
Watchdog Timer for Fault Tolerance in Embedded Systems 

Ridha Mehalaine1,2* , Meriem Djezzar1,2 , Djamal Nessah1,2 , Zineb Saiad2 , Asma Saidi2

1 ICOSI Laboratory, University of Khenchela, Khenchela 40004, Algeria 
2 Department of Computer Science, University of Khenchela, Khenchela 40004, Algeria 

Corresponding Author Email: r_mahaline@univ-khenchela.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.570619 ABSTRACT 

Received: 23 November 2024 

Revised: 6 December 2024 

Accepted: 13 December 2024 

Available online: 31 December 2024 

Embedded artificial intelligence encompasses a diverse range of technologies, from 

advanced algorithms to highly specialized computing systems. Intelligent embedded 

systems are playing an increasingly crucial role in various industries such as automotive, 

aerospace, healthcare, and IoT. When considering the place that intelligent embedded 

systems take in our daily lives, it is very important to understand how critical their security 

is. In order to ensure their high performance, energy efficiency, and robustness, it is 

imperative to ensure rigorous task scheduling. We are interested in the problem of hard 

real-time fault-tolerant scheduling for periodic and independent preemptive tasks. This 

paper focuses on proposing a fault-tolerant scheduling algorithm for these systems. By 

using the watchdog timer, which allows intelligent embedded systems to be more 

autonomous by detecting processor errors and adopting the Earliest Deadline First (EDF) 

algorithm to allow our system to respect time constraints. The objective is to improve 

reliability and efficiency by ensuring the execution of critical tasks despite the presence of 

faults. Designing and implementing a fault-tolerant scheduling algorithm for embedded 

systems is a crucial aspect in various industries. This helps to improve the reliability and 

security of intelligent embedded systems, which is essential to ensure the smooth operation 

of the system. 
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1. INTRODUCTION

In the era of ubiquitous digitalization, embedded systems 

play a fundamental role in our daily lives. Whether controlling 

vital medical devices, piloting autonomous vehicles, or 

managing critical infrastructures, these systems provide 

discrete intelligence that shapes our environment in invisible 

but profound ways. At the heart of this ubiquity are real-time 

embedded systems, specialized computing infrastructures 

designed to meet the requirements of strict time constraints. 

Most embedded systems are indeed strict real-time systems. 

This means that they must meet strict time constraints and 

deliver results within specific deadlines. Real-time embedded 

systems are extremely sensitive to faults. 

A single fault can have catastrophic consequences on the 

proper functioning of these systems. This is why it is essential 

to implement fault tolerance mechanisms to ensure their 

reliability. When a fault occurs, it can disrupt the normal 

operation of the system. In some cases, this can even endanger 

the lives of people relying on these systems, as in the case of 

vital medical devices. The fault sensitivity of real-time 

embedded systems underlines the importance of their rigorous 

design and the use of advanced techniques to ensure their 

reliability and safety. 

A necessary but not sufficient condition for the proper 

functioning of embedded real-time systems is the respect of 

time constraints throughout the life of the system. The 

occurrence of faults is inevitable, whatever the precautions 

taken (human error, malicious intent, hardware aging, natural 

disaster, etc.), which could lead to catastrophic consequences 

(loss of money, time or worse, human lives). An embedded 

system must be fault tolerant, in a way that it must be able to 

continue its operation despite the failure of a part of its 

hardware or system. Reliability is the probability that a system 

will be continuously in operation over a given period. Critical 

real-time embedded systems must thus cover an important 

property of safe operating systems which is reliability. The 

presence of techniques that ensure operational safety is vital in 

the design of these systems. Fault tolerance is one of the 

methods used in the literature to ensure the operational safety 

of embedded real-time systems. 

Our goal in this work is to design a strict real-time system 

that can efficiently detect and recover from faults while 

maintaining the required reliability and performance. To 

minimize the risks, it is essential to implement fault detection 

and recovery strategies. This may include the use of 

redundancy, where multiple components or modules work in 

parallel to verify results and detect errors. To design safe 

systems, we rely on reliability and fault tolerance. Fault 

tolerance is an essential aspect of real-time embedded systems, 

it concerns the ability of a system to function correctly even in 

the presence of faults. This ensures continuity of operations 

and user safety. As for reliability, it aims to ensure that the 

system operates predictably and without errors, even under 

critical conditions. This involves the use of robust design 

techniques, extensive testing, and error detection and 
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correction mechanisms. 

The goals of fault tolerance and reliability are to create 

reliable, stable, and secure systems that can meet the stringent 

requirements of the applications for which they are intended. 

We strive to implement fault-tolerant scheduling for 

distributed embedded systems with multiple processors. A 

scheduling algorithm with a reliability objective for 

independent periodic tasks is preemptive even in the presence 

of processor faults, which is our goal. The objective of this 

work is to propose an approach that meets the needs of fault 

tolerance using the watchdog timer. 

2. RELATED WORK

In this section, we present some relevant works on fault 

tolerance in real-time embedded systems. 

Reghenzani et al. [1] presented the state-of-the-art scientific 

work analyzing the Software-Implemented Fault Tolerance 

SIFT mechanisms and their real-time scheduling. It presents 

an extension of the model based on resource allocation 

functions, which allows a more accurate representation of the 

failure probabilities for each task. Then, they presented how to 

calculate the probability that a job is affected by a failure and 

the resulting impact on the failure requirement. Using this joint 

temporal fault model can improve the satisfaction of failure 

and scheduling requirements.  

Kumar et al. [2] studied the various fault tolerance 

techniques that are used in many distributed real-time systems. 

The paper focuses on the types of faults occurring in the 

system, fault detection techniques and recovery techniques 

used. Thet explained how these methods are applied to detect 

and tolerate faults in various distributed real-time systems. The 

fault has to be detected by applying a reliable fault detector 

followed by a recovery technique. Many fault detection 

techniques are available but it is necessary to apply a proper 

fault detector. An unreliable fault detector may commit errors 

by mistakenly suspecting a correct process or trusting a failed 

process.  

Manimaran and Murthy [3] proposed an algorithm to 

schedule dynamically arriving real-time tasks with resource-

based fault tolerance requirements and primary backup in a 

multiprocessor system. The tasks are assumed to be non-

preemptive and each task has two copies (versions) that are 

mutually exclusive in space as well as in scheduling, to handle 

permanent processor failures and to achieve better 

performance, respectively. According to the simulation 

results, the proposed algorithm tolerates more than one fault at 

a time and employs performance improvement techniques.  

Ramanathan and Shin [4] proposed an active replication-

based approach to solve the problem of delivering critical 

messages before their deadline in strict real-time embedded 

systems in the case of processor or communication link 

failures at a lower cost. They use a distributed architecture 

with a hexagonal mesh topology and a hypercube topology. 

The idea is to duplicate each message at least twice depending 

on its criticality and the number of processors and 

communication links it has to traverse. Then, the messages are 

broadcast on different routes to reduce the cost of 

retransmission.  

Chevochot and Puaut [5] presented another approach to 

tolerating faults in distributed hard real-time systems. They 

developed a replication tool called HYDRA, which allows to 

integration of active, passive, or hybrid replication into the 

scheduling algorithm. This approach aims to tolerate both 

transient and permanent faults of a physical component, using 

sites composed of processors, memories and clocks. Sensors 

are exposed to timing and functional errors, while actuators are 

assumed to be reliable. This is a very promising solution to 

ensure the reliability of distributed hard real-time systems. 

Despite the existence of several approaches to solve fault 

tolerance in real-time embedded systems, most of these 

approaches do not deal with processor faults; and those that 

deal with this type of fault, use in their context, aperiodic tasks 

to simplify their approach, unlike real-time embedded systems 

that generally use periodic tasks. The use of data redundancy 

or physical resources as a solution to solve the fault problem 

in these approaches can lead to the non-compliance with time 

constraints in strict real-time embedded systems. Our 

approach is based on the proposal of a fault-tolerant and not 

negatively affecting scheduling algorithm in terms of time and 

energy constraints, which uses periodic tasks in a strict real-

time embedded system based on the use of the watchdog timer 

for the detection of processor faults. 

3. EMBEDDED SYSTEMS

Embedded systems play an important role in our daily lives. 

These systems are ubiquitous in many devices and equipment, 

ranging from consumer electronics to complex industrial 

applications. The integration of these systems in specific 

environments allows dedicated tasks to be accomplished 

efficiently and often transparently for the end user. Their role 

is essential in sectors such as automotive, aerospace, 

healthcare, telecommunications and many others. 

According to the language of Molière, the word embedded 

is derived from the verb "to embark" which means "to put 

something on board a ship, a plane or a vehicle an embedded 

system can be defined as: "A stand-alone electronic and 

computer system, which is dedicated to a very specific task" 

[6]. 

An embedded system is a computer system whose 

calculation means are embedded in the controlled process. 

Embedd computing means implies, in addition to space 

constraints (size, weight, shape), energy consumption and heat 

dissipation constraints. In addition, the power supply for the 

computing elements is embedded (batteries, fuel, etc.), and/or 

ambient (solar panels, etc.) [7]. 

An embedded system (ES) is a specialized computer system 

that constitutes an integral part of a larger system or a machine. 

Typically, it is a system on a single processor and whose 

programs are stored in ROM. A priori, all systems that have 

digital interfaces (watch, camera, car, etc.) can be considered 

as ES. Some ES have an operating system and others do not 

because all their logic can be implemented in a single program 

[8].  

An embedded system is an autonomous combination of 

hardware and software (electronics plus computing) dedicated 

to generally carrying out a specific task in interaction with its 

environment and respecting often severe constraints such as: 

energy consumption, weight, reliability, response time, cost, 

etc. [9].  

We can distinguish two categories of embedded systems: 

autonomous systems and embedded systems. 

An autonomous system: corresponds to an autonomous 

device containing intelligence that allows it to interact directly 

with the environment in which it is placed. These include 
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mobile phones, electronic personal diaries or GPS. 

An embedded system: (often invisible to the user) is a 

coherent set of computer components (hardware and 

software), a device that gives it the ability to fulfill a set of 

specific missions. It is an underlying physical system with 

which the software interacts and controls [10]. 

Figure 1. Embedded system [11] 

As shown in Figure 1, an embedded system is built around 

a computer system that receives information from sensors and 

interacts with the environment using actuators and/or displays. 

The sensors measure the physical quantities characteristic of 

the environment in order to determine its current state. This 

information is converted and processed by the computer to 

produce a result based on the state of the environment. This 

result is converted and transmitted to the actuators to bring the 

environment into the expected state. The environment of an 

embedded system is composed of two parts: 

The functional environment: it refers to the environment 

that is in direct interaction with the embedded system. This can 

be another system, an industrial process to be controlled or an 

individual. 

The non-functional environment: it refers to the 

environment outside the embedded system that is not 

controlled by it. This environment will impose constraints and 

usage parameters (for example temperature or humidity level) 

which must be taken into account when designing the system 

[11]. 

3.1 The characteristics of embedded system 

The main characteristics of embedded system are: 

Real time: these systems are subject to time constraints. 

They must interact with their environment at a speed that is 

imposed by the latter. This therefore induces response time 

requirements. An embedded system is generally a real-time 

system. 

Critical safety: A system failure can lead to a human, 

ecological or financial disaster. Embedded systems are often 

critical. Indeed, as such a system acts on a physical 

environment, the actions it performs are irremediable [12].  

Limited resources: embedded software has limited 

resources, whether for reasons of weight, volume, or energy 

consumption. 

Autonomy: autonomy is necessary when human 

intervention is impossible, but also when human reaction is too 

slow or insufficiently reliable. Embedded systems must 

generally fulfill their mission for long periods without human 

intervention. 

Security and reliability: security in the sense of resistance 

to malicious acts, and reliability in the sense of continuity of 

service, is often linked to the issue of embedded systems. 

Indeed, the criticality of embedded systems requires 

guaranteeing an appropriate level of reliability and security. 

Safety studies must be conducted throughout the system 

development cycle. These studies allow for better control of 

risks and reliability. Weak points are thus highlighted and 

allow designers to specify reconfiguration strategies before the 

real prototype phase and real tests. Safety studies must be 

conducted as early as possible in the design phase, in order to 

reduce costs and the number of prototypes required for system 

validation [12]. 

3.2 Embedded system architecture 

Centralized architecture: It is composed of a calculator 

that can be single-processor or multiprocessor with shared 

memory and a set of sensors and actuators, all connected to the 

calculator. This type of architecture leads to “star” type wiring 

that is often significant and costly [13]. 

Multi-calculator architecture: This architecture is 

composed of a set of calculators that are not connected to each 

other. The application is fragmented and each computer 

implements a set of functionalities. Here, the main interest is 

to allow a rapprochement between the calculators and the 

transducers. The reduction in wiring thus obtained not only 

limits costs, but also increases the reliability of the system: if 

a processor fails, not all the functionalities are out of service, 

the shorter cables are less sensitive to external electromagnetic 

disturbances. The design of this type of system is simplified 

because it comes down to creating several simpler real-time 

systems. The main disadvantage of this architecture is not 

being able to guarantee overall consistency in the behavior of 

all of these systems that do not communicate with each other 

[13]. 

Weakly distributed architecture: The most commonly 

used bus is the CAN bus, which has become a standard in 

automotive applications. Thanks to these new buses, 

architectures that we call “weakly distributed” have appeared 

in embedded real-time applications. They are made up of a set 

of computers connected to each other by a bus. Compared to 

the multi-computer approach, the gain is undeniable: it is 

possible to control the overall behavior of all the computers 

and it is possible to share sensors between the computers [14]. 

3.3 Real-time embedded systems and their classification 

Hard real-time: Strictly constrained real-time systems 

have deterministic behavior. In this case, all constraints must 

be strictly respected. Indeed, systems with hard temporal 

constraints only tolerate strict time management in order to 

maintain the integrity of the service provided. Failure to 

respect the constraints can cause catastrophic consequences 

[15]. This type of system is common in applications affecting 

public safety. Examples include nuclear station control 

systems, railway control systems, and computer-assisted 

medicine [16]. 

Soft real time: This class of system is less demanding with 

regard to compliance with all temporal constraints. This means 

that non-compliance with temporal constraints is tolerated by 

the system without this having catastrophic consequences. 

Systems with flexible or soft temporal constraints accept 

variations in data processing, we then speak of Quality of 
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Service. This means that these are systems where quality is 

appreciated by the human senses in the form of a service and 

that a low probability of not respecting temporal limits can be 

tolerated. This is the case for multimedia systems and 

applications (telephony, video, etc.) [16]. 

Mixed-constraint systems: These are systems composed 

of two types of tasks (strictly constrained tasks and softly 

constrained tasks). Consequently, a subset of tasks emerges 

that must imperatively respect temporal constraints and 

another subset of tasks whose evaluation criterion is the 

minimization of temporal errors [16]. 

 

3.4 Classification of real-time scheduling algorithms 

 

Scheduling algorithms have the mission of finding, at any 

given time during the execution of the system, a hardware 

component for the highest priority software component. The 

way to perform this assignment allows these algorithms to be 

classified into: 

Offline and online algorithms: A scheduling algorithm is 

offline if it constructs the complete scheduling sequence of all 

tasks before execution. This is well suited to periodic task 

systems. These algorithms allow the design of predictive 

systems, since the temporal constraints can be verified and 

validated even before the system is put into operation. A 

scheduling algorithm is online if it constructs the scheduling 

sequence of all tasks during the execution of the application. 

Online algorithms are more robust with respect to Worst Case 

Execution Time WCET overruns. This is well suited for 

sporadic and aperiodic task systems [17]. 

Exact and approximate algorithms: Offline and online 

algorithms that always find an optimal solution for the real-

time scheduling problem, of course if this solution exists, are 

part of the class of exact algorithms. However, in the general 

case this problem is NP-hard and of exponential complexity, 

and to solve it in polynomial time, we adopt heuristic 

algorithms that seek solutions that are as close as possible to 

the optimal solution [17]. 

Single-processor/multi-processor: The scheduling is of 

the single-processor type if all the tasks can only be executed 

on a single processor. If several processors are available in the 

system, the scheduling is multi-processor [18]. 

This subsection briefly explains the principles of the 

different scheduling algorithms on a single-processor and 

multiprocessor architecture. 

Rate-monotonic (RM) scheduling algorithm: The RM 

algorithm is a static period-based algorithm, which assigns the 

highest priority to the task with the smallest period. The use of 

periodicity as a scheduling criterion limits the applicability of 

this algorithm to periodic tasks with on-demand deadlines. 

Using this algorithm for other types of tasks does not provide 

any guarantee of meeting deadlines [19]. 

“Inverse Deadline” (ID) or “Deadline Monotonic” 

(DM): The "inverse deadline" algorithm is a static algorithm 

where the highest priority task is the one with the smallest 

deadline. Note that, compared to the Rate-monotonic 

algorithm, being based on the notion of deadline, this 

algorithm applies as well to other task models as those of tasks 

with deadlines on requests [19]. 

“Least Laxity First” (LLF): At time t and when the task is 

executed alone, the laxity of a task represents its maximum 

delay compared to its deadline to (re)start its execution. The 

“least laxity first” algorithm assigns, at time t, the highest 

priority to the task with the lowest laxity. 

“Earliest Deadline First” (EDF): The EDF algorithm 

assigns, at time t, the highest priority to the task with the 

closest deadline. EDF* is used for where among the tasks with 

the same deadline, the one that arrives first will be elected. 

An embedded system must be fault tolerant, in a way that it 

must be able to continue its operation despite the failure of a 

part of its software or hardware, and this is to justify the 

reliability of this system. The slightest failure of a critical 

embedded system can cause catastrophic consequences, so 

even in the presence of faults the embedded system must be 

delivered the service correctly to avoid the consequences. 

 

 

4. FAULT TOLERANCE 

 

In embedded and distributed real-time systems, compliance 

with time constraints throughout the life of the system is 

crucial. Given the potentially catastrophic consequences (loss 

of human lives, time, or money) that a fault could cause in a 

critical real-time system, incorporating techniques to ensure 

operational safety is essential when designing these systems. 

Fault tolerance is a method used to ensure the dependability of 

embedded real-time systems; it allows systems to provide the 

expected service even in the presence of faults. Critical real-

time systems must therefore cover an important property of 

safe operating systems, which is reliability. 

 

4.1 Operational safety 

 

The dependability represents the ability of a system to 

deliver a service (its behavior as perceived by its user(s)) in 

which one can have justified confidence. A user is another 

system (human or physical) that interacts with the system 

considered [20]. 

 

4.2 The dependability tree 

 

Dependability mainly manipulates three concepts: 

Attributes by which dependability is assessed, Hindrances by 

which dependability is affected, Means by which 

dependability is improved. Figure 2 summarizes the main 

notions of dependability [17]. 

 

 
 

Figure 2. Embedded dependability tree [17] 

 

To prevent system failures despite the presence of faults, 

this is equivalent to breaking the chain that leads from fault to 

failure. Fault tolerance is implemented by error detection and 

system recovery [21]. 

 

4.3 Principles of fault tolerance 

 

The objectives are the subsequent identification of faults 
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with a view to their elimination or prevention, to avoid the 

propagation of the error to other components, to prevent the 

occurrence of a failure caused by the error. The parameters of 

the detection are the latency and the coverage rate. The 

coverage rate is the percentage of errors detected. The latency 

is the delay between the production and the detection of the 

error. Error detection is said to be concomitant when it is 

carried out during the normal execution of the service. 

Conversely, it is said to be preventive when it can be carried 

out during a suspension of the service. “Efficiency” means that 

failures are detected quickly and with acceptable accuracy. 

Concurrent detection techniques use redundancy at the 

information or component level, or temporal or algorithmic 

redundancy. The most commonly used forms are as follows. 

Doubling and comparison: processing units are duplicated 

and their results are compared. 

Error detection codes: they introduce redundancy into the 

representation of information. A watchdog timer (WDT) is a 

counter that counts down from a predefined value to zero at a 

fixed rate. WDT detects processor failures that can occur for 

various reasons. The idea is that tasks should periodically reset 

the WDT before it expires, by writing a specific value to a 

register or calling a function. In this way, the WDT acts as a 

watchdog that checks if the processor is working as expected. 

Plausibility or structured data checks: assertions are 

inserted into the code to verify types, indices, values, etc. 

Temporal and execution checks: a “watchdog” monitors 

response times or execution progress [13].  

Compensation: requires that the system state has sufficient 

redundancy to allow its transformation into an error-free state. 

It is transparent to the application because it does not require 

re-executing part of the application (restart), nor executing a 

dedicated procedure (continuation). It can for example be 

achieved by replicating components and performing a majority 

vote on the results. Another way to proceed is to use error-

correcting codes or more generally fault-tolerant algorithms. It 

can be noted that the compensation method does not require 

specific error detection since it performs the error detection 

itself. A compensation method can serve as an error detector, 

while the reverse is not true. Indeed, compensation requires 

greater redundancy to be able to correct the error. For example, 

in terms of components, two components are sufficient to 

detect an error, but at least three will be necessary to correct it 

[21].  

4.4 Fault tolerance techniques 

Fault tolerance methods are based on two classes of 

techniques: 

-Treating faults.

-Treating errors.

Fault treatment: In this case, the fault tolerance algorithm

aims to prevent faults from being activated. It involves at least 

two steps which are fault diagnosis and fault inactivation 

Fault diagnosis: determines the causes of the error in terms 

of location and nature. 

Fault inactivation: prevents faults from being activated 

again (by making them passive) [9]. 

Error treatment: In this case, the fault tolerance algorithm 

consists of detecting the existence of an incorrect state (error), 

then replacing the incorrect state with a correct state that 

complies with the specifications. In all cases, redundancy is 

the sole principle used to treat errors, there are three forms of 

redundancy. 

Hardware redundancy: includes hardware components 

added to the system to support fault tolerance (e.g., using an 

available processor if one of the executing processors fails). 

Software (or information) redundancy: includes all 

programs and instructions that are used to support fault 

tolerance (e.g., using two implementations of the same 

module). 

Time redundancy: consists of allowing additional time to 

complete the execution of tasks to support fault tolerance (e.g., 

executing a module again later) [9].  

The main objective of fault-tolerant scheduling algorithms 

(EDF fault-tolerant) is to study processor allocation strategies 

in the presence of faults, to propose new improvement 

methods for scheduling and to choose one that significantly 

decreases the execution time of the algorithm without 

degrading the system performance. 

5. RESULTS AND DISCUSSIONS

In the domain of real-time systems, where timeliness and 

predictability are paramount, scheduling algorithms play a 

crucial role in ensuring efficient and reliable task execution. 

An algorithm, Earliest Deadline First* (EDF*), has been 

proposed that is distinguished by its simplicity and efficiency 

in prioritizing tasks based on their impending deadlines. This 

chapter embarks on a practical journey to realize EDF*, by 

implementing a multiprocessor EDF* scheduler using the 

Python programming language. 

Our approach delves into the intricacies of scheduling tasks 

across multiple processors, unraveling the challenges and 

opportunities that arise in this dynamic environment. We will 

address the complexities of managing a constantly changing 

set of tasks, synchronizing execution across multiple 

processors, and protecting the system from timing faults. By 

addressing these challenges, we will develop robust strategies 

to ensure scheduler resilience. Redundancy and migration 

techniques will be employed to protect critical tasks from 

processor failures, while scheduling mechanisms will 

dynamically adapt to changing system conditions. 

To evaluate the effectiveness of our approach, we conclude 

this paper by simulating a case study with the results obtained 

in detail, we first present an error detection technique which is 

the Watch dog-timer. 

Task Representation: Tasks in a scheduling system are 

defined by several parameters that determine their behavior 

and importance in the scheduling process. Here is an 

explanation of these parameters. 

Task ID: A unique identifier assigned to each task to 

distinguish it from other tasks. 

Arrival Date (DA): the task arrival date (creation date or 

possibly the date a task transferred by another processor is 

received). It is now possible to schedule this task. 

Execution Time (TE): This is the time required for the 

execution of the task. It is determined by simulations or by a 

thorough study of the source code before execution. 

Deadline (DI): it represents the instant at which the 

execution of a task must be completed to respect the time 

constraint. 

Period (PI): it represents the time between two consecutive 

creations of a task.  

Figure 3 shows that the proposed approach expresses the 

different steps to follow to solve the problem of fault tolerance 

for real-time embedded systems. We have chosen the 
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independent periodic tasks. For each arrival of a task in the 

system and before inserting it into the queue, we must 

calculate the feasibility to ensure the existence of a real-time 

schedule for all of these tasks.  

 

 
 

Figure 3. The proposed approach 

 

According to reference [22], the feasibility test to execute 

the tasks is composed of two conditions: 

Necessary feasibility (Feasibility used in practice): is 

calculated by summing the ratios between the execution time 

of each task and its period, then dividing this sum by the 

number of available processors. This gives a measure of 

resource utilization relative to the periodicity constraints of the 

tasks. 

 

𝑁𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
∑

𝑇𝑎𝑠𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
𝑇𝑎𝑠𝑘 𝑝𝑒𝑟𝑖𝑜𝑑𝑡𝑎𝑠𝑘

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
 

(1) 

 

Sufficient feasibility: is calculated by summing the ratios 

between the execution time of each task and its deadline, then 

dividing this sum by the number of available processors. This 

gives a measure of the leeway available to each task relative 

to its time constraints. 

 

𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
∑

𝑇𝑎𝑠𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
𝑡𝑎𝑠𝑘 𝑑𝑒𝑑𝑙𝑖𝑛𝑒𝑡𝑎𝑠𝑘

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
 (2) 

 

Once the feasibility conditions of the tasks have been 

verified, they are placed in a queue and then ordered using the 

EDF* algorithm. 

 

Algorithm: EDF scheduling algorithm 

Input: List of tasks tasks, number of processors 

num_processors, simulation period 

simulation_period, optional processor stops. 

Output: Timeline for each processor 

1. Initialize task_list with metadata for each task 

2. Initialize processor_timelines for each processor 

3. for t in range(simulation_period) do 

4. for each proc_id in processor_stops do 

5. t≥processor_stops[proc_id] processor_timelines 

[proc_id][t] ← −1 

6. available_tasks ← {task | task.capacity &gt; 0} 

7. Sort available_tasks by deadline 

8. for each proc_id in range(num_processors) do 

9. processor_timelines[proc_id][t] = −1 continue 

10. current_task ← processor_timelines[proc_id][t − 1] 

11. current_task ̸= −1 processor_timelines[proc_id][t] ← 

current_task 

12. current_task.capacite ← current_task.capacite − 1 

13. for each proc_id in range(num_processors) do 

14. processor_timelines[proc_id][t] = −1 and 

available_tasks ̸= Ø 

       task ← available_tasks.pop(0) 

15. processor_timelines[proc_id][t] ← task.id 

16. task.capacity ← task.capacity − 1 

17. for each task task in task_list do 

18. task.capacite = 0 task.capacite ← task.initial_capacite 

19. task.deadline ← task.deadline + task.period 

20. return processor_timelines. 

 

Calculating the LCM of periodic tasks: Calculating the 

LCM (Least Common Multiple) of periodic tasks is essential 

to ensure synchronized and efficient execution in various 

systems, such as real-time systems, communication networks, 

and industrial control systems. By determining the LCM, it is 

ensured that all tasks execute at regular intervals, avoiding 

conflicts and of each task: The period of a task represents the 

time required to complete a complete execution cycle. 

List the periods of all tasks: Write down the periods of all 

the periodic tasks that you want to consider. 

Determine the prime factorization of each period: 

Decompose each period into its prime factors. 

Identify the highest power of each prime factor: For each 

prime factor present in one of the periods, identify the highest 

power of that prime factor appearing in all periods. 

Multiply the identified prime factors: Multiply the 

identified prime factors, raised to their respective highest 

powers, to obtain the lcm. 

Process faults: There are several types of system faults 

(code faults, network faults, communication faults, etc.) we 

cannot treat them all at once. The fault that we will consider 

here is the failure of a processor. This can be due to a processor 

delay or a complete failure. If a task does not complete before 

the watchdog timer expires, this may indicate a fault in the 

processor on which it was running 

Fault tolerance mechanism with watchdog timer: 

WatchDog: or the watchdog, is an integrated circuit used to 

ensure that the system does not get stuck at a particular stage 

in the processing it performs. It is a protection generally 

intended to restart the system in the event that a defined action 

is not executed within a given time. The i.MXL provides a 

WatchDog with a granularity of 0.5 seconds, the allowed 

interval for a test period is between 0.5 seconds up to 64 

seconds [14]. In the context of fault tolerance for our EDF* 

scheduling system, we will implement a watchdog timer 

mechanism to detect potential faults during the execution of 

tasks. Then, we will consider a specific fault, namely a 

processor failure, which can be caused by a processor delay or 

a complete failure. Here is how the process could be 

implemented: 

Error detection: In a strict real-time system that uses the 

EDF* scheduling algorithm: To manage tasks according to 

their earliest deadlines. The watchdog timer is particularly 

useful to ensure that tasks are executed within the given 

deadlines and that no timeout occurs. 

System recovery: When an error is detected, the watchdog 

timer triggers a corrective section such as a system reset or 

taking action to correct the error. In a multiprocessor system, 

a test task that has been monitored by WDT encounters an 
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error or has been executed late, it is possible to redirect this 

task to another free processor so that it can be executed 

correctly from its deadline, so the tasks must be distributed 

among the available processors. 

In case of fault detection, we will consider two solutions: 

Task Immigration: The task currently running will be 

migrated to another available and functional processor. 

Preemption: If migration is not possible or if it is not 

desirable, another solution is to preempt a task with a deadline 

as far away as possible to free the processor for the pending 

task. 

Scheduling after fault detection: Once the tasks are in the 

global queue, we will use a star classification based approach 

to decide the execution. This involves calculating the load rate 

of each processor. The processor with the lowest load rate will 

be chosen to execute the task. 

6. SIMULATION

In this section, we propose a case study to evaluate the 

simulation and to show the effectiveness of the proposed 

approach. We first present the description of the proposed 

tasks. Then we present the execution results. 

In our case study we assume that the system is composed of 

08 periodic tasks (as shown in Table 1) and 03 processors; 

each task described with a 4-tuple: Ti = (DA, TE, Di, Pi). 

Table 1. Tasks description 

Tasks Arrival Date Execution Time Deadline Period 

Task 1 0 2 7 15 

Task 2 0 2 10 10 

Task 3 0 1 6 5 

Task 4 1 1 9 6 

Task 5 3 1 12 15 

Task 6 2 2 11 6 

Task 7 3 1 8 10 

Task 8 2 1 10 5 

The approach begins in the first step to calculate the 

feasibility of task execution with the time constraints for each 

task; and to achieve this goal we must first calculate the overall 

period of all tasks Ptot = PPCM (15,10.5, 6, 15, 6,10.5) =30 

At time t=0 the 03 tasks T1, T2, T3 have arrived in the system, 

If the execution of the tasks is feasible, we must insert the tasks 

into the queue and ordered by the proposed algorithm. Tasks 

T1, T2, T3 are waiting to use the available processors. 

Task T3 used processor P1 from date t=0 with TE=1, Task 

T1 used processor P2 from date t=0 with TE=2, Task T2 used 

processor P3 from date t=0 with TE=2. In date t=1 it is the 

arrival of task T4 in the system, this event the system will 

check if there are free processors, in our system processor P1 

is free so task T4 used processor P1 with TE=1. In date t=2, it 

is the arrival of tasks T6, T8, at this moment all processors are 

free. T8 used processor P1 and task T6 used processor P2Note: 

(DI(T8)=10 < DI(T6)=11) this is the justification for using 

processors in order T8 → P1 and T6 → P2. In the date t=3 it 

is the arrival of the tasks T7, T5, this event the two processors 

P1 and P3 are free at this time the task T5 uses the processor 

P1 with TE=1 and T7 uses the processor P3 with TE=1. t=5 it 

is the arrival of the task T3 for the period n°2, T3 uses the 

processor P3 (we choose the oldest processor used) with a 

TE=1 until t=6 (termination of the execution of the task T1), 

by the same principle T4 uses the processor P1 and T8 uses 

the processor P2. 

From the date t=8 until the end of the timeline all the tasks 

have arrived to complete their execution according to their 

period, they will be ordered by the algorithm and each time 

chooses the oldest processor used and its lowest load rate The 

execution results of the tasks on the 3 processors are 

graphically represented in Figure 4. As the Figure 5 shows the 

feasibility and utilization rate of each processor. 

Figure 4. Tasks scheduling 

Figure 5. Feasibility results and load rate 

7. CONCLUSION

This paper has contributed to the advancement of 

knowledge in the field of the dependability of distributed 

embedded systems (DES). The results obtained, both 

theoretically and practically, will allow DES designers and 

developers to implement safer and more reliable systems, thus 

meeting the increasing requirements of critical applications. 

With the results of our proposed approach, a significant 

improvement for the reliability of embedded systems by fault 

tolerance that allows to give justified confidence to the system 

despite the presence of processor faults. This makes the 

application of our proposed approach crucial in critical 

embedded systems and which can generate catastrophic results 

with the slightest system failure such as the e-marked systems 
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that exist in means of transport (airplane, vehicle, train...) and 

devices used in medicine. Our research opens the way to 

several interesting perspectives in the field of distributed 

embedded systems and fault tolerance. By further exploring 

the integration of fault tolerance mechanisms in DES, we 

could consider studying the impact of different scheduling 

strategies on the reliability and performance of the systems. In 

addition, analyzing the efficiency of the EDF algorithm in 

more complex scenarios or exploring new fault detection and 

recovery techniques could be promising research avenues to 

enhance the dependability of DES. Communication between 

tasks is very important in intelligent embedded systems, which 

opens the way for future research that uses dependent tasks. 
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