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Self-compacting concrete (SCC) is a specialized form of concrete known for its 

exceptional workability, high paste content, and incorporation of cement substitutes like 

silica fume, natural pozzolana, and slag. These cement alternatives offer various 

advantages including cost reduction, decreased carbon dioxide emissions, reduced 

depletion of natural resources, and enhanced properties in both fresh and hardened states. 

SCC finds application in diverse scenarios such as structures with densely packed 

reinforcement and tall shear walls, necessitating accurate performance prediction. This 

study aims to develop artificial neural network (ANN) models for forecasting the 

compressive strength, split tensile strength, and flexural strength of self-compacting 

concrete incorporating fly ash and waste copper slag, assessed at curing periods of 7, 28, 

56, and 90 days. The ANN model comprises several input and output parameters, with 

model accuracy evaluated using Mean Squared Error (MSE) and R-squared (R2) metrics. 

Furthermore, the network's performance is evaluated through error histograms and 

regression network predictions using ANN. The Levenberg-Marquardt optimization 

method, implemented in MATLAB 2020a, is employed to effectively estimate the 

compression strength, split tensile strength, and flexural strength of self-compacting 

concrete, ensuring reliable results.  
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1. INTRODUCTION

Concrete is a popular building material with many benefits; 

thus, its mechanical properties are crucial for structure design. 

The structure's compressive strength is most important since it 

dictates its safety and performance throughout time [1-16]. 

Self-compacting concrete contains aggregates, cement, and 

other components randomly distributed throughout the matrix. 

The complexity of building components complicates concrete 

compressive strength estimate. Many variables affect the 

technical properties of cement-based products and special 

purpose concretes. They vary because they have varied 

materials, characteristics, and certain components impact 

concrete performance in three or more ways. To utilize these 

materials in various constructions, you must understand their 

behavior. In order to study the impact of these parameters and 

forecast concrete's compressive strength, several statistical 

models and methods have been created, drawing on data from 

both laboratory experiments and field trial testing. It is 

expensive, takes a long time, and requires a lot of work. Also, 

the accuracy of the predictions relies a lot on the skills of the 

people working there and the quality of the labs [17-23]. 

Changing the mix quantities may prevent concrete from 

failing or becoming excessively strong. This is conceivable if 

concrete compression strength can be calculated promptly. 

This lower building expenses by reducing material prices and 

construction errors. 

The use of Machine Learning (ML) models, a relatively new 

but rapidly improving tool that mimics human intelligence in 

solving complex problems, proved to be a simpler, more 

efficient, and more accurate way to forecast concrete 

compressive strength than the time-consuming and costly 

methods previously used in laboratories. Several machine 

learning methods, including ANN and SVM models, have 

shown exceptional generalizability and prediction capabilities 

when applied to a variety of difficult nonlinear issues. 

Moreover, both models have been shown to accurately 

estimate concrete strength, according to the literature, 

surpassing previous regression-based models. There have 

been a number of studies that used ML algorithms to better 
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estimate the compressive strength of various concrete kinds. 

With reference to Al-Jamimi et al. [23], the experimental 

findings showed that the suggested model might be useful for 

predicting concrete compression strength, with correlations of 

R2=0.99 attained during testing. Additionally, the 

experimental findings show that the projected values derived 

from the model (SVM-GA) closely match the actual data with 

an RMSE of 0.002. 

Verma et al. [24] explains utilizing an artificial neural 

network (ANN) to estimate geopolymer concrete compressive 

strength using experimental data. The MATLAB-modeled 

ANN predicts compressive strength using the input parameter. 

This study illuminates how curing temperature and duration 

affect geopolymer concrete compressive strength. With R2 = 

0.85, the ANN model predicted compressive strength well. el 

Asri et al. [25] describes in detail the use of artificial neural 

networks to the problem of modeling the compressive strength 

of SCC after 28 days after loading. The model is based on 

rheological data measured in empirical experiments, such as 

the V-Funnel flow duration, the plastic viscosity, and the yield 

stress, as well as the lump flow diameter and H2/H1 ratio of 

the L-Box. This work aims to identify the best model for 

modeling compressive strength using numerical and 

experimental analysis. Following many model trainings, it was 

determined that a 5-50-50-1 architecture with a Pearson's 

correlation R = 97.58% was the most effective. Zhao et al. [26] 

investigates two ANN-based scenarios to eke out the uniaxial 

CS of MSC. According to the first scenario, normal trainer 

Levenberg-Marquardt is the most powerful. Both BBO and 

MTOA were able to generate a more accurate ANN when 

compared to the CNN's performance using hybrid models. By 

using the BBO during training, the CNN's root mean square 

error was reduced by 8 [27]. The purpose of this research is to 

77%, and by using the MTOA during testing, it was reduced 

by 11.46%. Consequently, the proposed hybrids may serve as 

viable substitutes for conventional models in the prediction of 

concretes. Trilok Gupta et examine the impact of the input 

parameters on the output parameters by attempting to build 

explicit expressions using an artificial neural network (ANN) 

technique. Results show that w=c, RF, T, and t each contribute 

an average of 6.67%, 10.10%, 80.01%, and 3.22% to the final 

output measure, respectively. Out of all the input factors, T has 

the greatest effect on the output parameters, followed by RF, 

while the other input parameters (w=c; t) have comparatively 

lesser effects. The current research presents a novel method 

that utilizes artificial neural networks to get the FRP 

constrained compressive strength of concrete from a huge 

amount of experimental data [28]. The FRP-confined 

compressive strength of concrete was the output node after 

inputs like concrete and FRP properties were inputted into the 

ANN model. We used the idealized neural network to generate 

design-related empirical charts and equations. The produced 

ANN-based model accurately predicts the FRP-confined 

compressive strength of concrete, as shown by comparisons 

with both existing experimental and empirical data and the 

novel method. To forecast the compressive strength of silica 

fume concrete, artificial neural networks (ANN) and fuzzy 

logic (FL) were implemented in this research [29]. In the 

ANNs and FL investigation, a data set from a laboratory 

experiment involving the production of forty-eight distinct 

types of concrete was utilized. The parameters of the concrete 

mixture comprised three partial silica fume replacement ratios, 

four distinct water–cement ratios, and three distinct cement 

concentrations. The compressive strength of specimens that 

had been moist-cured was assessed at five distinct time points. 

The outcomes derived from the experimental methodologies 

were juxtaposed with those obtained from ANN and FL. As 

demonstrated by the outcomes, ANN and FL may serve as 

viable substitute methods for forecasting the compressive 

strength of silica fume concrete. A new artificial neural 

network (ANN) model using the Levenberg-Marquardt back 

propagation method with 366 experimental trials predicts SCC 

compressive strength with silica fume [30]. Using a nonlinear 

connection with components, the model correlated with SCC 

compressive strength (output). The model's predictions and 

actual data from other studies showed significant agreement to 

evaluate its predictive power and applicability. Parametric 

analysis was done to assess the ANN suggested model's 

sensitivity to water-to-binder ratio and superplasticizer 

concentration. A strong correlation value R2=0.93 suggests 

that this study's model may predict SCC compressive strength 

with good results. The model is simple and effective. An 

investigation was conducted to compare the accuracy of 

machine learning algorithms in predicting the compressive 

strength of concrete at 28, 56, and 91 days of age, using the 

"R" software environment [31]. As a vital tool for academics, 

R is firmly establishing itself in the statistical field. This data 

set was created in a controlled environment. This study used R 

miner to compare three popular data mining models: the 

decision tree (DT) model, the random forest (RF) model, and 

the neural network (NN) model. The results showed that the 

NN model had the best predictive power for the compressive 

strength of concrete, with R2 and RMSE serving as the primary 

metrics for accuracy. The civil engineering field places a 

premium on the ability to predict the compressive strength of 

concrete [32]. This study finds the best values for the 

parameters of a multi-layer perceptron (MLP) neural processor 

using two new optimization methods: the equilibrium 

optimizer (EO) and the evaporation rate-based water cycle 

algorithm (ER-WCA). The ER-WCA optimizer improved the 

MLP's training accuracy by 11.18%, while the EO optimizer 

improved it by 3.1% (in terms of minimizing the root mean 

square error). The results of the tests also showed an increase 

in correlation, going from 78.80% to 82.59% and 80.71%, 

respectively. In light of this, it is reasonable to assume that ER-

WCA-MLP and EO-MLP are viable alternatives to the 

conventional methods. Also, the EO was more efficient in 

terms of complexity and, by extension, time-effectiveness, 

even if the ER-WCA had greater accuracy. Group models have 

been shown to have an R2 value greater than 0.95 in the 

training set, while single models have an R2 value of around 

0.8 [33]. The very large increase in R2 that happens after grid 

search improvement is a good sign that machine learning 

models are making accurate predictions. It's a good sign that 

this rise of about 15% is happening. Overall, the GS-XG Boost 

model did the best at generalization and making accurate 

predictions. It had R2 values of over 99% in both the training 

and test sets. This made it possible for the model to be as 

accurate as possible. Because of what researchers and 

engineers have learned, they can now make better use of what 

they know to make and test things more quickly and accurately. 

A programme tool with an easy-to-use graphical user interface 

(GUI) makes this possible. The model was created utilizing 

raw materials and fresh mix parameters as predictors and 

strength properties as responses [34]. The results reveal that 

the application of admixtures improved the fresh and hardened 

characteristics of the concrete. Both geneticprogramming 

(GEP) and artificial neural networks (ANN) technologies GEP 
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and ANN algorithms produced accurate predictions of the 

experimental data with minimum mistakes. However, GEP 

models may be favoured since the process generates simple 

equations, while ANN is merely a predictor. A neural network 

(ANN) investigates splitting tensile strength (Fs), compressive 

strength (Fc), elasticity modulus (Ec), and flexural strength 

[35]. ANN was trained and assessed using experimental 

programme data. Additions of CR, NS, FA, and P anticipated 

Fc, Fs, Ff, and Ec. ANN estimated strength accurately. The 

MoDs for Fc, Fs, Ff, and Ec were -0.28%, 0.14%, 0.87%, and 

1.17%. Nearly none. The ANN model has an MSE of 6.45 × 

10−2 and R2 of 0.99496. Convergence analysis is performed 

throughout 100 simulations to conclude the model evaluation 

[36]. The training phase's greatest R2 values were 0.9437, 

3.9474, and 2.9074. In the testing stage, the highest values 

were 0.9285, 4.4266, and 3.2971, showing that ANN predicts 

compressive strength using BFS and FA well. The gold 

standard for artificial neural networks, with 24 neurons buried. 

Partial Influence Plots assess the ANN model's input variables' 

prediction effects. Sample age and cement content are the most 

critical factors in BFS and FA compressive strength. ANN 

algorithms save engineer’s money on experimenting. 

In order to forecast the performance of regular concrete, 

some scientists have created ANN models. So, although there 

are papers that discuss traditional ways of evaluating 

mechanical qualities, there doesn't seem to be many that look 

at SCC-WCS% using artificial neural network methodologies. 

The purpose of this research is to make a contribution to this 

field by suggesting an artificial neural network (ANN) 

formulation that can be used to forecast the reaction of self-

compacting concrete with fly ash and waste copper slag in a 

rapid and accurate manner.  

 

 

2. RESEARCH SIGNIFICANCE  
 

The materials used to make SCC cause it to be more 

expensive than regular concrete (CC). Waste copper slag 

(WCS), an unwanted byproduct of more copper consumption, 

might one day replace fine aggregates in concrete structures. 

Despite numerous studies on applying ANN to SCC, a study 

that optimizes ANN efforts to predict the strength of SCC with 

fly ash and waste copper slag from different input layers of 

data in SCC mixes is needed. In the same manner, the data is 

used for training purposes to minimize computational effort in 

predicting the compressive strength of SCC-WCS%. The 

current study has the following objectives: To forecast the 

compressive strength, split tensile strength, and flexure 

strength of SCC-WCS% mixtures after 7, 28, 56, and 90 days 

of curing. The mechanical characteristics of SCC-WCS% 

blends are predicted using the Levenberg-Marquardt 

optimization ANN approach in MATLAB 2020a. 

 

 

3. MATERIALS AND METHODOLOGY  
 

3.1 Materials and proportions 

 

Experimental evidence used for the purpose of forecasting 

the compressive strength of concrete. A reliable database on 

concrete compressive strength has been developed by taking 

into account nine variables: cementations, fly ash, fine 

aggregate, coarse aggregate, waste copper slag, water content, 

water-cementitious material ratio (W/C), superplasticizer and 

curing ages. For this investigation, the OPC 53 grade was 

specified by IS 12269-2015 [37]. In the Indian state of Andhra 

Pradesh, VTPS provided the fly ash (FA). For the study, 

collected aggregates from the surrounding region, ranging in 

size from 10 to 12.5 mm. Tap water was used as for testing 

and a 1.09 specific gravity HRWR is required to determine the 

SCC-WCS % combination characteristics according to 

evaluation of flow characteristics is mandated by EFNARC 

[38, 39], IS 10262: 2019 [40]. Eight distinct mixes were 

created, with one serving as a control mix. In SCC, the 

quantity of WCS utilised to replace natural sand can range 

from 0% to 70%. The required proportions for SCC mix are 

425 kg/m3 cement, 92.35 kg/m3 flash, 904 kg/m3 coarse-grain 

crushed aggregates, 740 kg/m3 natural sand, 0.43 water to 

cement, 4.17 kg/m3 PCE super plasticiser, and tap water. It 

takes around 8 to 10 minutes to get a uniform mixture using a 

pan mixer. 

 

3.2 Methodology 

 

3.2.1 Experimental program 

In every single SCC combination, a total of 15 cube 

specimens measuring 100 mm × 100 mm × 100 mm, 15 

cylinders measuring 100 mm × 200 mm, and 6 beams 

measuring 100 mm × 100 mm × 500 mm were precisely cast. 

Until the day of the test, the specimens were left to cure. After 

casting each mixture of SCC-WCS% for 7, 28, 56, and 90 days 

to cure, the cube compression test and split tensile strength 

were measured and recorded. The results of these tests were 

documented. The test results are considered as data set-I, 

consisting of 32 variations, for predicting the ANN-I model. 

Additionally, the test results for flexural strength after 28 and 

90 days of curing are regarded as data set-II, including 16 

variations, for predicting the ANN-II model using MATLAB 

2020a. 

 

3.2.2 Artificial neural networks (ANN) modelling 

Using models of artificial neural networks (ANNs), 

researchers may probe the brain's encoding of abstract 

semantic information or visual images, even those with several 

levels of complexity. If this kind of "brain reading" and "mind-

reading" works, it will be a huge step forward in the field of 

science. A neural network's biological neurons are its building 

blocks. Layers of tiny building blocks called neurons make 

them up. Each neuron in the hidden layer—the middle layer of 

a fully connected feed-forward artificial neural network—is 

connected to nodes in the layers that come before and after it.  

Input nodes in the input layer receive data from the network, 

whereas neurons in the output layer are responsible for 

generating the network's output. A neuron's influence on 

another neuron is represented by the weights of the 

connections between their respective nodes. A neuron 

determines its output after receiving a signal from other linked 

neurons by adding up the weighted signals and using a 

function called. The Log-sigmoid function is used as 

activation by all of the network nodes [24-31]. 

The construction of an ANN model involves three primary 

steps: 

• Defining the input and output for the problem. 

• Training the network. 

• Evaluating the network's performance by comparing 

actual and predicted values. 

The present study utilizes two distinct data sets, as 

illustrated in Table 1 and Table 2, to predict the split tensile 

657



 

and compressive strengths. Data set 1 is employed for 

predicting split tensile strength outcomes, while data set 2 is 

utilized for forecasting flexural strength. The input variables 

in both data sets remain consistent across all training and 

testing phases. Two different methodologies are employed 

concerning the outcomes. 

 

Table 1. Data set 1, in (Kg/cu.m) 

 

Cement Fly ash CA FA WCS Water W/C SP Curing Days 

425 92.35 904 740 0 182.75 0.43 4.17 7 

425 92.35 904 666 74 182.75 0.43 4.17 7 

425 92.35 904 592 148 182.75 0.43 4.17 7 

425 92.35 904 518 222 182.75 0.43 4.17 7 

425 92.35 904 444 296 182.75 0.43 4.17 7 

425 92.35 904 370 370 182.75 0.43 4.17 7 

425 92.35 904 296 444 182.75 0.43 4.17 7 

425 92.35 904 222 518 182.75 0.43 4.17 7 

425 92.35 904 740 0 182.75 0.43 4.17 28 

425 92.35 904 666 74 182.75 0.43 4.17 28 

425 92.35 904 592 148 182.75 0.43 4.17 28 

425 92.35 904 518 222 182.75 0.43 4.17 28 

425 92.35 904 444 296 182.75 0.43 4.17 28 

425 92.35 904 370 370 182.75 0.43 4.17 28 

425 92.35 904 296 444 182.75 0.43 4.17 28 

425 92.35 904 222 518 182.75 0.43 4.17 28 

425 92.35 904 740 0 182.75 0.43 4.17 56 

425 92.35 904 666 74 182.75 0.43 4.17 56 

425 92.35 904 592 148 182.75 0.43 4.17 56 

425 92.35 904 518 222 182.75 0.43 4.17 56 

425 92.35 904 444 296 182.75 0.43 4.17 56 

425 92.35 904 370 370 182.75 0.43 4.17 56 

425 92.35 904 296 444 182.75 0.43 4.17 56 

425 92.35 904 222 518 182.75 0.43 4.17 56 

425 92.35 904 740 0 182.75 0.43 4.17 90 

425 92.35 904 666 74 182.75 0.43 4.17 90 

425 92.35 904 592 148 182.75 0.43 4.17 90 

425 92.35 904 518 222 182.75 0.43 4.17 90 

425 92.35 904 444 296 182.75 0.43 4.17 90 

425 92.35 904 370 370 182.75 0.43 4.17 90 

425 92.35 904 296 444 182.75 0.43 4.17 90 

425 92.35 904 222 518 182.75 0.43 4.17 90 

 

Table 2. Data set 2 in (Kg/cu.m) 

 

Cement Fly ash CA FA WCS Water W/C SP Curing Days 

425 92.35 904 740 0 182.75 0.43 4.17 28 

425 92.35 904 666 74 182.75 0.43 4.17 28 

425 92.35 904 592 148 182.75 0.43 4.17 28 

425 92.35 904 518 222 182.75 0.43 4.17 28 

425 92.35 904 444 296 182.75 0.43 4.17 28 

425 92.35 904 370 370 182.75 0.43 4.17 28 

425 92.35 904 296 444 182.75 0.43 4.17 28 

425 92.35 904 222 518 182.75 0.43 4.17 28 

425 92.35 904 740 0 182.75 0.43 4.17 90 

425 92.35 904 666 74 182.75 0.43 4.17 90 

425 92.35 904 592 148 182.75 0.43 4.17 90 

425 92.35 904 518 222 182.75 0.43 4.17 90 

425 92.35 904 444 296 182.75 0.43 4.17 90 

425 92.35 904 370 370 182.75 0.43 4.17 90 

425 92.35 904 296 444 182.75 0.43 4.17 90 

425 92.35 904 222 518 182.75 0.43 4.17 90 

 

Initially, a multi-input, multi-output neural network, 

referred to as ANN-I, is utilized to predict all nine constituent 

inputs: cement, fly ash, coarse aggregate (CA), fine aggregate 

(FA), waste copper slag (WCS), water content, W/C ratio, 

superplasticizer (SP), and curing ages. The architecture of the 

ANN-I network is depicted in Figure 1, with only data set 1 

applied to this network. The second approach considers curing 

times and employs a multi-input, single-output neural network 

named ANN-II to predict one ingredient at a time. The design 

of the ANN-II network can be seen in Figure 2.
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Figure 1. ANN-I network architecture in the present study 

 

 
 

Figure 2. ANN-II network architecture in the present study 

 

For the assessment of the compressive strength and split 

tensile strength prediction about 9 inputs with 10 hidden layer 

and 2 outputs at the different curing periods of 7 days, 28 days, 

56 days and 90 days the compressive strength models and split 

tensile strength are tested in the laboratory it leads to 32 

samples. For the assessment of the flexure strength prediction 

about 9 inputs with 10 hidden layer and 1 outputs at the 

different curing periods of 28 days and 90 days the flexure 

strength models are tested in the laboratory it leads to 16 

samples. Both the ANN-I and ANN-II networks are trained 

and tested on all accessible datasets. The ideal number of 10 

hidden layer nodes is calculated for both the ANN-I and ANN-

II networks. 

In general, the data set is separated into two parts: 80% for 

training and 20% for testing. The training may differ 

depending on the dataset, which is the bulk of the data set  

you use to train the model. This involves updating the 

weights to optimise the ANN model matrix weights to 

determine the optimal map of input and output. Once the 

model has been trained, we freeze all of the weights before 

testing it on a new data set. In general, the model generates 

predictions, from which we measure the inaccuracy. Based on 

the mistake, we must train the data set by modifying the 

weights until the model has been trained. After training the 

model, all of the network weights are frozen and test the model 

It is critical to optimise data collecting for the artificial neural 

network. This study created a model with a 20% testing set for 

model testing, a 20% validation set for model validation, and 

a 60% training set for model training. During the learning 

phase, the Levenberg-Marquardt optimisation approach is 

used to train the ANN model, utilising the experimental data 

set as input. During the training phase, the weights and biases 

are modified to optimise the component prediction. 

The Levenberg-Marquardt algorithm (LMA) is a local 

minimisation technique that relies on the least squares method. 

The Least Mean Absolute (LMA) technique is often used to 

optimise the weights and bias of multilayer perceptron (MLP) 

paradigms because it is very good at getting to the right values 

from very far away. Levenberg [41] and Marquardt [42] are 

the primary sources from which LMA is refined. The 

regularization parameter, also known as the Levenberg-

Marquardt parameter, is used to stabilise Newton's approach; 

otherwise, the two methods are essentially similar. The 

convergence of each iteration automatically updates this 

parameter [43]. 

The MATLAB R2020a version is being used as the run-time 

environment. To evaluate the accuracy used in the research for 

assessing the learning, training, and predictive capacities of 

the constructed ANN model. The performance of the actual 

and projected values is compared using two methodologies: 

mean square error (MSE) and determination's coefficient (R2). 

The results of this comparison are shown below: 

 

𝑀𝑆𝐸 =
1

N
∑ √(Ai − Pi)2

N

i=1

 (1) 

 

𝑅2 = 1 −  
∑ (An − Pn)2N

i=1

∑ (An − Sn)2N

i=1

 (2) 

 

When the R-squared value approaches 1, it suggests that the 

predictive models generated by ANN are well-suited for the 

provided datasets, indicating higher accuracy. Conversely, 

when the R-squared value approaches zero, it signifies lower 

accuracy or a poor fit for the data. 

 

 

4. RESULTS AND DISCUSSION 
 

The purpose of this research was to evaluate the viability of 

using ANN for the proportioning of SCC mixes. Two ANN 

models, ANN-I and ANN-II, are built using two distinct 

techniques. A data set is used to train and test each model. Two 

datasets, "data set 1" and "data set 2," compile experimental 

results from several studies [31-34]. During training and 

testing, all approaches and phases used inputs that were fixed 

in data sets 1 and 2. Utilizing the MATLAB (2020a) toolbox, 
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an ANN model was created to forecast the mechanical 

characteristics of SCC.  

 

4.1 ANN-I and ANN-II model: Data set 1 and data set 2 is 

used 

 

In the ANN-I architecture, nine input variables are utilized 

along with 10 hidden neurons and 2 outputs, namely 

Compressive Strength and Split Tensile Strength, depicted in 

Figure 3. Furthermore, there is an additional output, Flexure 

Strength, represented in Figure 4. The correlation between 

experimental and predicted values is evaluated using the R-

squared (R2) value. The MATLAB (2020a) training function 

employs the Levenberg–Marquardt optimization technique for 

training the network, adjusting weight and bias values. The 

training state of the ANN-I model is illustrated in Figure 5a. 

An observation after epoch 4 indicates error repetition six 

times until tested at epoch 10, suggesting potential overfitting 

from epoch 5 onwards. Thus, epoch 4 is selected as the base, 

and its weights are finalized. Validation is conducted six times, 

with errors reported six times before the process concludes. 

Similarly, Figure 5b depicts the training state of the ANN-II 

model. Error repetition is noted after epoch 7, occurring three 

times until epoch 10, indicating overfitting beginning from 

epoch 6. Therefore, epoch 7 is chosen as the base, and its 

weights are finalized. Validation is carried out six times, with 

errors reported six times before the process stops. Figure 6a 

presents the validation and mean squared error performance of 

the network, transitioning from a large to a small value. Three 

lines represent different stages of training, validation, and 

testing. The best validation performance is achieved at epoch 

4, with subsequent error repetition leading to termination at 

epoch 10. Employing a neural network with a hidden layer 

comprising 10 neurons aims to minimize Mean Squared Error 

(MSE) and maximize R, resulting in an R value of 0.99. 

Similarly, Figure 6b displays the validation and mean squared 

error performance of the network, with the best validation 

performance observed at epoch 7, resulting in an MSE of 

0.41619. The process is halted at epoch 10 after error repetition 

occurs post-epoch 7, mirroring the previous model.  

Figures 7a and 7b portray the error histograms of the ANN-

I model, offering insights into the errors obtained during the 

training phase. These histograms suggest that errors across all 

three data groups are frequently close to the zero-error line, 

indicating relatively small numerical error values. Overall, the 

error histograms demonstrate that the training phase of the 

constructed ANN model is completed with minimal errors. To 

validate the trained neural network, a dataset containing 

strength, and flexure strength, as discussed earlier, was 

assembled. 

 

 
 

Figure 3. Structure of the developed ANN-I 

 

 
 

Figure 4. Structure of the developed ANN-II

  

 

Figure 5. Training state: (a) ANN–I model; (b) ANN–II model 
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Figure 6. Performance network: (a) ANN –I model; (b) ANN –II model 

 

 
 

Figure 7. Error histogram: (a) ANN –I model; (b) ANN –II model 

 

Regression plots for validation, testing, and training of 

ANN-I and ANN-II models are depicted in Figures 8 and 9, 

respectively. These plots illustrate the compatibility between 

experimental and predicted outcomes. The error relative to the 

expected value falls within the range of 0.025 to 0.105. Figure 

10a shows the experimental and predicted values of 

compressive strength for the ANN-I model. For the assessment 

of the compressive strength and split tensile strength 

prediction about 9 inputs with 10 hidden layer and 2 outputs at 

the different curing periods of 7days, 28 days, 56 days and 90 

days the compressive strength models and split tensile strength 

are tested in the laboratory it leads to 32 samples. Table 1 

represents the data set 1 for the assessment of ANN-I model, 

based on that the predication is carried in MATLAB. The 

figure 10a represents strong correlation between the 

experimental compressive strength data at different curing 

periods to the train model. The coefficient correlation of an R2 

value of 0.975 and an error of 0.025. Figure 10b displays the 

experimental and predicted values of split tensile strength for 

the ANN-I model. In the Figure 10b represents strong 

correlation between the experimental split tensile data at 

different curing periods to the train model. The coefficient 

correlation of an R2 value of 0.96 and an error of 0.04. 

Figure 11 presents the experimental and predicted values of 

flexure strength using the ANN-II model. For the assessment 

of the flexure strength prediction about 9 inputs with 10 hidden 

layer and 1 outputs at the different curing periods of 28 days 

and 90 days the flexure strength models are tested in the 

laboratory it leads to 16 samples. Table 2 represents the data 

set 2 for the assessment of ANN-II model, based on that the 

predication is carried in MATLAB. Figure 11 represents good 

correlation between the experimental flexure strength data at 

different curing periods to the train model. The coefficient 

correlation of an R2 value of 0.895 and an error of 0.105. The 

Mean Squared Error (MSE) values for the ANN-I and ANN-

II models are calculated to be 3.8905×10-2 and 2.525 ×10-2, 

respectively. Additionally, the R2 values for the ANN-I and 

ANN-II models are determined to be 0.985 and 0.9983, 

respectively.
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Figure 8. Regression network ANN-I model 

 

 
 

Figure 9. Regression network ANN-II model 
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Figure 10. Experimental vs Predicated values of ANN-I model: (a) Compressive strength (MPa); (b)Split tensile strength (MPa) 

 

 
 

Figure 11. Experimental vs Predicated values of ANN-II 

model of Flexure strength (MPa) 

 

 

5. CONCLUSIONS  

 

The paper presents an attempt to use ANN for SCC-WCS% 

mixes. The artificial neural network (ANN) algorithm utilizing 

nine independent input factors with two datasets showed a 

more dependable and accurate prediction capacity for 

mechanical characteristics. The results of the experiments for 

the datasets of various curing ages, the trained neural networks 

may be used to execute mix proportioning of SCC mixes with 

waste copper slag and fly ash which are used in the simulation 

led to these conclusions. 

• The ANN-I model exhibited regression values of 

0.99852, 0.99645, and 0.9962 for training, testing, and 

validation, respectively. Conversely, for ANN-II, the 

regression values stood at 0.99833, 0.90291, and 0.8971 for 

training, testing, and validation, respectively. 

• Optimal validation performance is achieved at epochs 

4 and 7 for the ANN-I and ANN-II models, respectively. 

These models demonstrate accurate predictions for the 

compressive strength, split tensile strength, and flexural 

strength of SCC. 

• Experimental data from this study were utilized to 

validate the ANN models by comparing predicted and 

experimental results of SCC. The analysis revealed 

satisfactory relationships between predicted and experimental 

values of compressive strength of SCC-WCS%, with 

respective R2 values of 0.975, 0.960, and 0.895, alongside 

errors ranging from 0.025 to 0.105. The correlation of the 

experimental data to the predicted ANN model shows better 

relation with the self compacting concrete incorporating the 

fly ash as cement and fine aggregate as waste copper slag at 

the different curing period.  

• The Mean Squared Error (MSE) values for the ANN-

I and ANN-II models are 3.8905×10-2 and 2.525×10-2, 

respectively, while the corresponding R2 values are 0.985 and 

0.9983. 

The ANN models allow for the reliable prediction of 

mechanical properties of SCC-WCS%, which consequently 

influence complex processes. The future work in SCC mixes 

is to assess the large data finding based approaches at the 

different mix proportion at different curing ages is important. 

Consequently, it is suggested to record and forecast collective 

SCC behaviors taking these elements into account. 
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