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Partial shading is one of the crucial bottlenecks in solar photovoltaic (PV) system. The 

performance of a PV system is affected due to partial shading. This paper highlights the 

impact of partial shading condition (PSC) on the performance of PV systems with an 

experimental analysis using a PV emulator. A reduction of 37% in maximum power, 38% 

in fill factor, and 60% in efficiency as a result of PSC was observed in the experimentation 

work. PSC also results into multiple peaks on power-voltage (P-V) curve. One of these 

peaks is the Global Maximum Power Point (GMPP) and other peaks are local MPPs. The 

GMPP cannot be tracked using conventional MPPT algorithms. This paper proposes a new 

optimization method called as Firefly Algorithm (FA) built on a metaheuristic approach 

for Maximum Power Point Tracking (MPPT). Results obtained through the simulation 

show the enhancement in the tracking efficiency and tracking time over the conventional 

MPPT methods by achieving the tracking efficiency of 98.12% with a response time of 

less than 1ms. The proposed system is also able to reduce the oscillations around MPP and 

achieve stable performance under dynamically varying environmental conditions. 
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1. INTRODUCTION

Energy has become a crucial aspect in everyone’s life. The 

world is facing an energy crisis because of the huge growth in 

population and industrialization. The difference between the 

demand and production of energy is continued to increase. To 

meet the energy demand, the conventional energy sources like 

coal, gas, etc., have been used from the past. But these energy 

sources are harmful for the nature as these are responsible for 

toxic pollution. The reports of the Annual Energy Outlook 

state that conventional energy sources like gas, coal, uranium, 

and oil will deplete in just a few decades [1]. To overcome the 

limitations of conventional energy sources, an alternative 

energy sources are needed. Renewable energy sources like 

wind, solar, biomass are used during the past two decades [2]. 

Natural resources that provide renewable energy are abundant 

and don't harm the environment. Renewable energy sources 

will soon dominate the energy landscape because of advances 

in harvesting technology. Solar energy harvesting offers 

several advantages in terms of less complex installation, 

simplicity of use, low maintenance requirements, etc. A solar 

photovoltaic system transforms photons into electricity. The 

power output of a PV system is greatly reliant on solar 

irradiation. A variety of problems, including PSC, minor 

flaws, diode failure, etc., restrict the power from the PV 

system. The effect of partial shading on PV system and hotspot 

problem is well discussed in the literature. Some of these 

difficulties are diagnosable. However, some elements, such as 

hotspots and partial shade, cannot be avoided [3-5]. Partial 

shading on PV panels reduces the maximum power from the 

system and can also cause PV cell damage due to hot spots. 

The effect of PSC can be minimized by using suitable MPPT. 

Conventional MPPT methods include the Perturb and Observe 

(P&O) and Incremental Conductance (IC). These techniques 

track the MPP by using iterative processes for adjusting the 

duty cycle. Conventional MPPTs are able to track the MPP in 

normal environmental conditions. But these methods are 

slower in tracking the MPP and also have less tracking 

efficiency in the range of 80% to 90% in case of PSC. When 

the PV system is subjected to PSC, multiple local MPPs are 

present on the P-V curve of the system. The conventional 

methods are get stuck at local MPP instead of GMPP and may 

fail to track GMPP. These methods cannot handle high 

dynamics in PV systems and nonlinearities due to PSC. 

Conventional MPPTs use fixed step size. Larger step size can 

be used for increasing the convergence speed, but it decreases 

accuracy. On the other hand, the smaller step size increases the 

accuracy, but decreases the convergence speed. To overcome 

the problems with conventional MPPT methods, the 

optimization methods are needed for MPPT. The proposed 

FA-based method can track the GMPP effectively under PSC. 

The FA-based method dynamically adjusts the step size to 

balance the accuracy and convergence speed. It can also 

handle non-linearity due to the PSC. It explores the entire 

search space that can increases the maximum power 

extraction. 

Various reconfiguration techniques are implemented to 

track the GMPP under partial shading [6, 7]. The optimization 
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techniques Particle Swarm Optimization (PSO), Neural 

Network (NN), Artificial Neural Network (ANN), Ant Colony 

Optimization (ACO), and Cuckoo search are merged with 

these methods [8]. The MPPT is dependent on the dynamics 

of uncontrollable operational circumstances. Intermittent solar 

energy puts a strain on the grid's stability and power quality as 

PV system penetration increases. PV systems' reliance on solar 

radiation can occasionally result in technical problems, 

including overloading the grid during periods of peak 

electricity output [9]. The PV system is affected by multiple 

mismatches, including cloud and dirt that creates multiple 

peaks on the P-V curve. This presents a challenge for these 

simple controllers. Unfortunately, simple controllers are 

unable to handle mismatch events [10]. Many researchers have 

looked at soft computing approaches to deal with difficult 

problems. Since their job is to find the global maxima rather 

than the local, they have been created to cope with global 

MPPT. In other words, they can potentially offer the best 

solution for a characteristic function with numerous peaks. 

The most recent research studies provide some sophisticated 

GMPPT approaches [11].  

 

 

2. RELATED WORK 

 

Many researchers have contributed to the development of 

various MPPTs. The Perturb and Observe (P&O) MPPT based 

on a novel linear tangent developed by the authors was able to 

achieve higher accuracy, improved efficiency, low 

oscillations, and improved dynamic and steady-state response 

[12]. An extensive review of the various hardware solutions to 

achieve maximum power under partial shading was done by 

the researchers. The research provided the economic viability 

and challenges for the various solutions [13]. The performance 

of the traditional P&O approach under rapidly varying solar 

irradiation is comprehensively examined by the researchers. 

Four out of sixteen example studies involving abrupt changes 

in solar irradiation show that the traditional P&O approach 

does not correctly track MPP. Under a ramp shift in irradiation 

level, the conventional P&O tracker is unable to function 

effectively. A modified P&O-based-MPP tracking system is 

presented and evaluated under step and ramp variations of 

irradiation. The said method tracks the MPP under fast varying 

conditions [14]. Başoğlu [15] has done a comprehensive 

review of distributed MPPT techniques and the module-level 

and submodule-level. In this work, distributed MPPT 

(DMPPT) is highlighted. Full and differential power 

processing (FPP and DPP) are two classes of hardware MPPT 

solutions based on power electronics that are explored. 

Additionally, a variety of parameters have been looked at 

when evaluating commercially available power optimizers. A 

thorough analysis and evaluation of the relevant literature have 

been conducted. Mahato et al. [9] has reviewed the active 

power control methods. They examined several active power 

control strategies, such as fixed and variable horizons. The 

main objective was to examine the dependability aspect while 

obtaining energy from solar plants. To determine which 

approach meets the requirements best, the two methods have 

been compared. The authors also briefly discussed how both 

systems affect the grid system. In addition, benchmarking has 

been suggested as a way to switch between modes based on 

the power supply. A novel extreme control-seeking framework 

was suggested by the authors. They provided ordered 

excitation (OE) and non-linear function-based PSO methods 

to track the MPP. For the improvement of steady-state 

response when carrying out the extreme searching task, the 

novel algorithms of nonlinear function (NF) based PSO and 

OE are introduced. The programs can quickly implement 

explicit control functions. The suggested controller is assessed 

using a variety of control performance indicators using 

statistical simulation-based analysis and experimental 

investigation. A comparative examination of the statistical 

data demonstrates that the simulation and experimental 

findings support the notion that both the NF-PSO and OE 

algorithms contribute to the enhancement of the global 

extreme seeking's steady state and transient responses [10]. 

MPPT design using swarm intelligence under the partial 

shading effect was developed by the researchers. The proposed 

system is tested in four distinct scenarios to validate system 

performance against simulation results. The recommended 

TLABC approach is found to provide better performance than 

other investigated methods [16]. Pal and Mukherji [17] have 

suggested another improved MPPT method. To maximize the 

power from the PV array under diverse climatic situations, the 

study suggests an enhanced chaotic PSO. To prevent regular 

PSO from becoming trapped in local MPPs, the chaotic 

mutation is incorporated into the algorithm. The suggested 

approach also significantly reduces tracking time, iteration 

count, and efficiency. The acquired findings also demonstrate 

that the tracking effectiveness of the suggested strategy is, in 

the majority of circumstances, superior to other methods, 

which gives it a better perspective for usage in the control 

block while looking for the overall MPP of the PV system. 

Nassef et al. [18] developed a modified MPPT using a honey-

badger algorithm. Metaheuristic algorithms (MHs) have been 

developed recently to address a wide range of optimization 

issues. The benefit of the MHs is not only their ease of 

implementation, which aids in dealing with numerous and 

various real-world applications but also their simplicity of 

understanding. One of the more recent MHs is the Honey 

Badger Algorithm (HBA). The HBA algorithm effectively 

tackles difficult problems with high dimensions.  

Various optimization methods have also been implemented 

to improve the performance of MPPT algorithms. Premkumar 

et al. [19] have used the whale optimization technique for 

MPPT. To maximize the PV output under PSC, they have 

presented an effective technique for MPPT. The recommended 

strategy is based on the whale-optimization (WO) algorithm, 

which aims to detect the global peak (GP) despite its quick 

convergence speed and poor tracking efficiency. This 

recommended approach lessens the computational complexity 

faced by the many MPPT algorithms that have been studied in 

the literature and aid in lowering the oscillation of power 

during environmental changes. Another Global MPPT using 

the teaching-learning method was introduced by the study 

[20]. A unique population-based optimization approach 

inspired by the learning environment of the classroom, is used 

in this method to extract GMPP. Regarding tracking 

effectiveness and steady-state oscillations, the suggested 

technique improves upon the drawbacks of current traditional 

MPPT tracking systems. It was discovered that TLBO satisfied 

the requirements for a heuristic technique, performed better 

than the PSO method with less computational work, and 

demonstrated high consistency. Another MPPT technique 

based on a tuned adaptive fuzzy PID controller using grey wolf 

optimization (GWO) was suggested by the researchers. A 

GWO approach has been used in their work to optimize the 

parameters of an adaptive fuzzy-based PID (AFPID) controller 
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that has been developed for the frequency regulation of power 

systems. Throughout the search process, the original GWO 

method's simplicity is introduced by discarding the wolves in 

the poorest category and giving precedence to superior wolves. 

By using benchmark functions for unimodal, multimodal, and 

fixed dimensions, projected SGWO's advantage over GWO is 

shown in terms of better results with shorter execution times 

[21].  

Recent advancements in MPPT research involve various 

reconfiguration techniques to track the global MPP. The 

physical relocation procedures are challenging since they need 

labor-intensive work. The ideal switching matrix design for 

EAR is still difficult to achieve. An extensive review of 

reconfiguration strategies for MPPT is done by the authors. 

The performance of various reconfigurations is simulated and 

compared by the study [22]. Patro and Saini [23] have used 

static array reconfiguration for GMPPT. Analysis has been 

done on the effectiveness of various photovoltaic static array 

topologies. It has been discovered that a static PV array with a 

bypass diode and a TCT (Total Cross Tied) configuration may 

increase output power to 1.14 kW. As a result, the MPPT 

controller is connected to the static PV array with TCT 

configuration. Finding the GMPP, which is a difficult 

challenge for the control algorithm due to several peaks. To 

perform an inspection approach, the MPPT technique 

incorporates social learning differential evolution (SLDE), 

which significantly increases the tracking capabilities. 

Another new metaheuristic method called Adaptive-JAYA 

optimization for the best reconfiguration of the PV array is 

used to get over the problems associated with the traditional 

reconfiguration methods. Because it is dependable and easy to 

use, adaptive-JAYA uses less memory and puts less strain on 

processors [24]. The selection of the suitable MPPT technique 

is necessary for solar PV system under PSC.  

 

 

3. MODELLING OF PV CELL 

 

A single diode model may be thought of as a current source 

and a parallel linked diode operating in the opposite direction 

as shown in Figure 1. Each parallel and series resistance in a 

model is unique. Series resistance stands for the obstruction to 

the passage of electrons from the n to the p junction and 

parallel resistance for leakage current. In the absence of 

incoming light, the PV cell operates as a diode and produces a 

current. 

 

 
 

Figure 1. PV cell equivalent model 

 

For an ideal PV cell, the current is given by Eq. (1). 

𝐼𝑑 = 𝐼𝑝𝑣 − 𝐼𝑠 (exp 
𝑞𝑉

𝑘𝑇
  −  1) (1) 

 

where, Id is diode current (A), Ipv is the PV current (A), Is is 

saturation current (A), q is charge on electron, V is the PV cell 

voltage (V), k is Boltzmann constant (1.380649 × 10-23 J/K), 

and T is temperature (K).  

The MPP of a solar module, as illustrated in Figure 2, shows 

non-linear Current-Voltage (I-V) and Power-Voltage (P-V) 

characteristics and can alter in response to changing radiation 

and temperature. In real-world situations, PV cell connections 

in series and/or parallel must be used to provide the necessary 

voltage and current. A greater output current results from a 

parallel connection, but a greater output voltage arises from 

the series connection. 

 

 
 

Figure 2. I-V and P-V curves for a typical PV system 

 

With practical factors considered, the equation can be 

modified as Eq. (2). 

 

𝐼𝑑 = 𝐼𝑝𝑣 − 𝐼𝑠 (exp 
𝑞(𝑉  +  𝐼𝑅𝑠)

𝑁𝑠𝑘𝑇𝛼
   −  1)    −  

𝑉  +  𝐼𝑅𝑠

𝑅𝑠ℎ

 (2) 

 

where, Rs is the series resistance (Ω), Ns is the number of PV 

cells connected in series, α is diode ideality factor, and Rsh is 

the shunt resistance (Ω).  

Series resistance and shunt resistance values are calculated 

as Eq. (3) and Eq. (4). 

  

𝑅𝑠 =  
𝑉𝑜𝑐   −  𝑉𝑚

𝐼𝑚

 (3) 

 

𝑅𝑠ℎ =  
𝑉𝑚

𝐼𝑠𝑐   −  𝐼𝑚

 (4) 

 

where, Voc is open-circuit voltage (V), Isc is the short-circuit 

current (A), Vm is the voltage (V) at MPP, Im is the current (A) 

at MPP. 

 

 

4. EXPERIMENTAL ANALYSIS OF THE EFFECT OF 

PARTIAL SHADING USING PV EMULATOR 

 

The effect of PSC was analyzed using PV Emulator. Figure 

3 depicts the actual setup utilized for the experiment. Four 

various shading schemes were used in a series of studies. The 

performance parameters were noted, and the PV Emulator's 

parameters were configured as shown in Table 1. Figure 4 and 

Figure 5 demonstrate, respectively, the P-V and I-V Curves in 

four different PSCs using a PV Emulator. Table 2 contains a 

summary of these observations. 

In case 1, all the panels are fully illuminated with solar 
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irradiance of 1000 W/m2. It indicates no shading condition. 

This represents the ideal conditions where all PV panels 

receive maximum and uniform solar irradiance. It serves as a 

baseline to observe the maximum power extracted from the PV 

system. 

 

Table 1. PV emulator configuration parameters 

 

Sr. No. Parameter Value 

1 Voc 36.3V 

2 Isc 7.84A 

3 Tc 0.102 

4 A 0.98117 

5 Rs 0 

 
 

Figure 3. The experimental set-up using PV emulator 

 

 
 

Figure 4. P-V curves using PV emulator 

 

 
 

Figure 5. I-V curves using PV emulator 

 

Table 2. PV array performance using PV emulator 

 
Case Irradiance Levels (W/m2) IMPP (A) VMPP (V) MPP (W) Fill Factor Efficiency 

1 1000, 1000, 1000, 1000 7.618 33.02 251.6 88.37 0.4006 

2 1000, 1000, 1000, 500 7.620 24.77 188.7 67.46 0.3432 

3 1000, 1000, 500, 500 7.618 16.50 125.9 44.98 0.2671 

4 1000, 750, 500, 250 5.713 16.39 93.52 34.03 0.2384 

 

In case 2, first three panels are fully illuminated, but one 

panel is shaded with solar irradiance of 500 W/m2. This 

Simulates a scenario where one panel is partially shaded while 

the others receive full sunlight. Such condition commonly 

occurs due to small obstructions like a tree branch, or debris 

on one part of the array. 

In case 3, two panels are fully illuminated, but remaining 

two panels are equally shaded with 500 W/m2. This represents 

increases level of partial shading, but it’s less complex in 

variations. This represents conditions where shading affects 

two consecutive panels. Such condition is commonly caused 

by shadows from nearby buildings, poles, or larger 

obstructions at certain times of the day. It demonstrates how 

increasing shading reduces the system's power output more 

significantly compared to case 2. 

In case 4, only one panel is fully illuminated and other three 
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panels are shaded differently having unequal solar irradiance 

of 700 W/m2, 500 W/m2, and 250 W/m2. This represents the 

complex shading pattern with varying levels of solar 

irradiance. This case simulates a situation where shading 

occurs progressively across all panels, such as during early 

morning, late evening, or with moving clouds. This condition 

is common during partial sunlight conditions or dynamic 

shading patterns. This is important for analyzing the PV 

system's performance under highly non-uniform irradiance 

and designing suitable mitigation strategies such as MPPT 

algorithms. 

As illustrated in case 1, the system produces a MPP of 251.6 

W with consistent solar irradiation across all PV panels. In the 

ensuing situations, as solar irradiation non-uniformity grows, 

the maximum power drops. Additionally, there are other local 

maxima. The experimental findings confirm the effect of PSC 

on the maximum power and local maxima of the PV system.  

 

 

5. PROPOSED MPPT METHOD 

 

A Firefly Algorithm is a metaheuristic approach to achieve 

optimization. The flow for the FA algorithm to track GMPP is 

described in Figure 6. According to the inverse square law, as 

stated in Eq. (5), light intensity diminishes as firefly distance 

rises.  

 

𝐼𝑟   =  
𝐼𝑠

𝑟2
 (5) 

 

where, Ir is solar light intensity (W/m2) at distance r (m). 

 

 
 

Figure 6. Flowchart for FA 

 

The rules used by Firefly Algorithm are: 

1. Fireflies attract each other regardless of their gender. 

2. The attraction is proportional to light emitted. It 

decreases with an increase in the distance. In case of no 

brightness by any firefly, the fireflies move randomly.  

3. Objective function determines the light emitted by 

firefly. 

In addition, the air also absorbs light, making it dimmer as 

it travels farther. The selection of appropriate parameter values 

is essential to enhance convergence to the global optimum. 

Computational inefficiency might stem from poor decisions. 

The parameter of attractiveness is an additional element. The 

firefly is drawn to and tends to migrate toward a firefly that is 

more visible. Eq. (6) provides a quantitative description of the 

attractiveness. 

 

𝛽𝑟   =  𝛽0 𝑒𝛾𝑟𝑚
 ,   𝑚  ≥  1 (6) 

 

The distance between i and j is represented by Eq. (7) and 

the position xi is represented by Eq. (8). 

 

𝑟𝑖𝑗   =   ||𝑥𝑖   −  𝑥𝑗|| (7) 

 

where, βr is attractiveness at distance r, β0 is initial 

attractiveness, γ is absorption parameter, and m is integer 

value,  

 

𝑥𝑖   =  𝑥𝑖   + 𝛽0 𝑒
−𝛾𝑟𝑖𝑗 2

 𝑥𝑖    − 𝑥𝑗    +  𝛼𝜀𝑖 (8) 

 

where, α is randomization term, and εi is random number 

distributed in [0,1]. The β0 stands for initial attractiveness. The 

absorption coefficient γ governs how much light intensity is 

reduced. Its value is critical in deciding how the FA algorithm 

will behave and how quickly convergence will occur. Integer 

m is set to a value of 2. α serves as a term for randomization.  

Population size is taken as 40 and an algorithm is simulated 

for 50 iterations to ensure the better convergence and speed for 

the GMPPT. The γ is taken as 0.1 for MPPT to maintain a 

balance between local and global search. The value of α is 

taken as 0.2 to focus on a deterministic search while retaining 

minimal randomness. The value of β0 is taken as 1 to stronger 

convergence toward brighter fireflies, improving tracking 

accuracy. 

 

 

6. RESULTS AND DISCUSSION 

 

The proposed MPPT is tested in a MATLAB SIMULINK 

environment. The system uses the PV array having three 

panels with 60.003W maximum power capacity and other 

specifications as listed in Table 3. 

 

Table 3. PV array specifications 

 
Sr. No. Parameter Value 

1 Maximum power 60.003 W 

2 Cells per module 60 

3 Voc 22 V 

4 Isc 3.8 A 

5 VMPP 17.7 V 

6 IMPP 3.39 A 

7 Rp 67.2783 Ω 

8 Rsh 0.46132 Ω 

 

The system is applied with three different levels of solar 

irradiance. The corresponding levels of maximum power 

obtained, the Pulse Width Modulation (PWM) signal applied 

1625



 

to the converter, and output voltage variations are noted for 

these three levels of partial shading. In case 1, two PV panels 

are fully illuminated with 1000 W/m2, but the third panel is 

shaded by applying 800 W/m2 solar irradiance. The FA 

algorithm optimizes the output by using the population of 

fireflies, random value, and multiple iterations. Finally it 

reaches to 60.03W output power with 98.12% tracking 

efficiency as shown in Figure 7. The required PWM variations 

and the output voltage are shown in Figure 8 and Figure 9 

respectively. In case 2, only one PV panel is fully illuminated 

with 1000 W/m2, and remaining two panels are shaded by 

applying 900 W/m2 and 800 W/m2 solar irradiance. The FA 

algorithm optimizes the output for this partial shading 

condition. Finally it reaches to 58.23W output power with 

97.05% tracking efficiency as shown in Figure 10. The 

required PWM variations and the output voltage are shown in 

Figure 11 and Figure 12 respectively. 

In case 3, all three panels are shaded by applying 700 W/m2, 

900 W/m2, and 800 W/m2 solar irradiance. The FA algorithm 

optimizes the output and reaches to 57.12W output power with 

96.48% tracking efficiency as shown in Figure 13. The 

required PWM variations and the output voltage are shown in 

Figure 14 and Figure 15 respectively. 

The performance parameters are noted in Table 4. The 

proposed system is able to avoid the oscillations and achieve 

stable performance. 

 

 

 

Figure 7. PV power (case 1) 

 

 
 

Figure 8. PWM variation (case 1) 

 

 
 

Figure 9. Output voltage (case 1) 
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Figure 10. PV power (case 2) 

 

 
 

Figure 11. PWM variation (case 2) 

 

 
 

Figure 12. Output voltage (case 2) 

 

 
 

Figure 13. PV power (case 3) 
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Figure 14. PWM variation (case 3) 

 

 
 

Figure 15. Output voltage (case 3) 
 

Table 4. Performance of proposed MPPT 

 

Case 
Solar Irradiance on Panel 

1 (W/m2) 

Solar Irradiance on Panel 

2 (W/m2) 

Solar Irradiance on Panel 

3 (W/m2) 

Output Power 

(W) 

Tracking 

Efficiency (%) 

1 1000 1000 800 60.03 98.12 

2 1000 900 800 58.23 97.05 

3 700 900 800 57.12 96.48 

 

As can be seen from the results, the proposed FA-based 

MPPT system can track the GMPP with improved accuracy 

and less response time. The system is also tested for few 

conventional algorithms namely PID, P&O; and one 

optimization algorithm namely Particle Swarm Optimization 

(PSO). The performance of FA-based MPPT is compared with 

other conventional MPPT methods in Table 5. 
 

Table 5. Performance comparison of MPPTs 

 

Performance Parameter PID P&O PSO FA 

Efficiency (%) 80.22 78.23 92.5 98.12 

Convergence time (ms) 2.5 2.3 2.5 1 

Oscillations around MPP 

(%) 
3 5 1 0.1 

 

The comparison depicts that the proposed FA-based MPPT 

outperforms in terms of efficiency, convergence speed, and 

oscillations around MPP than conventional MPPTs as shown 

in Figure 16, Figure 17, and Figure 18. 

The computational complexity is also an important factor in 

selection of MPPTs as it decides the implementation cost and 

the suitability of MPPT for real time systems. Table 6 

describes the comparison of computational complexities for 

FA and other optimization techniques.  

 
 

Figure 16. Comparison of efficiency 

 

 
 

Figure 17. Comparison of convergence time 
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Figure 18. Comparison of oscillations around MPP 

 

Table 6. Computational complexity of optimization-based 

MPPTs 

 

Algorithm 
Computational 

Complexity 

FA O (T. n2) 

Particle Swarm Optimization (PSO) O (T. n) 

Genetic Algorithm (GA) O (T. n. m) 

Grey Wolf Optimization (GWO) O (T. n) 

Differential Evolution (DE) O (T. n. m) 

Ant Colony Optimization (ACO) O (T. n2) 

 

Here T is number of iterations, n is number of fireflies, and 

m is dimensionality of the solution space. 

The FA has higher complexity as compared to PSO or 

GWO, making it slightly slower for real-time MPPT, but it is 

faster in convergence process. But the FA has lower 

computational complexity than GA and GE which makes is 

better suited for real-time MPPT. 

 

 

7. CONCLUSIONS 

 

The work focuses on the experimental analysis of the impact 

of partial shading on the performance of PV systems and the 

proposed method using Firefly Algorithm for GMPPT. A deep 

investigation is done with the experimentation by using PV 

emulator. A reduction of 37% in MPP, a reduction of 38% in 

fill factor, and a reduction of 60% in efficiency is observed due 

to partial shading. The proposed novel metaheuristic 

optimization approach using the Firefly Algorithm to track the 

global MPP is able to track the GMPP accurately. The 

algorithm efficiently explores the search space by focusing on 

the global peak and local peaks. The algorithm is tested under 

different levels of partial shading. The proposed method is 

able to achieve 98.12% tracking efficiency within 1ms 

tracking time. The developed MPPT outperforms 

conventional MPPT methods in terms of efficiency, 

convergence speed, and oscillations around MPP. The FA 

algorithm can also be scaled up for the larger and complex PV 

systems. 

While the FA is effective in handling non-linear and 

multimodal problems in MPPT, it has several limitations. It 

has higher computational complexity as compared to few other 

optimization algorithms. The performance of FA depends 

heavily on parameter tuning. The higher complexity of FA 

may not be suitable with embedded systems having limited 

memory and computational power, especially for low-cost PV 

systems. To address these problems, the hybrid methods can 

be developed by incorporating FA with other algorithms such 

as PSO or GWO. Adaptive techniques such as Fuzzy logic or 

neural network can be used with the FA technique for adaptive 

tuning of parameters. Parallel computing technique can be 

used to reduce the computational complexity of FA method. 

Such future research directions ensure that the FA can be 

considered as a suitable choice for real time MPPT.  
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NOMENCLATURE 

 

I Total current (A) 

Ipv PV current (A)  

Id Diode current (A) 

q Charge on an electron 

k Boltzmann constant (1.380649 × 10-23 J/K) 

V PV cell voltage (V) 

T Temperature (K) 

Ns Number of PV cells connected in series 

Rs Series resistance (Ω) 

Rsh Shunt resistance (Ω) 

Voc Open-circuit voltage (V) 

Isc Short-circuit current (A) 

VMPP Voltage at maximum power point (V) 

IMPP Current at maximum power point (A) 

Ir Solar light intensity at distance r 

Is Initial solar light intensity 

r Distance 

βr Attractiveness at distance r 

β0 Initial attractiveness 

γ Absorption parameter 

m Integer value 

i and j Fireflies at positions xi and xj 

xi and xj Positions of fireflies i and j 

rij Distance between i and j 

α Randomization term 

εi random number distributed in [0,1] 
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