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Managing nonlinear systems with constraints is a challenging task that demands rapid and 

accurate solutions to achieve optimal performance.  This paper proposes the utilization of 

Model Predictive Control (MPC) based on the Differential Flatness (DF) property of a 

nonlinear system, forming a Flatness-based Model Predictive Control (FMPC). The 

purpose is to control a nonlinear Continuous Stirred Tank Reactor (CSTR). The coupling 

between feedback MPC with feedforward linearization based on the flatness property 

would reduce the computational load of the proposed control design. The feedforward 

linearization role is to overcome the robustness issues of feedback linearization, which 

may be caused by model uncertainty. The suggested method investigates the achievements 

of optimal control performance that satisfies input constraints imposed on the nonlinear 

continuous stirred tank reactor. The technique of state-dependent constraint mapping has 

been employed to transform restrictions applied to the input variable, enabling them to be 

directly reflected on the flat input. This mapping process is dynamically carried out at each 

sampling instance across the entire control horizon of the Flatness-Based Model Predictive 

Control (FMPC) framework. Constraints and disturbance are easily incorporated into the 

control design, demonstrating the proposed approach's effectiveness. This formulation 

results in a convex optimization problem that can be solved using Quadratic Programming 

(QP) while preserving the system's nonlinear behavior. Trajectory tracking performance 

shows a 46.45% improvement in RMSE when using FMPC compared to Linear Model 

Predictive Control (LMPC). 
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1. INTRODUCTION

Controlling a system with nonlinear behavior to achieve 

optimal performance is the ultimate challenge in engineering 

and practical sciences. Those systems' unpredictable 

performance and inherent complexity usually rebel against 

traditional control methods. Understanding and applying 

optimal control in nonlinear systems is vital for maintaining 

the stringent limits of system performance and dependability. 

Solving the Hamilton-Jacobi-Bellmen (HJB) equation has 

many difficulties, especially with complicated, multi-variable 

systems. These challenges motivate the pursuit of additional 

solutions to acquire optimal control. 

In the field of process control, a continuous stirred tank 

reactor CSTR, described extensively in a study [1], presents 

an operational challenge due to its nonlinearity, output 

multiplicity, and oscillation [2]. In addition, CSTR has a 

versatile dynamic representation that depends mainly on the 

operating conditions and unstable equilibrium points [3]. The 

effects of disturbances and interaction between process 

variables on CSTR results in changes in the nominal operation 

region. Classical linear control is incompetent in regulating 

and trajectory-tracking problems in process systems, 

particularly in CSTR [4]. Consequently, advanced control 

techniques are popular in addressing the challenges of CSTR 

complex behaviors. At the top of these advanced techniques 

are predictive control [5], nonlinear control [6], robust control 

[7, 8], or a blend of these techniques as in the study [9]. The 

global transformation technique is essential for altering the 

original nonlinear CSTR model, using a new set of variables 

and state feedback, to an equivalent linear model [10]. 

Feedback linearization in the study [11] with an extended state 

observer was applied to the nonlinear CSTR. A technique for 

tracking a desired temperature utilizing the differential flat 

CSTR and feedforward control was introduced [12]. 

Differential flatness is an important feature suitable for 

controlling and planning trajectories for nonlinear systems. A 

system is differentially flat if an algebraic expression exists 

from its state and inputs by defining a set of flat outputs and 

their time derivatives [13]. This property facilitates the 

transformation of a possibly nonlinear control problem into a 

linear one using feedforward linearization, simplifying the 

design of control strategies [14]. Recent studies emphasize the 

successful implementation of flatness control in various 

situations where other control strategies failed or failed to give 

the desired performance [15]. Underactuated mechanical 

systems were considered, and simple flatness conditions were 

derived for those types of systems. In a study [16], the control 

of gas-turbine electric power generation units was performed 

using differential flatness theory. The flexible mobile 
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manipulator trajectory tracking problem was discussed [17], 

and the flatness property was combined with active 

disturbance rejection control for the complicated control 

problem. Other successful stories of combining deferential 

flatness with other control techniques that suit special 

performance requirements, such as optimality, can be found 

extensively in the literature. An optimal control action can be 

obtained by combining differential flatness and linear 

quadratic regulator LQR as in studies [18, 19], resulting in 

superior performance compared to using LQR. The main 

restriction on using LQR is its inability to handle constraints 

imposed on the system's inputs.  

For systems with critical constraints, techniques like Model 

Predictive Control (MPC) are often preferred, as they 

explicitly incorporate these constraints into the control design. 

MPC is an important control technology with significant 

influence in practice and an expected 85% future impact in 

many categories of industrial applications. This highly 

impactful percentage placed model predictive control in an 

advanced position ahead of many other control technologies, 

such as robust, adaptive, and nonlinear control [20]. MPC has 

the highest current impact in different fields, such as industry 

[21], aerospace [22], and automotive [23].  

The analysis of MPC and its design was introduced in a 

framework that provides a diverse toolkit to apply and future 

development of MPC formulation [24]. The receding horizon 

control, or MPC, is an advanced control and optimization-

based method. Its working principle can be explained as 

solving online, optimal control problems in an open-loop 

manner repeatedly within a finite horizon. Feedback is 

implicitly generated by implementing the first part of the 

optimized manipulated variable trajectory; this procedure is 

repeated at each time step. MPC comes with many advantages: 

(i) constraints consideration of state and control variables; (ii) 

applicability on both SISO or MIMO systems; (iii) utilization 

of general performance criterion for optimization. 

Meanwhile, the MPC property of repeatedly solving an 

optimization problem online requires high computational 

effort. Although the number of transistors in a microprocessor 

has increased significantly, which lifts some of the 

computational burdens, the clock speed is limited due to heat 

dissipation in the transistors [25]. Another factor that increases 

the computational load is related to advantage (i), as imposing 

the constraints will affect the optimization problem that needs 

to be solved online. For systems with nonlinear dynamics in 

their intended operation region, using NMPC is suitable for 

solving the nonlinear control problem [26]. Granting that 

NMPC is an influential tool for controlling nonlinear systems, 

it is not always the best choice due to the requirement of 

solving nonlinear programming problems, which adds 

computational complexity in real time. 

To simplify this problem, many solutions have been 

introduced to design a linear MPC with quadratic 

programming (QP) to solve the online optimization problem. 

Researchers adopted many approaches, including full or 

partial state feedback linearization FBL, to linearize the 

nonlinear system and use it with MPC in applications [27, 28]. 

Implementing a nonlinear state observer is mandatory to gain 

knowledge of the system state using this approach. Another 

issue concerning this method is the introduction of additional 

feedback, which contradicts the MPC structure. In addition, 

constraints on the inputs and states represent an added 

challenge to any control system, which can be efficiently 

handled by incorporating these limitations in linear MPC. 

This paper proposes a joint control approach that consists of 

a flat CSTR system and linear MPC to solve the constrained 

optimization problem. This innovative formulation allows us 

to restate the MPC problem and turn it into a linear one, 

simplifying the control problem. The approach is designed to 

improve performance and constraint handling through a 

flatness-based model predictive control FMPC strategy. This 

control policy effectively maintains system performance and 

dependability and is relatively inexpensive from a 

computational perspective. It considers the importance of 

respecting the constraints on the input and output of the plant, 

providing a practical and cost-effective solution. 

Integrating feedback MPC with Feedforward DF leverages 

the strengths of both approaches to create a more robust and 

efficient control strategy for nonlinear systems. The benefits 

of joining these control techniques can be listed as: 

• The DF can reformulate the nonlinear control problem in 

a globally linearized flat space, allowing MPC to optimize 

over a simplified transformed system, which leads to 

faster convergence. 

• FMPC provides an improved control performance due to 

the initial optimal trajectory generated by DF and refined 

by MPC in real-time, which balances optimality and 

feasibility.  

• The integration of DF and MPC allows the controller to 

follow the desired trajectory and ensures compliance with 

system constraints. This enhances the robustness and 

uncertainty since the MPC adjusts accordingly in real time 

and adheres to constraints. 

The rest of this article is structured as follows: Section 2 

describes the CSTR dynamic model. Section 3 presents 

background knowledge on flatness and its feedforward 

linearization and a fundamental background on model 

predictive control. Section 4 presents the methodology. 

Section 5 presents the Simulation results. Section 6 concludes 

this article. 

 

 

2. CONTINUOUS STIRRED TANK REACTOR 

 

We consider a Continuous Stirred Tank Reactor CSTR, as 

shown in Figure 1, with first-order chemical reaction 𝐴→𝐵; 

the reaction is irreversible exothermic and occurs in a vessel 

with constant volume. The feed stream (C𝐴𝑓 , T𝑓 , T𝑐) enters the 

reactor, the exit flow of the reactor ( C𝐴, 𝑇 ) assuming the 

materials are in balance (𝐹𝑖𝑛 = 𝐹𝑜𝑢𝑡).  

 

 
 

Figure 1. Schematics diagram of the CSTR 

 

A cooling jacket envelops the reactor to remove the reaction 

heat using a cooling fluid circulating in the jacket. The goal of 
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the reactor is to convert the inflow process concentration to an 

acceptable outflow chemical concentration. Figure 1 shows a 

schematic diagram of the CSTR under study. The model 

consists of two nonlinear differential equations that govern the 

dynamic progress of the concentration of reactant A and the 

reactor's temperature. The third equation represents the 

kinematic equilibrium relationship (Arrhenius equation) 

multiplied by the concentration. The states of the nonlinear 

model are [C𝐴 𝑇]𝑇 , The inputs to the CSTR are [C𝐴𝑓  𝑇𝑓  𝑇𝑐]𝑇, 

while the output is the reactor temperature [C𝐴 𝑇]𝑇. 

The nonlinear model of the CSTR is derived from the 

principles of mass balance and energy conservation, assuming 

perfect mixing, neglected heat losses, and a constant reactor 

volume V.  

 

�̇�𝐴(𝑡) =
𝐹

𝑉
(C𝐴𝑓 − C𝐴(𝑡)) − 𝐾 C𝐴(𝑡) (1) 

 

�̇�(𝑡) =
𝐹

𝑉
(𝑇𝑓 − 𝑇(𝑡)) +

(−𝛥𝐻)

𝜌𝐶𝑝

𝐾 C𝐴(𝑡)

+
𝑈𝐴

𝑉𝜌𝐶𝑝

(𝑇𝑐 − 𝑇(𝑡)) 

(2) 

 

𝐾 = 𝑘0𝑒
−𝐸

𝑅𝑇(𝑡) (3) 

 

Table 1 contains the nominal conditions which correspond 

to an unstable operating point. The measured output variable 

MO is the reactor temperature (T), and the unmeasured output 

is C𝐴, while the manipulated input variable MV is the jacket 

coolant temperature 𝑇𝑐 , 𝑇𝑓  is measured disturbance MD and 

C𝐴𝑓 is the unmeasured disturbance UD. 

 

Table 1. Nominal operation values [29] 

 
Parameter Value Description 

F 100 L/min Volumetric flow rate 

V 100 L Reactor volume 

k0 7.2×1010 1/min Pre-exponential factor 

-ΔH 50000 J/mol Heat of reaction per mole 

E/R 8750 K Activation energy per mole 

Roh 1000 g/L Density 

Cp 0.239 J/g K Heat capacity 

UA 50000 J/min K Heat transfer coefficient 

TC 300 K Colling temperature 

CA 0.5 mol/L Concentration in the reactor 

T 300 K Reactor temperature 

 

The reactor temperature open-loop response to a step 

change of ± 5 (K) in the cooling temperature is shown in 

Figure 2. The CSTR exhibits high nonlinearity, reactor 

temperature, and concentration fluctuation in the given 

operating region. The colling temperature change from its 

nominal value would make the reactor temperature and the 

concentration of the materials in the reactor either fluctuate or 

drop. A specific change in the cooling temperature values 

makes the concentration of any hazardous material in the 

reactor go higher than the desired value, which needs to be 

lowered. 

The CSTR system is assumed to have manipulated input 

constraints with bound as 280 ≤ 𝑇𝑐 ≤ 380 . Meanwhile, no 

output constraints have been proposed for the reactor 

temperature T in this study. 

The changes in the feed stream would make the outputs of 

the CSTR fluctuate and disturb the process, which required an 

efficient control strategy to keep the reactor operating 

efficiently. This strategy is necessary to track a prescribed 

reference trajectory, which grants the smooth operation of the 

reactor in a stable region with an optimal control policy. 

 

 
 

Figure 2. Open-loop response with cooling temperature 

change 

 

 

3. THEORETICAL BACKGROUND  

 

This section presents flatness with associated feedforward 

linearization and the fundamental design of MPC. Both 

techniques are used to design control algorithms separately 

and apply them to the nonlinear plants of CSTR. The 

procedure of combining the two control algorithms to form an 

FMPC strategy will be introduced as follows: 

 

3.1 Differentially flat systems 

 

Fliess et al. [30] introduced the concept known as the 

flatness of nonlinear systems. The important characteristic of 

flat systems is the existence of a finite set of variables called 

flat output or linearizing output. To give a brief background 

about differentially flat systems and their essential feature, we 

consider a nonlinear system presented by: 

 

�̇�(t) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (4) 

 

𝑦(𝑡) = ℎ(𝑥) (5) 

 

with 𝑥(𝑡) ∈  𝑅𝑛, 𝑢(𝑡) ∈ 𝑅𝑚, 𝑦(𝑡) ∈ 𝑅𝑚  and 𝑓, ℎ  are smooth 

functions in their domain. System (1) is said to be a 

differentially flat system if a flat output variable 𝜁 exists and 

meets the following conditions: 

Flat output 𝜁 can be expressed as a function of the state: 

 

𝜁 = ρ(𝑥) (6) 

 

The system state and input may be parametrized by the flat 

output and a finite number of its components and derivatives 

as a differential function. 

 

𝑥 = 𝜓1(𝜁, 𝜁̇, … , 𝜁(𝑛−1)) (7) 

 

𝑢 = 𝜓2(ζ, ζ̇, … , ζ(𝑛)) (8) 
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where, 𝜓1 and 𝜓2 are smooth functions and 𝜁 is the flat output 

required to describe the system. If the system complies with 

these requirements, the output of the actual system 𝑦  is a 

function of the flat output 𝜁  and finite number of its time 

derivatives:  

 

𝑦 = 𝜓3(𝜁, 𝜁̇, … , 𝜁(𝑛−𝛽)) (9) 

 

where, 𝛽  is the relative degree. Using the flatness property 

represented by feedforward control law Eq. (8) and reference 

trajectory Eq. (7) in terms of the flat output and its derivative 

would provide the ability to obtain the variable of the original 

system's time function without integration. In general, the 

differentially flat system can be represented using Brunovsky 

or flat states:  

 

𝒛 ∶= [𝜁1, 𝜁1̇, … , 𝜁1
(𝛽1−1)

, … , 𝜁𝑚 , … , 𝜁1
(𝛽𝑚−1)

] (10) 

 

𝜁𝑖
(𝛽𝑖)

= 𝛼𝑖 (𝜁1, 𝜁1̇ , … , 𝜁1
(𝛽−1)

, 𝑢, �̇�, … , 𝑢(𝛽𝑖)) ∶= 𝜈𝑖  (11) 

 

where the highest derivative 𝛽𝑖  of the flat output 𝜁 considered 

as the new flat input 𝑣. For multi-input flat system: 

 

v ∶= [𝑣1, 𝑣1, … , 𝑣𝑚]𝑇 (12) 

 

Note that, in Eq. (11), 𝛽𝑖 is related to the relative degree of 

the system, while the number of flat inputs 𝜈𝑖  depends on the 

number of selected flat outputs 𝜁𝑖  that represent the nonlinear 

system. Standard form can be obtained from (10) and (12) as: 

 

�̇� = 𝐴𝒛 + 𝐵𝒗 (13) 

 

v = 𝜓4
−1(𝑧, 𝑢, �̇�, … , 𝑢(𝛽)) (14) 

 

where, (13) can be termed as a linear flat model. The method 

of feedforward linearization allows trajectory generators or 

controllers, such as MPC in our proposal, to only consider the 

linear flat model with the condition of matching initials for 

both the desired output and the flat output. To this end, we can 

conclude the section with the following theorem: 

Theorem 1 (14): Considering a desired trajectory in the flat 

output 𝜁𝑑  and a desired flat input 𝑣𝑑 , with initial condition 

𝑧(0) = 𝑧𝑑(0), applying the nominal feedforward control law 

 

𝑢 = 𝜓2(𝑧𝑑 , 𝑣𝑑) (15) 

 

to the flat system, Eq. (4), will result in an equivalent linear 

system in Brunovsky canonical form by change of coordinates. 

Using Theorem 1 allows controllers, such as MPC in our 

proposed method, to consider a linearized flat model. The 

output of MPC can then be fed to the nonlinear system through 

the inverse transformation Eq. (15) to correct the nonlinear 

relationship in Eq. (4). Using the desired flat state and input, 

instead of the actual measured flat state, represents the main 

difference between feedforward and feedback linearization. 

 

3.2 Model predictive control  

 

Predictive control determines an optimal future sequence of 

the manipulated variable. This procedure aims to minimize a 

cost function concerning the controlled variable future 

behavior on a finite time interval called the prediction horizon. 

The method of receding horizon, which can be described as 

optimizing at each time instant and only executing the first 

value of the obtained manipulated variable sequence, is 

utilized. The future behavior of the systems can be predicted 

based on actual measurements of a system model. This model 

is in state space representation, and the MPC problem is 

formulated in discrete time. Offset-free tracking, in the 

presence of constant disturbances or mismatch in the plant 

model, can be achieved by the augmented state space model: 

 

[
𝑥(𝑘 + 1)

𝑑𝑐(𝑘 + 1)
] = [

𝐴 𝐵𝑑𝑐

0 𝐼
] [

𝑥(𝑘)
𝑑𝑐(𝑘)

] + [
𝐵
0

] 𝑢(𝑘) (16) 

 

𝑦(𝑘) = [C Cdc][𝑥(𝑘) 𝑑𝑐(𝑘)]𝑇 (17) 

 

where, 𝑥 ∈ ℝ𝑛 is the state vector, 𝑢 ∈ ℝ is the input variable, 

𝑑𝑐 ∈ ℝ  the disturbance and 𝑦 ∈ ℝ  is the output. 𝐴, 𝐵, 𝐶  are 

matrices with appropriate scales and are known. The matrices 

of the disturbances, namely; 𝐵𝑑𝑐 and 𝐶𝑑𝑐 are designed based 

on the knowledge of disturbance. Note that the system is 

assumed to be stable, controllable, and observable.  

The nonlinear plant is assumed to have the following input 

constraints on 𝑢: 

 

𝑢min ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 , ∆𝑢min ≤ ∆𝑢 ≤ ∆𝑢𝑚𝑎𝑥 (18) 

 

A cost function 𝐽(𝑘) is need to be minimized, formulated as 

quadratic form, must consider the future deviation of the 

controlled variable from its desired steady state: 

 

𝐽(𝑘) = ∑(�̂�(𝑘 + 𝑖) − 𝐶𝑥𝑠𝑠(𝑘))𝑇𝑄

𝐻𝑝

𝑖=1

(�̂�(𝑘 + 𝑖)

− 𝐶𝑥𝑠𝑠(𝑘))  + (�̂�(𝑘 + 𝑖 − 1)

− 𝑢𝑠𝑠(𝑘))𝑇 𝑅(�̂� − 𝑢𝑠𝑠(𝑘)) 

(19) 

 

where, �̂�(+𝑖)  is the predicted output at the time 𝑘 + 𝑖 , 

evaluated by measurements at the time 𝑘, and �̂�(𝑘 + 𝑖) is the 

predicted input. 𝐻𝑝 is the prediction horizon length and 𝑄, 𝑅 

are design parameters, 𝑥𝑠𝑠 , 𝑢𝑠𝑠 the steady-state values of the 

state and the input can be obtained from Eq. (16). A linear 

disturbance observer is necessary to estimate the constant 

disturbance value. This observation closes the control loop 

similarly to the internal model control structure. The 

difference between actual plant and internal model output and 

the measure for disturbance and plant model mismatch is used 

to shift the value of the controlled variable. If the constraint on 

the input variable is applied, then the inequality constraint is a 

condition for the minimization of the cost function: 

 

𝑢min(𝑘 + 𝑖 − 1) ≤ 𝑢(𝑘 + 𝑖 − 1) ≤ 𝑢𝑚𝑎𝑥(𝑘 + 𝑖 − 1) (20) 

 

where, 𝑢min , 𝑢max  represent the input variable limitations. 

Setting the disturbance to zero, the problem of minimizing the 

cost function subjected to constraints can be reformulated as: 

 

min
𝑢

𝐽(𝑘) =
1

2
𝒰(𝑘)𝑇ℋ𝒰(𝑘) − 𝒢𝑇𝒰(𝑘) (21) 

 

Subject to: Ω𝒰(𝑘) ≤ 𝜔(𝑘) (22) 

 

where, 𝒰(𝑘) ∈ ℝ𝐻𝑝×1  has the input sequence within the 

prediction horizon. ℋ, 𝒢 are known matrices that are 

appropriately scaled, Ω, 𝜔(𝑘), represent the constraints. The 
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optimization problem, which is composed of Eq. (21) and Eq. 

(22) and constraints Eq. (20), is a standard quadratic 

programming (QP) problem.  

 

 

4. METHODOLOGY 

 

The proposed method is shown in Figure 3, and the coupling 

of MPC and flatness feedforward linearization represent the 

method's core. It uses a linear flat model Eq. (13) in a feedback 

loop with MPC to output a desired flat state 𝑧𝑑 and desired flat 

input v𝑑  to feed the nonlinear CSTR system through the 

flatness inverse term. The flatness inverse term consists of a 

mapping stage between actual and flat states of the CSTR 

model and term Eq. (8). 

 

 
 

Figure 3. Schematic of flatness-based model predictive 

control 

 

4.1 Flat system formulation 

 

The CSTR nonlinear system admits the property of flatness, 

which states that the nonlinear system is flat if there is a 

differential function of the states and input called flat output. 

This flat output can define the state and the input as differential 

functions of the flat output and a finite number of its time 

derivatives. For a CSTR system, the most common case is the 

one that considers the temperature 𝑇(𝑡) as the desired output 

to be controlled by the cooling temperature  𝑇𝑐(𝑡)  which 

represents the manipulated variable. 

The derivations of the flat system start by considering 

ζ(t)=T as the flat output. Then, the first derivative of the flat 

output is: 

 

𝜁̇ = 𝛼(𝑇𝑓 − 𝜁) + 𝛽𝑟(𝜁)𝐶𝐴 + 𝛾(𝑢 − 𝜁) (23) 

 

The parameterization of the reactor variables and the input 

in terms of the flat output and finite number of time derivatives 

can be obtained according to Eqs. (7), (8) as: 

 

𝑐𝐴 = 1 𝛽𝑟(𝜁)⁄ {𝜁̇ − 𝛼(𝑇𝑓 − 𝜁) − 𝛾(𝑢 − 𝜁)} (24) 

 

𝑇 = 𝜁 (25) 

 

𝑢 = 1 𝛾⁄ {𝜁̇ − 𝛼(𝑇𝑓 − 𝜁) − 𝛽𝑟(𝜁)} + 𝜁 (26) 

 

𝑣 = 𝜁 ̇ (27) 

 

At this point, the derivation of the control can be obtained 

since we can have an explicit term containing the control input 

𝑇𝑐. Then, the flat system can be represented as a linear system 

in Brunovsky canonical form as in Eq. (13) and serves as a 

linear model in MPC after discretization: 

 

𝑧𝑘+1 = 𝐴𝑧𝑘 + 𝐵v𝑘 (28) 

 

4.2 Constrained flat system 

 

The existence of constraints on the differential flat system 

deteriorates the flatness feedforward control. When applying 

constraints, the system's output suffers from an overshoot in 

the reactor temperature, resulting in difficulties keeping the 

CSTR under the required specifications.  

The preliminary results provided additional motivation to 

utilize differential flatness-based model predictive control 

FMPC strategy for constrained nonlinear systems. The idea is 

to map the actual constraints on input 𝑢 to constraints on the 

linearizing input 𝑣 resulted from flatness. This method 

required the discretization of the linear system obtained from 

flatness Eq. (13) to yield a discrete linear system subjected to 

time-varying input constraints.  

The mapping strategy for constraints produces a constrained 

linearized system, which leads to a nonlinear control problem; 

however, designing a linear MPC is more straightforward than 

creating a nonlinear MPC that would be required for the 

original constrained nonlinear system. 

 

4.3 Flatness-based model predictive control 

 

The schematic diagram of FMPC is shown in Figure 3. 

Formulation of the linear system using flatness representation 

is completed by the introduction of Eq. (27). Next step would 

be restating the MPC optimization problem based on the 

introduced flat model to be solved by the quadratic cost 

function: 

 

𝑚𝑖𝑛
𝑣𝑘

1

2
∑(𝜁𝑘 − 𝜁𝑘,𝑟𝑒𝑓)𝑇𝑄

𝐻𝑝

𝑘=1

(𝜁𝑘 − 𝜁𝑘,𝑟𝑒𝑓)

+ ∑ v𝑘
𝑇𝑅

𝐻𝑝−1

𝑘=0

v𝑘 

(29) 

 

Subject to: zk+1 = Azk + Bvk (30) 

 

This formulation of the cost function can be expressed as a 

quadratic program as presented in Eq. (21), with ℋ =
[𝑧1, … , 𝑧𝐻𝑝

, v0, … , v𝐻𝑝−1]𝑇 . This procedure will result in an 

optimal control input obtained from (26) and using the optimal 

flat state and input utilizing Eqs. (28) and (29). 

 

4.4 Constraints mapping technique 

 

Output constraints do not require transformation as they are 

straightforward for differential flatness control. However, 

input constraints need to be transferred to the new input 𝑣  that 

was generated by the flatness. We need to transform 

constraints Eq. (18) into constraints on a discretized model of 

a differentially flat system Eq. (13). Thus, the objective is to 

obtain constraints on the artificial input 𝑣(𝑡) that satisfy the 

inequality: 

 

𝑣min(𝑘 + 𝐻𝑐 − 1|𝑘) ≤ 𝑣(𝑘 + 𝐻𝑐 − 1|𝑘)
≤ 𝑣𝑚𝑎𝑥(𝑘 + 𝐻𝑐 − 1|𝑘) 

(31) 

 

where, 𝐻𝑐  is the control horizon of the LMPC controller, each 

bound of the inequality represents the value of the input 

evaluated at the current time instant 𝑘. 

The constraints on 𝑣𝑘  within the range of the control 
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horizon are state-dependent and cannot be enforced by the 

MPC algorithm presented earlier in the study; the reason for 

such restriction is that the assumption was made based on a 

constant bound on the control input. The case of nonlinear-

variant constraints can be solved by MPC, which uses 

quadratic programming in the same manner as solving linear 

variant constraints. The challenge lies in the need for an affine 

transformation to address the problem of nonlinear constraints 

in real-time control applications.  

Remark: To realize this transformation, three critical issues 

must be considered while implementing this transformation; 

these can be listed as: 

• The transformation must be performed at every sampling 

instant since the transformation is state-dependent. 

• The transformation has to be accomplished over the entire 

control horizon of the receding horizon controller. 

• The primary assumption is that the LMPC is only 

permitted to generate the desired trajectory that the plant 

and actuators can realize; by doing so, the constraints in 

Eq. (20) are respected. 

The relative degree plays an essential role in connecting the 

permitted output trajectory and the flat input 𝑣 based on study 

[31]. The relative degree represents the number of time 

derivatives of the output function to have an expression for the 

input 𝑢(𝑡) explicitly according to the study [32]. 

The relationship between constraints on 𝑢  and the 

constraints 𝑦 can be established by using lie derivatives: 

 

𝑦𝛽(𝑡) = 𝐿𝑓
𝛽

ℎ(𝑥(𝑡)) = ψ3(𝑥(𝑡), 𝑢(𝑡)) (32) 

 

where, 𝐿𝑓ℎ is the derivative of ℎ along vector field 𝑓. Now 

replacing 𝑢, 𝑦𝛽  by their max-min values, as well as 𝑥 by its 

desired state from Eq. (7), limitation on 𝑦𝛽is found: 

 

𝑦𝑚𝑎𝑥,𝑚𝑖𝑛
𝛽

= ψ3(ψ1(𝜁𝑑 , 𝜁�̇� , ⋯ , 𝜁𝑑
𝛽−1

), 𝑢𝑚𝑎𝑥,𝑚𝑖𝑛) (33) 

 

This leads to a state-dependent time-varying bound on 𝑦𝛽 .  
Now, for MPC optimization problem Eq. (20) to be feasible 

within the bounds of 𝑢, Eq. (21) needs to be used to guarantee 

the generation of derivatives within the limits of Eq. (32). 

The design of the state space in controllable canonical form 

for the prediction model in MPC will provide the necessary 

relation between 𝑦𝛽 desired and 𝑣 as: 

 

𝑦𝑑
𝛽(𝑡) = 𝑣(𝑡) − 𝑎𝛽−1𝑧𝛽(𝑡) − ⋯ − 𝑎0𝑧1(𝑡) (34) 

 

where, 𝛽  is the relative degree and −𝑎𝑖 , 𝑖 = 0, ⋯ 𝛽 − 1 are 

the coefficients of the last row of the controllability matrix. Eq. 

(33) can be rearranged and discretized and extend over the 

prediction horizon to yield: 

 

𝑣(𝑘 + 𝑗)𝑚𝑎𝑥,𝑚𝑖𝑛 = 𝑦𝑚𝑎𝑥,𝑚𝑖𝑛
𝛽 (𝑘 + 𝑗)

+ 𝑎𝛽−1𝜁𝛽(𝑘 + 𝑗) + ⋯

+ 𝑎0𝜁1(𝑘 + 𝑗) 

(35) 

 

 

5. SIMULATION SETUP AND RESULTS   

 

This section presents the simulation results of the FMPC, 

FFC, and LMPC controllers applied to the nonlinear CSTR 

system. To evaluate the performance of tracking a reference 

temperature trajectory using our proposed method and other 

control strategies. The second-order CSTR was employed with 

an unstable operating point and system parameters provided in 

Table 1. Eqs. (1)-(3) are used to simulate the dynamics of the 

CSTR. The manipulated input 𝑢 was constrained with bound 

constraints as 280 ≤ 𝑇𝑐 ≤ 380 , no output constraints were 

imposed in this study. The comparison was made among three 

controllers, namely, linear model Predictive control LMPC, 

flatness feedforward control FFC, and compared against 

flatness-based model predictive control FMPC. 

The description of each control method used in the 

simulation is as follows: 

• The LMPC schematic diagram is shown in Figure 4, using 

an augmented linear model as described in Eqs. (16) and 

(17). It was implemented with tuning parameters, 𝐻𝑝  = 10, 

𝐻𝑐  = 2, MV weight rate = 0.1, OV weight = 1. Three 

inputs have been selected in the design of the LMPC 

internal model, 𝑇𝐶 = MV, 𝑇𝑓  = MD and C𝐴𝑓  = UD. The 

augmented system was trimmed to obtain a linear model 

and used reactor temperature 𝑇 = MO and 𝐶𝐴 = UO. The 

closed-loop performance in terms of the prediction model 

and the feedback connection of the nonlinear plant with 

the controller was tuned to be stable. 

 

 
 

Figure 4. Linear model predictive control schematic 

 

 
 

Figure 5. Flatness feedforward control schematic 

 

FFC was designed to track the trajectory of nonlinear CSTR, 

as shown in Figure 5. Using the flatness property, trajectory 

tracking is reduced to a problem of a linear system required to 

track a given trajectory. Imposing an asymptotic stable 

behavior to the flat output tracking error, designed based on 

linear time-invariant dynamics, is the most straightforward 

approach to deal with nonlinear system tracking problems. By 

giving a desired trajectory 𝜁∗(𝑡),  which is required to be 

tracked by the flat output 𝜁, the error dynamics can be defined 

as: 

• 𝑒(𝑡) = 𝜁 − 𝜁∗(𝑡).  The following linear feedback 

controller was used: 

 

𝑣 =
𝑑𝛼

𝑑𝑡𝛼
𝜁∗(𝑡) − ∑ 𝛾𝑗

𝑑𝛼−𝑗−1

𝑑𝑡𝛼−𝑗−1
(𝜁 − 𝜁∗(𝑡))

𝛼−1

𝑗=0

 (36) 

 

The error evolved to stability by apparated choice of the 

coefficients of the linear feedback controller 𝛾𝑗 . The 

characteristic polynomial of the closed-loop system is Hurwitz, 

and the error signal was exponentially asymptotically stable to 

zero. 

Linear 
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• To implement FMPC optimal control strategy, we started 

by utilizing the nonlinear CSTR differential flatness 

property; we defined the flat output state 𝑧 Eqs. (24), (25) 

and input 𝑣 Eq. (27), then we rewrote the nonlinear model 

as a discrete linear flat model as in Eq. (28). An MPC 

formulation was used subjected to a discretized linear flat 

model, Sampling time = 0.05, prediction horizon =10, and 

control horizon = 2. The schematic of the proposed 

method is presented in Figure 3. FMPC, described in 

detail earlier, exhibited high performance in tracking the 

setpoint with less control efforts when compared to the 

other control techniques.  

Three simulation scenarios were investigated to 

demonstrate the effectiveness of the proposed control strategy 

in testing the performance of FMPC. The performance of the 

three controllers is compared for the setpoint change of ±25 K 

from its nominal value, Figure 6 and Figure 7 are for the 

positive setpoint change. 

 

 
 

Figure 6. Positive setpoint change comparison for reactor 

temperature 

 

 
 

Figure 7. Positive setpoint change comparison for cooling 

temperature 

 

As shown in Figure 7, the three controllers had to follow a 

positive setpoint change of 25 K above their nominal value of 

350 K. The same bound on the control input was applied to 

this case, and only the output of FMPC showed no overshoot 

in its response. Table 2 presents the numerical values of the 

transient response analyses obtained using the stepinfo 

command in MATLAB. 

Table 2. Transient response characteristics for positive 

setpoint change 

 
Parameters LMPC FFC FMPC 

Overshoot (%) 19.3 7.3 0 

Rise Time (min) 0.13 0.46 0.74 

Settling Time (min) 0.69 2.3 1.23 

 

Table 3 compares the parameters of the performance 

indicator and quantifies the control performance. The ISE 

index rates the efficiency of the three controllers in holding on 

to the output variable near the reference. ITAE and ITSE 

indicate the oscillation in the error signal. RMSE represents 

the average magnitude of prediction errors. 

 

Table 3. Performance indicators for positive setpoint change 

 
Parameters  LMPC FFC FMPC 

ISE 856.9 328.5 218.5 

IAE 19.98 21.17 16.87 

ITSE 277.7 207 70.85 

ITAE 6.748 16.29 11.01 

RMSE 15.5×10-4 9.8×10-3 8.3×10-4 

 

The result showed a 46.45% improvement in FMPC 

compared to LMPC (RMSE). 

Figures 8 and 9 show negative setpoint change simulation 

results, with the reference setpoint temperature dropping to 

325 K from 350 K. 

 

 
 

Figure 8. Negative setpoint change comparison for reactor 

temperature 

 

 
 

Figure 9. Negative setpoint change comparison for cooling 

temperature 
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The FMPC has shown a response capable of regulating the 

temperature with less overshoot. FFC and FMPC have 

comparable transient response results, while LMPC has a 

sluggish response due to its inaccurate linearized model and 

poor constraints handling. 

The performance of the three controllers shown in Figure 10 

and Figure 11 are the results of closed-loop response for feed-

temperature 𝑇𝑓  disturbance. The input feed temperature was 

increased by 45 K while keeping the other nominal values as 

in Table 1, and the input constraints were still applied. LMPC 

response was prolonged and showed significant control moves, 

while FFC and FMPC had comparable results with the 

advantage of faster response to FMPC. 

 

 
 

Figure 10. Feed temperature disturbance comparison reactor 

temperature 

 

 
 

Figure 11. Feed temperature disturbance comparison reactor 

temperature 

 

Table 4. A comparison of the elapsed computational time 

 
Parameters  LMPC FFC FMPC 

ACT (ms)  0.24 0.25 0.17 

MCT (ms) 1.16 10.8 5.11 

 

The three controllers' simulations used a sampling time of 

50 ms to measure the computation time of the controlled 

CSTR system. Table 4 includes the Average Computation 

Time (ACT) and Maximum Computation Time (MCT) of the 

LMPC, FFC, and FMPC controllers. The results show an 

enhanced average computation time of the FMPC compared to 

the other controllers. The real-time feasibility analysis showed 

that the average and worst-case computation times are well 

below the control loop sampling time with the advancement of 

FMPC, allowing implementation feasibility for more 

complicated systems. The results of Table 4 have been 

obtained based on a built-in timing function to capture the 

computation time of each of the applied control loops. 

To conclude this section, FMPC demonstrates the ability to 

regulate the reactor's temperature setpoint while considering 

the constraints on the manipulated variable, and it shows good 

disturbance rejection. In addition, FMPC delivers the best 

results for both positive and negative setpoint changes and 

disturbance rejection, while LMPC produces the least 

favorable response. 

 

 

6. CONCLUSIONS 

 

An innovative control strategy for a constrained nonlinear 

CSTR process, incorporating the flatness property, has been 

developed and evaluated. This strategy features a unique 

combination of a FFC and LMPC. The FFC embeds the 

system's nonlinearity in the inverse term, resulting from 

flatness parameterization. LMPC, on the other hand, regulates 

the auxiliary input to the nonlinear inverse term, adding 

another layer of innovation to the strategy.  

The control strategy's ability to map constraints on the 

original plant input into linear constraints on the FMPC input 

is a significant practical advantage. The disturbance model that 

the LMPC uses ensures offset-free performance, further 

enhancing the strategy's real-world applicability. The 

strategy's proven simplicity of computation and constraint 

handling make it a reliable and valuable tool for model-based 

linear predictive control, instilling confidence in its 

practicality.  

The comparison between the optimization-based LMPC and 

the nonlinear control techniques represented by FFC is of 

significant value. This comparison provides valuable insights 

into the CSTR system and demonstrates the potential for 

excellent results when these techniques are combined. 

In addition, the three controllers' maximum and average 

computational time were calculated in a real-time feasibility 

analysis. FMPC showed promising results in reducing the 

computational burdens of the optimization problem, which 

enhances the control systems' real-time implementation.  

The simulation results for the examined CSTR system show 

the superiority of the proposed control strategy over the other 

compared control methods. The combination of FMPC 

provides an elegant and straightforward way to handle some 

critical issues concerning controlling highly nonlinear systems. 

Future work will compare the proposed control strategy with 

other techniques and will consider MIMO systems to prove 

further the effectiveness of the method used in this study. 
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