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The development of neural networks in the current industrial era 4.0 should help various 

work fields, one of which is the scientific literature. The problem that often occurs is that 

scientific papers still use manual sorting of themes/semantics. The purpose of this research 

is to build a semantic text classification application that can allow users to sort by 

theme/semantics by using a neural network model, Recurrent Neural Network (RNN) 

embedded in a smartphone. The development of this application uses the waterfall method 

in which there are analysis and system design. The application implements the text 

recognition feature of the Firebase ML Kit. It is developed using a general machine 

learning cycle method or approach consisting of data identification, data preparation, 

algorithm selection, model training, model evaluation and model deployment. The model 

was built using abstract data from scientific papers from the State University of Padang 

Library. The total data obtained 84 training data and 21 test data using a ratio of 80:20 

percent to perform the validation test. The neural network model uses the 

AverageWordVec specification provided by TensorFlow Lite Model Maker with three 

classification outputs. The model validation test reached 0.7619 accuracy values with 

0.7782 loss values. The model is executed using the TensorFlow Lite interpreter embedded 

in the application. The application results fulfill the overall system functional requirements 

analysis. 
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1. INTRODUCTION

The upcoming industrial revolution is based on a 

revolutionary technology that substantially impacts industrial 

production input and output and 3D printing, genetic 

engineering, and especially artificial intelligence [1]. One of 

the reasons artificial intelligence plays a role in the 4.0 

industrial revolution is the development of adequate 

infrastructure and a boost to needs due to the increasing data 

collected by the internet service industry. This large amount of 

collected data has become difficult for traditional database 

methods to handle, giving rise to big data. On the way, 

scientists continue to research handling big data with statistical 

methods that became the forerunner of machine learning. 

Machine learning is a branch of computational algorithms 

designed to mimic human intelligence by learning from the 

surrounding environment [2]. There are various algorithms 

from machine learning ranging from the most straightforward, 

such as regression, to sophisticated ones such as deep neural 

networks. Artificial neural network (ANN) or neural network 

is the most sophisticated algorithm because it is inspired and 

based on a biological brain structure. This is because ANN 

allows it to be designed with multiple layers to become a 

variety of architectural forms. This layered ANN becomes the 

foundation for sub-branches of the latest machine learning 

computation algorithms called deep learning. 

On November 9, 2015, Google Corporation developed an 

open-source library called TensorFlow under the Apache 2.0 

license, which is only used internally by Google. TensorFlow 

is a library for symbolic math dataflows popular with machine 

learning cases, especially neural networks and even deep 

neural networks. In February 2017, the first version (1.0.0) of 

TensorFlow was released, then in May 2017, Google released 

a particular software stack for mobile software development 

called TensorFlow Lite. TensorFlow Lite is a lightweight 

version of TensorFlow, capable of being executed faster on 

mobile devices and even embedded devices such as 

microcontrollers [3, 4]. The TensorFlow library also provides 

a unique model maker for TensorFlow Lite called TFLite 

Model Maker, aiming to simplify the adaptation process and 

change the TensorFlow neural network model to specific data 

input. 

Obtaining meaning from a text is a sophisticated ability that 

only the human brain has from the many creatures on earth. 

Neurons in the human brain can interpret sentences, and even 

paragraphs in both text and context [5-7]. However, the human 
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brain has limitations in endurance [8-10]. Besides that, 

interpreting a text is also not an easy job. It takes analysis and 

essential knowledge to consume enough energy, mostly if it is 

done intensively for a long time. This problem is potentially 

made easier by the existence of TensorFlow as a supporting 

library for the development of artificial intelligence. 

A survey conducted on general students consisting of 27 

respondents (16 women and 11 men) found that library visitors 

often tended to find books and scientific papers that did not fit 

their category or shelf. Survey details can be seen in Table 1. 

 

Table 1. Library performance questionnaire responses 

 
No. Question Response 

1 

How often did you go to the 

library (before the 

pandemic)? 

Rarely (22.2%) 

Quite Rarely (22.2%) 

Often Enough (33.3%) 

Always (22.2%) 

2 

Are you having trouble 

finding scientific articles that 

match the theme you want in 

the library? 

Yes (63%) 

No (29.6%) 

Maybe (7.4%) 

3 

Is a search with "keywords" 

enough to help you find a 

suitable theme? 

Helpful Enough (55.6%) 

Helpful (37%) 

Less Helpful (3.7%) 

4 

How often do you do books 

and scientific papers that 

don't fit the category/shelf? 

C1/Rarely (11.4%) 

C2/Quite Rarely (50%) 

C3/Always (38.4%) 

 

Before implementing the application in the field of library 

and archiving or other fields, it is necessary to design the initial 

prototype and test it so that the next researcher will develop 

this prototype. The application prototype is designed in a 

modular fashion so that the application is used in one area and 

can be used in other fields. Further development only needs to 

change the neural network model with little or no change in 

application design. 

 

 

2. LITERATURE REVIEW 

 

2.1 Summary of scientific papers 

 

Scientific paper summaries are generally abstracts derived 

from research articles, theses, reviews, conference 

proceedings, or any in depth analysis of a specific subject. 

They are often used to help readers quickly ascertain the 

purpose of a paper [11, 12]. Scientific paper summaries are 

suitable for training data on neural network models due to the 

limited number of words. The summary of scientific papers in 

question summarizes the scientific paper of the thesis at the 

Library of the Department of Electronics, State University of 

Padang. 

Summary / abstracts in scientific writing in the Library of 

the Department of Electronics, State University of Padang 

follow the rules and regulations of the Thesis / Final Project 

Preparation Guide of Padang State University with the 

following conditions: 

•In general, abstracts are arranged in the following order: 

word abstract, author's name, thesis title, abstract content, and 

keywords. 

•Abstract content is written one space in three paragraphs 

with a maximum length of 200 words.  

•The first paragraph contains a brief description of the 

problem and research objectives. The second paragraph 

contains the research method and or approach. The third 

paragraph contains the research results. 

 

2.2 World embedding and text semantic 

 

Lai et al. [13] stated that word embedding is another term 

for distributed word representation, capturing the semantic and 

syntactic information of words from a large unlabeled corpus 

(collection of writings). Meanwhile, according to Turian et al. 

[14], word representation is a mathematical object associated 

with each word, often in a vector. The distributed word 

representation has the characteristics of being denser, has 

lower dimensions and has real value than the word 

representation. 

Nowadays, developer discussions, especially machine 

learning engineers, define word embedding as a collective 

term for a model that learns to map a series of words or phrases 

in the vocabulary to vectors of numerical values [15, 16]. 

Because neural networks are designed to learn from numerical 

data, word embedding aims to increase neural networks' 

ability to learn from text data by converting them into vectors. 

This vector is then called embedding [17, 18]. 

A common way of handling data is to use a one-hot 

encoding. This method is very inefficient because most vectors 

will have a value of 0. Then the output for the multiplication 

of the matrix is also likely to be 0. The illustration of one hot 

encoding can be seen in Figure 1. 

 

 
 

Figure 1. Illustration of one hot encoding 

 

Instead of multiplying the matrix between the input and 

hidden layers, the value can be taken from the embedding 

weight matrix, which serves as a lookup table. The following 

is an illustration of the embedding weight matrix with an 

example of the word 'eat'. 

 

 
 

Figure 2. Illustration of embedding weight matrix 

1604



 

Word embedding itself in machine learning can be divided 

into two categories, namely, unsupervised and supervised. It 

can be seen in Figure 2.  

 

2.3 Machine learning  

 

Hurwitz, in his book, states that machine learning is a form 

of artificial intelligence that allows a system to learn from data 

without the need to be explicitly programmed [19, 20]. 

Machine learning uses various algorithms that iteratively learn 

from data to improve, describe data, and predict outcomes. As 

an algorithm that can digest training data, this algorithm can 

create the right model based on that data. A machine learning 

model is an output that is generated when training a machine 

learning algorithm with data. Several machine learning models 

are built using neural networks [21, 22]. 

 

2.3.1 Neural network 

A neural network or artificial neural network by Cross is a 

machine learning method that consists of a set of processing 

units (nodes) that simulate neurons and are interconnected 

through a series of "weights" (similar to synaptic connections 

in the nervous system) with a way that allows signals to travel 

through the network both in parallel as well as serial [23]. 

A neural network is a generalization of a mathematical 

model based on a biological neural network with the 

assumption that: 

•Information processing resides in many neurons 

(perceptron). 

•Signals are sent between neurons using a connection. 

•The connector between these neurons has a weight value 

that can strengthen or weaken the signal. 

•To produce the output, each neuron/perceptron uses 

various activation functions as needed. 

Each neuron unit or perceptron has an activation function 

that determines the output of the input processing it performs. 

The output is the value that becomes the neuron impulse that 

continues to spread/propagate to the last network layer. 

Modern neural networks do not only forward propagation but 

also do backpropagation. Backpropagation allows the weight 

of the connection between perceptron to change automatically 

with each forward and backward propagation. This forward 

and backward propagation activity is then called the epoch 

count. In one epoch, precisely at the last perceptron, there is a 

calculation of the difference between the actual results and the 

expected results. There are various functions to determine how 

much the error (loss) is, so determining the difference between 

expectations and the actual value of the neural network is 

called a loss function. Loss function gives high value if model 

prediction tends to be wrong. Conversely, the higher the model 

prediction success, the smaller the loss function value. This 

value helps optimize the model in the next epoch.  

The process of model optimization exists in various 

methods, methods or optimization algorithms, which is then 

known as the optimizer. Optimizer performs optimization by 

changing neural network attributes such as weight and 

learning rate to reduce epoch's loss [24, 25]. There are various 

optimizers, including Gradient Descent, Stochastic Gradient 

Descend, LMA, Momentum, RMSprop, Adagrad, AdaDelta, 

Adam (Adaptive Moment Estimation), and others, each of 

which has its advantages and advantages in some 

instances/tasks. 

 

2.4 AverageWordVec 

 

AverageWordVec is the name of a class in the TensorFlow 

Lite Model Maker library (Figure 3). This class applies the 

word embedding algorithm to be precise by taking the average 

(average) of the input word vector. As can be seen in Table 2, 

AverageWordVec itself has a layered architecture that can be 

categorized as a deep neural network. This class creates an 

object instance that will execute sequential modelling with 

multiple TensorFlow + Keras layers. The following is a neural 

network sequential model specification with three 

classifications by this class: 

 

 
 

Figure 3. Keras & TensorFlow 

 

Table 2. AverageWordVec sequential model specification by 

default 

 

Layer Type 
Output Shape (batch size, seq_len, 

wordvec_dim) 

Embedding (None, 256, 16) 

Average Pooling 1D (None, 256, 16) 

Dense (None, 128, 16) 

DropOut (None, 16) 

Dense (None, 3) 

 

The essential parts that need to be considered in using this 

class include the Keras layers in it, the loss function using the 

sparse binary cross-entropy and the optimizer, named 

RMSprop. 

 

 

3. RESULT AND DISCUSSION 

 

3.1 System analysis 

 

System analysis is the decomposition of a complete system 

into its parts to identify and evaluate the system's problems, 

the opportunities and obstacles that occur, and the expected 

needs so that improvements can be proposed. 

Analysis of system requirements is where some material 

and system requirements will be used to add and assist in doing 

a project.  

Functional requirements in the form of features that exist in 

applications that are included in Table 3. 

Analysis of device requirements is a part that will support 

the development of the Semantic Text Classifier Application. 

Table 4 shows the functional Requirement Analysis for 

designed system. 

System Security Analysis is a part that users need to pay 

attention to when using the Semantic Text Classifier 

Application. The suggestions for using the system are 

described in Table 5. 
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Table 3. Functional requirement analysis 

 

No. Functionality Description 

1 
The apps are capable of capturing 

images (Camera Capture) 

The application uses Android resources to activate the camera and capture 

the image for processing 

2 
The apps can read text patterns on 

images 

Using the Text Recognition feature of ML Kit, the application can convert 

any text in the captured image into a text string 

3 
The apps can save the existing text as a 

text file (.txt) 

To simplify the data collecting process when building a neural network 

model, the application provides three buttons to save text strings into 

category folders in text file format (.txt) 

4 The apps can display prediction results 

The prediction results display the category along with the percentage value 

ranging from 0 to 1. Prediction is made through the inference of the 

TensorFlow Lite model installed in the application 

5 
The application can save prediction 

results 

Prediction results in the form of recognized text and predicted 

categories/classes can be saved to nonvolatile storage such as smartphone 

internal memory or database 

 

Table 4. Functional requirement analysis 

 
No. Computer System Description 

1 
Hardware 

requirements 

Development: Personal Computer with a minimum specification of an Intel Core i5 processor (~ 2.3 GHz) and 

4GB RAM (an additional Smartphone is required for debugging) 

Usage: A mobile phone or tablet with a minimum 8 Megapixel camera 

2 
Software 

requirements 

Development: IDE Android Studio, Google Collabs (Accessed via web), Java, Kotlin and Android SDK 

Usage: Android Lollipop operating system (SDK 21) 

3 
Brainware 

requirements 

Development: Users with an understanding of Android software development and modern neural network 

concepts (deep neural network) 

Usage: Does not require specifications. They were designed for the public so that anyone can operate the 

application 

 

Table 5. Suggestion and consideration 

 

No. Suggestion Consideration 

1 
The entire corpus was 

caught on camera 

Every word that the camera can't read will affect the semantics and even the model training process. It 

is essential to make sure the entire corpus is caught on camera 

2 

The captured writings are 

in the computer printouts 

form 

The model in Firebase Text Recognition is trained through the standard fonts used as well as the 

handwriting that is significantly distinguished by the computer. Too insignificant handwriting will read 

differently by Firebase Text Recognition. For example, between "0" and "o", by handwriting that does 

not pay attention to the space between words, the letter "o" can be read as "0" by the system 

3 

The position of the camera 

is straight on the 

paper/camera catch object 

The perspective in processing the captured object image affects the height/length of the character being 

read 

 

In the design of the semantic text classifier application, the 

user inputs the camera capture data. The output produced by 

the application is in the form of classification category data 

and its confidence value. 

Procedure analysis is carried out to determine what 

processes will be carried out by the system. In the 

implementation process, it is carried out by established 

procedures, namely: 

-The user opens the apps 

-The user captures an image from the camera 

-The user informed the scanned text and its prediction 

 

3.2 System design 

 

System design is generally carried out to provide an 

overview of the system to be made. When the system design 

is done, the most dominant thing done is modelling the user's 

needs. 

Modelling is done using the unified modeling language. 

Because some diagrams are straightforward to be modelled 

with UML, application design is only represented in some 

UML diagrams, namely use case diagrams, activity diagrams, 

class diagrams, object diagrams and component diagrams. 

3.2.1 Use case diagram 

Use case diagrams represent dynamic aspects of the system. 

Specifically, use case diagrams are used to get system 

requirements, including internal and external influences. 

 

 
 

Figure 4. Designed use case diagram 

 

From Figure 4, it can be seen that the requirements that 

users must have been prediction features and data collection. 

It only consists of 1 user, in which the prediction feature 

requires an external system with firebase services. The 
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prediction feature requires API communication with firebase 

server to log the prediction results. 

 

3.2.2 Activity diagram 

An activity diagram is a flowchart to represent the flow 

from one activity to another. An activity can be described as 

an operating system or a process that involves users to interact 

that must have a user interface. However, in Android software 

development, an activity is a package of classes and a user 

interface that has methods to adapt to the Android application 

lifecycle itself. This application consists of 4 activities, but 

only two activities need to be designed with an activity 

diagram. These activities are MainActivity and 

DataCollectingActivity. 

Activity Main or MainActivity is the main feature of the 

application wherein the menu the user needs to select the 

"Start!" to begin with. In Figure 5, it can be seen that the 

processes in this activity apply the multithreading concept. 

Every instruction in an application is executed with a thread. 

In an Android application, a thread that can be watched 

directly by the user is called the main thread or UI thread. 

Meanwhile, threads other than the main thread are called 

worker threads. The Classification Thread is a worker thread 

executed when the constructor of the TextClassificationClient 

class is executed. 

 

 
 

Figure 5. Designed activity diagram for main activity 

 

Activity Data Collecting or Data Collecting Activity is a 

unique feature created to make it easier for developers to get 

text data in building a neural network model.  

Activity Data Collecting adapts the text recognition feature 

(Text Recognizer) in the Main Activity. But unlike Activity 

Main, Activity Data Collecting is simpler. Because this 

activity aims only to read and then store data in files in several 

directories/folders. The DataCollecting Activity can be seen in 

Figure 6. 

Class diagrams represent each class in the application. Each 

class consists of attributes and methods. MainActivity, as a 

class that forms objects from the main activity, has an 

aggregation relationship to TextClassificationClient and 

CounterPrefs, which means that some functions in 

MainActivity need objects from these two classes. The Result 

class has a composition relationship to 

TextClassificationClient, which means that if the 

TextClassificationClient object is destroyed, the object from 

the Result class will be excluded. The class diagram can be 

seen in Figure 7. 

 

 
 

Figure 6. Designed activity diagram for Data Collecting 

Activity 

 

 
 

Figure 7. Designed class diagram 

 

Object diagrams represent objects or instances that are 

formed from existing classes. As shown in Figure 8, each 

object has a value for each of its attributes. The MainActivity 

object, as the main thread, will call the handler the 

TextClassificationClient handler. The 

TextClassificationClient object forms objects from the Result 

as many categories as defined by the "label" attribute. Each 

result object is stacked in the list data structure. 

The component diagram represented in Figure 9 describe a 

set of components and their relationships. In this semantic 

classifier application design, three components are 

implemented. Cameraiew consists of several classes that 

manage camera drivers on Android devices. These classes 
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include Audio, CameraListener and CameraUtils. Text 

recognition consists of the FirebaseVision, 

FirebaseVisionImage, and FirebaseVisionText classes. 

 

 
 

Figure 8. Designed object diagram 

 

 
 

Figure 9. Designed component diagram 

 

Specifically, for developing this application, the researcher 

chose the AverageWordVec architecture/specification model, 

a deep neural network model for semantic classification. The 

loss function used is categorical cross-entropy, with the 

optimizer is RMSprop. 

 

3.3 Interface implementation 

 

The implementation of the Semantic Text Classifier 

Application interface design is explained based on each 

existing activity as follows: 

The Main Menu Activity or HomeActivity acts as a 

launcher and does not require a splash screen as the assets are 

loaded multithreading (Figure 10). As the name implies, this 

activity is the main menu in the application. 

This activity has 4 Button components that call Intent so that 

it can move to other activities. There are two types of 

TextView components: the first to inform the user what model 

is embedded in the application and the second to identify the 

application developer's name and institution. The following is 

the XML code used for this.  

In source code 1, the HomeActivity (Main Menu) class is 

the only class that uses this layout. The layout on the main 

menu uses ConstraintLayout, a relative layout that binds each 

component to at least the parent layout. This layout also has a 

background with colour gradations so that it looks elegant with 

blue, which symbolizes productivity. There is an icon in the 

middle of the layout as its identity adjusts colour gradations. 

 

 
 

Figure 10. Main Menu interface 

 

Activity of the prediction feature or MainActivity has two 

layouts that make changes in the middle of the process. The 

first layout has an id with the name 

relative_layout_panel_overlay_camera, while the second 

layout is relative_layout_panel_overlay_result as can be seen 

in Figure 11. 

Layout relative_layout_panel_overlay_camera, or camera 

overlay for short, is the layout that is called the first time this 

activity is running. Camera overlay has a UI component, 

namely CameraView, to capture images. Meanwhile, 

relative_layout_panel_overlay_result or shortened as result 

overlay will be loaded after the text recognition process is 

complete by displaying the text in the Textview component 

while providing a single button to execute predictions. This 

single button also displays a dialogue for saving the predicted 

data to the Firebase Realtime Database. The following is the 

XML code used for this activity layout. 

 

 
 

Figure 11. Prediction feature interface 

 

The layout of this activity is not much different from the 

Prediction feature. Because there is a text recognition process, 

this activity also has two layouts: the camera overlay and the 

resulting overlay. It's just that in the resulting overlay, this 

1608



 

layout displays buttons for saving text into a text file (.txt). 

When pressed, the selected button will flatten, and the system 

will display the Toast component to tell the user where the file 

is stored. Figure 12 shows the appearance of this activity. 

 

 
 

Figure 12. Data collecting interface 

 

The resulting overlay on this activity also provides menu 

options in the form of a camera button to speed up shooting 

consecutively. The following is the XML code used for this 

activity layout. 

This activity has the most straightforward layout because it 

only displays how to use the application. Figure 13 shows the 

activity interface that was successfully developed. 

 

 
 

Figure 13. Help page interface 

 

This activity has a landscape orientation when running so 

that the image looks large and can match its size to all 

smartphone sizes. The following is the XML code used for this 

activity layout. 

 

3.4 System implementation 

 

In this subchapter, each source code and program logic is 

discussed in more detail than in design. Discussion of the 

system will be discussed as a process specification per each 

function in one activity. Considering that about and help 

activities do not have a complicated process, the activities 

discussed are only predictive and data collecting activities. 

The process specifications are as follows: 

When MainActivity is run from the UI Thread, the active 

CameraView will serve the user, and the “take a picture” 

button. In this process, the CameraView class has initiated a 

listener, which contains an onPictureTaken method in the form 

of an event. 

The onPictureTaken event itself continues the process by 

using the TextRecognizer to get the text/string on the decoded 

bitmap image. If the process fails, the activity calls the Toast 

method to display it to the user. If getting the text is successful, 

then the activity will change the layout from OverlayCamera 

to OverlayResult.  

In the OverlayResult layout, there are predictive TextView 

and Button components. This TextView component is used to 

display text that the TextRecognizer has translated. 

Meanwhile, Button will trigger to complete the Classification 

Thread process, namely input tokenization. 

Meanwhile, at the same time when MainActivity is first to 

run, the Classification Thread will contain three components 

for prediction functions, namely models, labels and 

dictionaries. Dictionary is a term for a text file representing the 

Weight Embedding Matrix concept in the Word Embedding 

algorithm. Labels are text files containing category names 

where the model only recognizes the labels by order. 

Meanwhile, the model is a compiled FlatBuffer (.tflite format) 

file that the TensorFlow Lite Interpreter can only read. The 

model itself represents a neural network that already has a 

trained connection pattern from data that has been previously 

taught (training).  

After loading the three components of the prediction 

function, the Classification Thread cannot proceed to the 

interpretation process because the model requires tokenized 

text input. Tokenization is a process that represents a look-up 

on a dictionary or weight embedding matrix. Therefore, the 

Classification Thread will wait for the UI Thread to parse the 

parameter to one of its methods, the classification method.  

After the user presses the "prediction" button on the 

OverlayResult layout, the UI Thread communicates with the 

Classification Thread using the Handler's post method. The 

text that TextRecognizer has read can be parsed to the 

classification method. At this stage, the classification method 

will run the text input tokenization algorithm. Simply put, this 

algorithm performs string comparisons from text input against 

a list of texts in the dictionary, then takes word-for-word 

numeric values to be the input of the neural network model. 

The tokenization algorithm is applied to the tokenizeInputText 

method, which includes data cleaning techniques such as 

ensuring lowercase text input, deleting punctuation marks 

such as commas, question marks, minuses, and others. The 

value of the word for word numbers is stored into an array with 

the float data type to be directly executed by the Interpreter. 

The interpreter's execution (in the form of confidence value) 

is processed in a ranking algorithm using the PriorityQueue 

class, which has a FIFO (First In First Out) concept by making 

a lambda function in it to perform comparisons. By 

PriorityQueue, the value is then used to call the label according 

to the predicted confidence value. These labels are then 

accommodated into an ArrayList ready to be displayed in the 

Dialog. 

In the dialog, a response button is provided to save the 

predicted results to the Firebase Realtime Database. It is 

provided for further development, allowing users to manage 

the semantic prediction data of scientific papers. 

 

3.5 Neural network model result 

 

The text recognition feature (TextRecognizer) in 
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MainActivity (prediction feature) is the same code used in 

DataCollectingActivity. After getting a text with ML Kit 

TextRecognizer, the user will be provided with three buttons 

to select the folder where the text file is stored. Shared 

Preference is applied as a counter of the used file names to 

save files with different names so that no text file is saved with 

the same name. The total data obtained 84 training data and 21 

test data using a ratio of 80:20 percent. The data were split 

using stratified random sampling. 

The neural network model design for the Semantic Text 

Classifier Application is explained based on three advanced 

stages of the machine learning cycle. These stages are the 

compilation process (training data), data evaluation and the 

deployed model. 

In the training stage, the data is trained with the parameters 

that the AverageWordVec model specification has 

determined. This model provides loss and accuracy 

information for each epoch. At this stage, the developer trains 

100 epoch models and achieves the following accuracy values. 

The data can be seen in Figure 14. 

 

 
 

Figure 14. Loss and accuracy value at 100th epoch 

 

At this stage, the developer evaluates by calculating the 

model's accuracy and loss using data testing. The model's 

performance was measured using recall and F1-score metrics, 

yielding promising results. 

If you pay attention to the value of accuracy and loss using 

test_data is lower than the training_data carried out as can be 

seen in Figure 15. This is because the data is still small, so the 

pattern data obtained from the training data is not sufficient to 

represent the testing data's suitability. 

 

 
 

Figure 15. Model evaluation result 

 

The deploy model process determines the format of the 

model being built. In developing this model, data is exported 

in the TensorFlow Lite flat buffer format (.tflite) as can be seen 

in Figure 16. In version 0.2.2, the AverageWordVec model 

specification exports the vocab file and labels by default to the 

model metadata. 

 

 
 

Figure 16. Model deploy 

 

 

4. CONCLUSION 

 

This analysis examines scientific papers that use the 

waterfall software development method to design and develop 

semantic text classifier applications using Firebase ML Kit 

technology with TensorFlow Lite. The purpose of this analysis 

is to provide insights into the effectiveness of these 

technologies and identify potential implementation 

challenges. 

The findings suggest that Firebase ML Kit technology with 

TensorFlow Lite can be relied on to build robust semantic text 

classifier applications with efficient performance. However, 

an important challenge is the development of a well-designed 

neural network model that can accurately classification and 

categorize textual data. Inadequate training data can lead to 

suboptimal performance, highlighting the need for ongoing 

refinement of the neural network model and training data set 

to improve accuracy. 

This study also emphasizes the importance of systematic 

planning and execution in the software development process. 

Using the waterfall software development method, developers 

can identify and address potential issues early on, leading to a 

more efficient and effective approach.  

The prototype testing of the overall system analysis was 

successfully realized from the initial design, highlighting the 

potential of the waterfall software development method and 

the effectiveness of Firebase ML Kit technology with 

TensorFlow Lite in creating reliable semantic text classifier 

applications. User acceptance testing (UAT) of the 

TensorFlow Lite Summary Text Classification application for 

scientific work was successfully conducted with five academic 

experts. The application performed as expected, meeting all 

user requirements. 

In conclusion, the use of Firebase ML Kit technology with 

TensorFlow Lite in building semantic text classifier 

applications is promising. While challenges exist in 

developing these applications, the benefits of these 

technologies outweigh the drawbacks. This study emphasizes 

the importance of designing the neural network model 

carefully and continually refining the training data set to 

improve performance. The use of the waterfall software 

development method ensures a systematic approach to the 

development process, ultimately leading to the successful 

realization of the prototype testing. This study highlights the 

potential of Firebase ML Kit technology with TensorFlow Lite 

and the need for further research and development to expand 

the potential use cases of these technologies. 
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