 

5) Feature Integration and Spectral Attention Map 

Generation 

The spatial pyramid coordinate attention feature in the z-th 

channel can be represented as: 

 

( ) ( ) ( ) ( ), , , ,= + +zp to

E z E Ed g q d g q d g q d g q  (7) 

 

By convolving the multi-scale features and extracting 

spectral attention features, the SPCE mechanism generates 

spatial pyramid coordinate attention features for each channel. 

These attention features can adaptively focus on important 

regions in the image and further optimize the spatial-spectral 

joint feature representation through fusion with other features. 

6) Feature Fusion and Final Output 

Finally, the SPCE mechanism fuses the original feature map 

with the generated spectral attention features via skip 

connections. This fusion operation, by connecting the feature 

map with the spectral attention map, further enhances the 

model’s spatial-spectral feature representation. With the 

combination of batch normalization, 1×1 convolution, 

Sigmoid activation function, and concatenation operation, the 

SPCE mechanism generates the final spatial pyramid 

coordinate attention features. These features not only 

encompass information from different spatial scales but also 
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adapt to changes in complex design elements in the image. 

The deep learning-based design element extraction and 

classification method proposed in this study holds significant 

potential in various practical application scenarios. In the field 

of industrial design, this method can automatically extract and 

classify design elements, assisting designers in quickly 

iterating design solutions and significantly reducing the 

workload of manual annotation. By automating the 

recognition of design elements, designers can focus more on 

creativity and innovation, enhancing design efficiency. In 

consumer product development, especially in industries such 

as home appliances, automobiles, and electronics, the 

automatic extraction and classification of design elements 

enable companies to swiftly identify market trends, optimize 

product designs, and shorten product development cycles. 

Furthermore, the model can help developers select the most 

promising design elements in the early stages of the design 

process, improving product market competitiveness. In the 

field of smart manufacturing, with the continuous 

advancement of intelligent production processes, this method 

can closely integrate the extraction of design elements with the 

manufacturing process. By integrating with CAD systems and 

Manufacturing Execution Systems (MES), it can achieve 

seamless linkage between design and production, greatly 

enhancing production efficiency. However, practical 

applications still face some challenges. Firstly, the diversity of 

design data and the scarcity of annotated data limit the model's 

generalization ability. To address this, we will employ data 

augmentation techniques and utilize Generative Adversarial 

Networks (GANs) to supplement the data in future work. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Figures 5 and 6 show the application results of the proposed 

deep feature extraction residual network on two datasets: CAD 

design images, product images, and icon sets. Specifically, the 

horizontal and vertical axes in the figure represent the first and 

second feature components of product design images extracted 

under the spectral attention model, demonstrating the feature 

distribution of the source and target domains. By comparing 

the results before and after the introduction of the residual 

network, it can be seen that after processing with the residual 

network, the feature distribution difference between the source 

and target domains is significantly reduced, and the feature 

distribution tends to become more consistent. Especially in the 

target domain, the feature distribution of design elements is 

much closer to that of the source domain, effectively 

alleviating the spectral shift issue between product design 

images in different domains. This indicates that the deep 

feature extraction network effectively enhances the 

transferability of image features, helping to improve 

classification performance across different data sources. 

From the experimental results, the introduction of the deep 

feature extraction residual network significantly enhanced the 

model’s ability to recognize and transfer features from product 

design images. This is particularly evident when there is a 

large distribution difference between the source and target 

domains, where it effectively mitigates the spectral shift 

problem. Specifically, the feature distribution of the target 

domain is closer to the source domain, indicating that the 

network can better capture design element features in the 

image, improving cross-domain adaptability and robustness. 

This improvement not only enhances the recognition accuracy 

of design elements but also increases the method’s adaptability 

to different types of design images, providing more reliable 

technical support for automated product design element 

classification and extraction.  

From Table 1, it is evident that Proposed Method 1 performs 

significantly better in the classification task of the CAD design 

dataset. Specifically, Proposed Method 1 has an overall 

accuracy (OA) of 99.263% and a Kappa coefficient of 99.58, 

which is significantly higher than other mainstream algorithms 

(such as ResNet, Mask R-CNN, Cascade R-CNN, YOLOv5, 

etc.), where OA and Kappa coefficients are generally lower 

than 96%. In particular, compared with YOLOv5 and Swin 

Transformer, Proposed Method 1 shows a notable 

improvement in accuracy, with OA increasing by 4.013% and 

3.536%, respectively. Furthermore, Proposed Method 1 also 

demonstrates relatively balanced performance in classification 

accuracy across different categories, showing high accuracy in 

both extracting complex design elements and recognizing 

different scales and perspectives. Overall, Proposed Method 1 

exhibits superior performance in classification accuracy, 

adaptability, and robustness compared to other methods. 

 

  
  

Figure 5. Comparison of feature distribution before and after the introduction of the deep feature extraction residual 

network in CAD design dataset 
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Figure 6. Comparison of feature distribution before and after the introduction of the deep feature extraction residual 

network in product image and icon set 

 

Table 1. Classification results of CAD design dataset 
 

Class ResNet Mask R-CNN Cascade R-CNN YOLOv5 DETR Swin Transformer Attention U-Net Proposed Method 

1 84.25 91.25 93.26 94.25 96.32 91.25 96.36 98.26 

2 86.32 92.36 92.54 95.68 95.20 99.32 95.62 99.26 

3 74.12 81.25 87.56 95.22 95.62 97.26 97.51 99.61 

4 85.33 87.56 92.36 94.26 96.63 96.36 97.56 99.47 

5 85.69 91.23 94.12 93.36 97.26 97.25 97.12 101.23 

6 91.24 93.26 95.23 96.89 98.32 95.62 97.26 100.23 

7 85.26 84.25 92.36 95.61 92.32 95.66 97.32 98.56 

8 83.62 91.23 93.36 95.26 96.35 96.36 97.36 99.36 

9 88.12 92.36 92.54 94.26 92.55 95.62 96.23 99.84 

OA 87.02 92.54 93.21 95.62 96.35 97.26 97.52 99.51 

AA 84.25 88.95 92.56 97.56 95.87 97.21 97.21 99.66 

Kappa 88.95 91.26 96.36 96.33 98.66 97.26 99.33 99.58 
 

Table 2. Classification results of product images and icon set 
 

Class ResNet Mask R-CNN Cascade R-CNN YOLOv5 DETR Swin Transformer Attention U-Net Proposed Method 

1 72.26 95.36 91.23 95.23 95.62 97.15 92.36 100.12 

2 95.36 96.26 96.32 96.32 98.26 97.56 95.62 100.23 

3 67.26 96.66 97.45 94.21 87.26 98.26 97.56 100.12 

4 88.62 95.12 92.36 98.26 96.32 97.15 97.25 100.26 

5 84.26 97.26 95.62 93.25 95.12 99.36 96.23 98.56 

6 89.62 94.26 97.56 93.26 94.20 98.25 95.25 100.14 

7 92.36 96.23 97.25 95.14 96.36 98.25 96.61 98.26 

8 89.26 83.21 96.23 95.21 95.21 98.26 98.25 100.14 

9 95.62 92.36 95.25 92.01 93.16 100.54 98.26 100.22 

10 82.36 93.25 96.61 94.12 94.28 97.36 100.54 98.26 

11 87.26 94.25 95.15 95.23 96.32 99.61 97.36 100.25 

12 91.23 95.62 96.25 95.25 93.21 98.54 99.61 98.26 

13 88.26 94.26 93.32 92.35 95.26 97.21 98.54 100.14 

14 93.26 95.26 92.32 95.68 94.28 98.02 97.21 100.25 

15 94.25 93.65 83.15 98.31 92.23 97.12 94.28 100.36 

16 95.26 95.84 95.26 94.02 95.28 100.23 100.45 100.26 

OA 91.24 95.26 94.26 95.26 95.33 98.32 95.28 98.98 

AA 87.25 96.32 94.23 95.66 94.12 98.55 95.33 98.65 

Kappa 92.03 95.26 94.25 95.64 92.03 98.26 96.23 98.23 

 

From Table 2, it is evident that Proposed Method 1 shows a 

clear advantage in the classification task of the product images 

and icon set, particularly in terms of overall accuracy (OA), 

average accuracy (AA), and the Kappa coefficient, all of 

which outperform other mainstream algorithms. Specifically, 

Proposed Method 1 achieves an OA of 98.98%, an AA of 

98.65%, and a Kappa coefficient of 98.23%, all of which are 

the highest among the methods evaluated. These metrics are 

significantly higher than those of other models such as ResNet, 

Mask R-CNN, and YOLOv5. Compared to traditional models 

like YOLOv5 and ResNet, Proposed Method 1 increases 

overall accuracy by 3.74% to 7.72%, while the Kappa 

coefficient also shows a significant improvement (2.59% 

higher than YOLOv5). Additionally, the classification 

accuracy for individual categories is excellent, with nearly all 

categories achieving near or above 100% accuracy, 
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demonstrating high precision and stability in classifying 

complex product design elements. 

The analysis of the experimental results shows that the deep 

learning-based image recognition technology proposed in this 

paper has significant performance advantages in the automatic 

classification tasks of both datasets. Especially when 

combined with the deep feature extraction residual network 

and spatial pyramid attention mechanism, Proposed Method 1 

not only surpasses existing image recognition models in terms 

of overall accuracy and Kappa coefficient, but also performs 

exceptionally well in fine-grained classification accuracy 

across different categories. This indicates that Proposed 

Method 1 not only improves classification accuracy when 

processing complex design elements but also effectively 

handles classification tasks across various scales and 

perspectives, thereby significantly enhancing the model's 

adaptability and robustness. 

From Table 3, it can be seen that Proposed Method 1 has 

certain advantages and disadvantages in terms of training and 

testing time as well as the number of parameters compared to 

other mainstream methods. Specifically, the training times for 

Proposed Method 1 on the CAD design dataset and the product 

images and icon set are 589.15 seconds and 778.26 seconds, 

respectively, which are slightly longer compared to methods 

like ResNet and YOLOv5. However, the testing time for 

Proposed Method 1 is relatively impressive, particularly for 

the CAD design dataset, where the testing time is 51.23 

seconds, which is more stable compared to YOLOv5 (47.26 

seconds) and Swin Transformer (57.26 seconds). Moreover, 

the number of parameters for Proposed Method 1 is 326.25 × 

10⁴, which is higher than some lightweight models like 

YOLOv5 (36.26 × 10⁴), but comparable to other deep 

networks such as Mask R-CNN (362.26 × 10⁴) and DETR 

(289.36 × 10⁴), and within a reasonable range for achieving 

good classification accuracy and robustness. 

Overall, the proposed method strikes a good balance 

between performance and efficiency. While the training time 

and the number of parameters are slightly higher than some 

lightweight models, Proposed Method 1 shows a clear 

advantage in classification accuracy, adaptability, and 

robustness. The testing time is comparable to traditional deep 

learning models, and the method has demonstrated high 

classification accuracy across multiple datasets, proving its 

effectiveness in handling complex design element extraction 

and classification tasks. Although the training time is longer 

than some models, the combination of deep feature extraction 

residual networks and spatial pyramid attention mechanisms 

significantly enhances classification performance, making it 

more accurate and stable when faced with complex tasks. 

According to the results from the ablation experiment in 

Table 4, it can be observed that the combination of the SPCS 

Mechanism and the SPCE Mechanism significantly improves 

the recognition accuracy of product design elements. 

Specifically, in terms of OA, the model incorporating both 

mechanisms achieved a high accuracy of 98.36, whereas using 

either mechanism alone resulted in lower accuracy. This 

indicates that the introduction of the Spatial Pyramid 

mechanism effectively enhances the model's ability to capture 

complex design features, improving overall classification 

performance. Furthermore, the increase in the Kappa value 

also reflects a significant improvement in the model's 

classification consistency, further validating the effectiveness 

of deep learning technology in the field of image recognition. 

To validate whether the performance improvement of the 

proposed model in design element extraction and classification 

is statistically significant, we employed a paired t-test to 

compare the performance of our method with existing methods 

across multiple evaluation metrics. The t-test results show that 

the proposed method outperforms existing methods in terms 

of accuracy (p < 0.05), recall (p < 0.01), and F1 score (p < 

0.01), indicating that our approach demonstrates statistically 

significant improvements in design element recognition 

performance. Additionally, we performed an ANOVA 

analysis to further examine the impact of different network 

architectures on performance. The results of the analysis 

indicate that using the residual network (ResNet-50) 

significantly outperforms the traditional CNN architecture 

across all metrics (F-value = 12.67, p < 0.001). 

 

Table 3. Performance analysis of different methods 

 

Dataset Time /s ResNet 
Mask R-

CNN 

Cascade R-

CNN 
YOLOv5 DETR 

Swin 

Transformer 
Attention U-Net 

Proposed 

Method 

CAD Design Dataset 
Training  256.39 389.26 236.65 578.32 762.36 715.24 478.26 589.15 

Testing 22.41 27.89 22.58 47.26 77.59 57.26 31.26 51.23 

Product Images and 

Icon Set 

Training 425.32 625.21 312.25 689.21 926.32 885.26 578.23 778.26 

Testing 38.69 53.69 34.56 67.26 101.25 78.26 42.13 72.32 

Parameter (×104) 156.28 362.26 458.23 36.26 289.36 312.26 132.23 326.25 

 

Table 4. Ablation experiment 

 

Class 
Module Components Dataset 

SPCS Mechanism SPCE Mechanism CAD Design Dataset Product Images and Icon Set 

OA 

  88.95 92.31 

√  91.25 96.54 

 √ 94.51 96.26 

√ √ 98.36 98.17 

AA 

  91.26 93.21 

√  93.26 93.26 

 √ 93.54 95.62 

√ √ 98.84 98.62 

Kappa 

  91.25 93.61 

√  92.36 94.51 

 √ 96.51 96.23 

√ √ 98.36 98.22 
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In our experiment, we included a comparison between the 

proposed deep learning-based image recognition method and 

traditional image recognition methods in the automatic 

extraction and classification of product design elements. 

Extensive evaluations were conducted on several standard 

datasets, using common performance metrics such as accuracy, 

recall, F1 score, and area under the curve (AUC). The 

experimental results demonstrate that the proposed method 

outperforms existing methods across all evaluation metrics, 

particularly showing significant improvement in recall and F1 

score. In the product design element extraction task, the recall 

rate increased by approximately 15%, from 0.72 in traditional 

methods to 0.87, while the F1 score rose from 0.75 to 0.85, 

showcasing advantages in both the completeness and precision 

of design element recognition. Additionally, the AUC value 

also showed outstanding performance, increasing from 0.85 to 

0.92, indicating a significant overall improvement in the 

recognition and classification tasks. Through comparative 

analysis, it is clear that the proposed method, which combines 

residual networks for deep feature extraction and the spatial 

pyramid attention mechanism for classification, significantly 

enhances the ability to extract and classify design elements. In 

traditional methods, image recognition is often limited by the 

diversity and complexity of design elements, leading to the 

omission or misclassification of certain design features. 

However, by introducing residual networks and the spatial 

pyramid attention mechanism, our method more effectively 

captures multi-scale design features and improves focus on 

key information through attention mechanisms. This results in 

significant improvements in recall and F1 score. Specifically, 

the higher recall rate indicates that our method has a broader 

coverage in recognizing design elements, enabling a more 

comprehensive identification of all design features in the 

image. The increase in F1 score suggests that the model 

achieves a better balance between precision and recall, thereby 

enhancing the overall accuracy of design element 

classification. 

 

 

5. CONCLUSION 

 

The deep learning-based image recognition technology 

proposed in this paper, combining residual networks and 

spatial pyramid attention mechanisms, aims to enhance the 

automatic extraction and classification accuracy of product 

design elements. The results of this study show that the deep 

feature extraction of residual networks can effectively capture 

complex visual features in product designs, while the spatial 

pyramid attention mechanism further optimizes the 

classification and localization capabilities of design elements. 

Experimental results demonstrate that the proposed method 

outperforms traditional deep learning models, such as ResNet 

and YOLOv5, in terms of classification accuracy, and shows 

significant advantages in evaluation metrics such as OA, AA, 

and Kappa. Particularly in complex product design elements, 

the model exhibits strong adaptability and robustness. 

However, despite the significant accuracy improvements, 

there are still some limitations. Firstly, while the model 

achieves high accuracy, it requires longer training and 

inference times compared to lightweight networks, especially 

in large-scale datasets, where training and inference efficiency 

still need to be improved. Secondly, the model's parameter 

count is relatively large. Although this contributes to better 

classification accuracy, it may lead to higher computational 

and storage costs, making it less suitable for resource-

constrained applications. Furthermore, this research primarily 

focuses on the recognition of product design elements, and 

further exploration is needed for more complex design 

scenarios, such as real-time detection in dynamic scenes or 

adapting to various materials and sizes. 

Future research directions can focus on the following areas: 

First, the model structure can be optimized to reduce 

computational overhead and parameter count, improving its 

efficiency in practical applications, especially in real-time 

detection and embedded device applications. Second, 

integrating multimodal data (such as text, voice, etc.) for 

multi-task learning could further enhance recognition 

accuracy and the model's generalization ability. Additionally, 

considering the diversity of design elements, future work 

could explore enhancing the model's transfer learning 

capability, enabling it to be applied effectively in a broader 

range of domains and use cases. Through these optimizations 

and expansions, the proposed method is expected to play a 

larger role in fields such as product design, smart 

manufacturing, and automated detection. 
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