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 To decrease reliance on fossil fuels and carbon emissions, electric vehicles (EVs) have 

emerged as indispensable instruments in the automotive industry's shift toward more 

sustainable methods. The achievement of peak efficiency in EVs is contingent upon the 

appropriate selection of motors and batteries; therefore, exploring methods that ensure 

sustainable decisions is imperative. The article employs Multi-Criteria Decision-Making 

(MCDM) techniques to assess and propose the most environmentally friendly 

amalgamation of batteries and motors for EVs. The research investigates many 

sustainability-related factors, encompassing energy density, power density, cost, 

longevity, and environmental impact. By employing MCDM methodologies, including the 

Analytic Hierarchy Process (AHP), Simple Additive Weighting (SAW), and the 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), a 

comprehensive decision framework is developed with an emphasis on sustainability. The 

research outcomes provide a thorough understanding of the trade-offs between battery life 

and motor efficiency, which holds significance for policymakers, academics, and 

manufacturers dedicated to endorsing sustainable energy practices. The suggested 

methodology not only streamlines the decision-making process but also promotes the 

development of environmentally sustainable and highly efficient EVs. 
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1. INTRODUCTION 

 

Over the past few decades, there has been a heightened 

scientific consciousness regarding the critical importance of 

developing sustainable, environmentally friendly alternatives 

to conventional solutions. This was prompted by issues such 

as air pollution, air resource depletion, and the search for a 

pollution-free, healthy environment. Human health in 

developing countries, particularly in major cities, can be 

adversely affected by several significant contributors to the 

increase in harmful exhaust emissions into the atmosphere, 

such as sulfur dioxide (CO), nitrogen oxides with particulate 

matter (NOX), and sulfur dioxide (PM). There is a prevalent 

belief among many individuals that powertrains represent a 

viable approach to optimize unleaded emissions and enhance 

fuel economy within the automotive industry [1]. EV 

technology is classified as operating on the principle of electric 

force. It is then transferred to the vehicle's axles via the most 

efficient gearbox configuration possible after being converted 

to mechanical energy by the motor. Reversible and highly 

efficient, this mechanism must provide the wheels with the 

necessary torque and speed. A hybrid storage system is 

typically utilized to store the energy. Single-speed gear ratios 

are the prevailing transmission mechanism chosen for electric 

powertrains. The electric motor must provide the requisite 

energy for the EV to advance. Selecting the proper electric 

motor for a chassis could be difficult [2]. Currently, a wide 

variety of EVs are available for purchase. Numerous engines 

in these automobiles perform a variety of functions. 

Depending on their configuration or intended function, EVs 

may employ direct (DC) or alternating (AC) motors. 

Considerable research has been devoted to electric motors, 

resulting in the creation of numerous varieties. EV 

manufacturers can select from various electric motors 

following their unique requirements. The motor's 

characteristics impact the vehicle's overall performance, so 

care should be taken when choosing a particular EV motor 

type [3]. Several considerations must be considered, including 
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management, efficacy, cost-effectiveness, and reliability. In 

addition to industrial applications and EV usage, additional 

factors must be considered [4]. The most widely recognized 

EV motors include induction motors (IM), permanent magnet 

synchronous motors (PMSM), and brushless DC motors. The 

traction motor candidates for the electric traction system 

should supply an economical solution for high-performance, 

speed sensor-free control and be dependable and effective. 

They should also possess an extended point of stability at 

varying velocities [5].  

In addition to analyzing electric motors and their 

interactions, this article provides a synopsis of current market 

trends in the design of electric motors. In addition, a multi-

criteria evaluation of the use of electric motors in EV 

applications is provided. Figure 1 illustrates many types of 

electric motors. EVs require appropriate electric machinery to 

power their propulsion systems efficiently. According to 

literature analysis, academics are increasingly interested in 

applying the MCDM theory to selecting electric motors for 

EVs. This approach facilitates a methodical and unbiased 

evaluation of diverse motor solutions by considering a range 

of criteria, such as energy efficiency, cost, performance, and 

dependability. An assortment of electric devices is utilized to 

power EVs. A frequently employed variety is the induction 

motor, renowned for its exceptional reliability, minimal 

upkeep requirements, and economical nature [6]. Another type 

is the PMSM, which offers a high power density and 

efficiency. The SRM is also gaining popularity due to its 

straightforward design, robustness, and cost-effectiveness. 

Each form of electric machine has both advantages and 

downsides. Induction motors, for example, may be less 

efficient than PMSM or SRM, despite their dependability and 

inexpensive cost. PMSM provides excellent power density and 

efficiency but may be more expensive [7]. 

 

 
 

Figure 1. Types of electric motors/machines for EVs 

 

In contrast, SRM has a basic structure and is less expensive 

but may cause more noise and vibration. The right electric 

machine is selected based on the EV application's 

requirements and limits. Factors such as driving range, vehicle 

weight, power requirements, and pricing must be considered 

during decision-making. MCDM theory promotes the 

development of efficient and sustainable EVs by identifying 

the most appropriate electric motor for specific EV 

applications, considering both qualitative and quantitative 

parameters [8].  

Selecting proper electric motors for EVs is critical to 

advancing efficient and sustainable transportation. Recent 

years have witnessed a surge in interest regarding the 

application of MCDM theory to the selection procedure [9]. 

Researchers have acknowledged the importance of 

considering numerous factors when selecting electric motors 

for EVs, including performance, affordability, dependability, 

and energy efficiency [10]. The MCDM theory allows for a 

systematic and objective evaluation of various electric motor 

solutions, considering qualitative and quantitative parameters. 

The MCDM theory provides a framework for decision-making 

procedures with numerous criteria and competing goals. When 

applied to electric motor selection for EVs, this theory allows 

for the simultaneous examination of several parameters, 

allowing for a thorough study of alternative motor 

possibilities. This comprehensive approach helps determine 

the most suitable electric motor for individual EV applications, 

considering the vehicle's unique requirements and limits [11]. 

One of the primary advantages of selecting electric motors 

using MCDM theory is the capacity to consider qualitative and 

quantitative factors. Subjective qualitative factors, including 

customer satisfaction and dependability, can be challenging to 

integrate into conventional decision-making processes [12]. 

However, MCDM theory provides a structured approach to 

quantifying and comparing these qualitative factors, enabling 

a more comprehensive evaluation. 

On the other hand, quantitative factors, such as performance 

metrics (e.g., torque, power, and efficiency) and cost 

considerations, can be easily measured and compared. MCDM 

theory allows for integrating these quantitative factors into the 

decision-making process, providing a robust basis for 

evaluating different electric motor options [13]. Choosing the 

most suitable electric motor for an EV is contingent upon 

many application-specific factors. The elements above 

encompass traveling range, vehicle mass, power demands, and 

financial implications [14]. An assortment of electric machine 

varieties, including induction motors, PMSM, and SRM, 

present a range of benefits and drawbacks. Due to their 

straightforwardness, durability, and economical nature, 

induction motors are extensively employed in EVs. However, 

their efficiency may be inferior to other motor varieties [15]. 

In contrast, PMSMs provide superior power density and 

efficiency but are more complicated and costly. Although 

SRMs offer benefits like increased torque density and defect 

tolerance, they may produce more acoustic noise and 

vibration. Future research and development will enhance the 

dependability, performance, and efficiency of electric 

apparatus for EVs [16]. This includes advancements in motor 

design, materials, control strategies, and power electronics. 

Additionally, efforts will be made to develop innovative motor 

technologies that address the specific requirements of EV 

applications, such as high power-to-weight ratio, compact 

size, and improved thermal management [17]. 

In the fast-changing environment of EVs, the search for 

sustainable energy solutions in electric motors has become 

increasingly important. MCDM approaches are a powerful 

tool in the decision sciences and are critical in navigating the 

complicated trade-offs connected with electric motors for 

EVs. With numerous elements to consider, ranging from 

energy efficiency and environmental impact to cost-

effectiveness and technological feasibility, MCDM offers a 

structured strategy for evaluating and prioritizing these 

criteria. In the context of electric cars, where the transition to 

sustainability is a major priority, MCDM guides stakeholders 

in selecting electric motors that meet the broad goals of eco-

friendliness and efficiency. As the automotive industry 

accelerates its transition to electrification, MCDM emerges as 

a key driver in steering decision-makers towards electric 
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motor options that meet performance requirements and 

contribute significantly to the larger agenda of creating a 

greener and more sustainable future for EVs. In this delicate 

dance of criteria and considerations, MCDM stands as a 

beacon, guiding the automobile industry into choices that 

harmonize technological progress with environmental 

responsibility to create a cleaner and more energy-efficient 

transportation ecosystem. 

In response to the critical conditions of global climate 

change and the exhaustion of fossil fuel reserves, there has 

been a surge in both investment and demand for EVs. It is 

crucial to shift towards transportation alternatives that are 

more environmentally sustainable, as conventional internal 

combustion engine vehicles significantly contribute to air 

pollution and greenhouse gas emissions. Powered by batteries 

built into the vehicle, EVs present an enticing remedy to these 

ecological issues. Despite the undeniable environmental 

advantages of EVs, their extensive adoption is contingent upon 

resolving several technological challenges, with energy 

storage systems and propulsion mechanism optimization being 

the most critical. Electric vehicles rely on propulsion batteries 

to supply the necessary energy to operate the electric motor. 

The electric engine propels the automobile concurrently, 

transforming electrical energy into mechanical energy. 

Overall efficacy and success of EVs depend heavily on the 

interplay between these two components.  

This study aims to investigate and implement MCDM 

techniques to optimize the selection of batteries and actuators 

for EVs. Key Objectives of this study are: 

• The study emphasizes the importance of MCDM in 

guiding electric motor selection, recognizing the complexity 

and interdependence of parameters such as torque, power, 

efficiency, weight, cost, and environmental impact. 

• Validating the MCDM-based method using real-world 

electric motor data for EVs adds a practical layer. This case 

study provides real-world evidence to back up the suggested 

method. 

• The research enhances scholarly comprehension of the 

automotive sector and actively promotes the widespread 

implementation of intelligent and eco-friendly EVs. These 

vehicles are marketed as potential resolutions to urgent 

environmental issues. 

The findings of this research article are presented clearly 

and coherently by division into sections. After this 

introductory segment, the second section investigates into 

significant scholarly works on the present condition of EVs, 

advancements in battery and motor technologies, and 

established methodologies for their selection. The third section 

details the research methodology, including the process of 

identifying criteria, developing the decision framework, and 

applying MCDM methods. The analysis results, presented in 

the fourth component, offer valuable insights regarding the 

prioritization of criteria and the assessment of different 

combinations of batteries and motors. In the fifth segment, 

recommendations for stakeholders in the EV industry are 

provided in light of the findings. In summary, the conclusion 

elucidates the significant contributions of the research, 

underscores its constraints, and proposes avenues for future 

investigation in the perpetually evolving and dynamic domain 

of EV technology. The primary objective of this study is to 

enhance comprehension of the decision-making process 

involved in EV design. Additionally, it offers a pragmatic and 

executable framework for stakeholders interested in 

optimizing the choice of batteries and motors to promote 

efficient and sustainable electric mobility. 

 

 

2. LITERATURE REVIEW 

 

Zhu et al. [18] presented a modified particle filter method 

for reliably and robustly estimating vehicle states and 

parameters in complex disturbances and sensor fault 

circumstances. The efficacy of the proposed estimation 

scheme is validated by utilizing Carmaker-Simulink joint 

simulations of typical maneuverers subjected to stochastic as 

well as needling noises, accelerating sensor errors, and 

unscented Kalman filter (UKF) scenarios. The suggested 

estimating approach beats the unscented particle filter (UPF) 

and the unscented Kalman filter (UKF), two popular vehicle 

state estimators. To assist and augment this process, EVs must 

be given precedence over traditional motor vehicles. Kaya et 

al. [19] had investigated MCDM and GIS-based site selection 

for EVCs in Istanbul. The parameters that influence the 

locations of EVCS have been identified for this objective. 

Once more, as contemporary drive technologies continue to 

advance in diverse electric propulsion applications, a thorough 

comprehension of appropriate motor selection is gaining 

significant importance. 

A comparison was made between IM, BLDC, and PMSM 

in the study [20]. The rationale behind choosing an ANN-

based controller for EV propulsion applications is its precise 

control, rapid dynamic response, and simplicity in speed and 

torque modulation. The 5-phase PMSM is a prime candidate 

material for EVs because the selection process is predicated 

primarily on dependability, efficiency, and robustness. Hezzi 

et al. [21] examined the Linear Active Disturbance Rejection 

Controller (LADRC) and an Active Disturbance Rejection 

Controller (ADRC) in their study. To stabilize the system 

when anticipated internal and external disturbances occur, the 

ADRC employs online dynamic correction. Aliasand and Josh 

[22] investigated the process of selecting an EV motor. The 

article describes five different types of EV motor drive train 

systems. A comparison is made between axial flux permanent 

magnet brushless DC motors, switching reluctance motors, 

induction motors, permanent magnet motors, and DC motors 

concerning their dependability, price, efficiency, and maximal 

speed. The objective is to determine which electric motor 

drives are most suitable for EV applications. Alosaimi et al. 

[23] described the various categories of EVs, including BEVs, 

FCEVs, HEVs, PHEVs, and REHEVs. Despite significant 

advancements in recent years in the powertrain capabilities of 

numerous EV models, certain obstacles continue to impede the 

choices of several consumers. The dynamic performance and 

energy efficiency improvements of an EV powertrain 

featuring dual motors and multiple gear ratios were examined 

by Nguyen et al. [24]. Significant electricity consumption 

reductions of 4.82–5.08% are observed when a single-motor 

powertrain is compared to one with an optimal motor size 

greater than 0.42 and matching gear ratios.  

Chahba et al. [25] compared the flying times of electric 

multirotor propulsion chains powered by fuel cells and 

batteries. To develop and validate a method for sizing and 

selecting the propulsion chain components of an E-VTOL air 

vehicle, Espino-Salinas et al. [26] conducted a survey. The 

ultimate phase involves employing regression techniques and 

data from the propulsion chain supplier to compute the 

propulsion chain's optimized gross take-off weight (GTOW), 

which was acquired through the sizing methodology. Motorist 
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authentication is the process of determining the identity of a 

driver through the collection of pertinent information. This 

information is utilized to ascertain the identity of the vehicle's 

operator. For driver identification, Li et al. [27] suggested the 

use of genetic algorithms. The proposed method, which is 

more recent than those currently in use, attempts to 

analytically and objectively identify the most significant 

statistical characteristics of the motor activity produced by the 

primary components of the vehicle. To reduce the capacity of 

hard-wired batteries to subunits, the authors suggest a drive 

train configuration that utilises a dynamically reconfigurable 

DC battery. By improving voltage output and reducing losses 

in EV propulsion systems, the proposed method makes use of 

recent developments in 48 V power electronics, low-voltage 

transistors, and modular circuit topologies. Zhang et al. [28] 

introduced a hybrid methodology for approaching PHEB that 

combines model predictive control (MPC) with an equivalent 

consumption minimization strategy (ECMS). The plug-in 

hybrid electric bus (PHEB) faces considerable requirements 

for vehicle capacity during periods of high demand and when 

navigating steep inclines due to its operation in urban settings. 

The following measures should be taken to address the 

difficulty of reconciling excessive motor temperature 

reduction with fuel efficiency  

As a technique for determining which smart sensors should 

be installed in the escalator of a metro station, AHP-Gaussian 

was proposed by Pereira et al. [29]. Through its 

implementation in the choice of a smart sensor for an electric 

motor located in an escalator at a metro station, the proposed 

AHP-Gaussian method was shown to be effective. Shu et al. 

[30] addressed an approach to address the issue where the 

current capacity setting for highway charging stations fails to 

account for user charging preferences adequately. This method 

involves implementing a charging guidance mechanism 

consisting of two stages and is designed to optimize the setting 

of highway charging stations during peak charging periods. Yu 

and Chang [31] proposed a method to suppress excessive 

common mode voltage at the output of PMSM for new energy 

vehicles operating on high-voltage platforms. This voltage is 

likely to cause electromagnetic interference with other 

electronic devices. While minimizing the common-mode 

voltage suppression to virtually zero, the control is simplified 

through vector selection optimization. Users of EVs are guided 

through the charging selection process in the second stage, 

which is determined by a constant capacity. By utilizing model 

predictive current control on the inverter circuit of four legs.  

Zhou et al. [32] proposed a pragmatic framework for 

determining the location of photovoltaic charging stations 

(PVCS) by combining geographic information system (GIS) 

techniques with MCDM methodologies. Numerous factors 

must be thoughtfully considered to increase the number of 

people who purchase EVs, including installing charging 

stations. Guler and Yomralioglu [33] established a system 

combining MCDM and Geographic Information System (GIS) 

methodologies to discover the best places for EV charging 

stations. In the context of EV charging station location 

selection, Ghosh et al. [34] examined the application of 

hexagonal fuzzy MCDM. A novel MCDM approach was 

introduced by Feng et al. [35] to ascertain the most 

environmentally sustainable location for an EV charging 

station. Additionally, other emerging or rapidly expanding 

economies can utilize the proposed evaluation criteria and 

method. Innumerable research studies emphasize the absence 

of charging station data required to develop realistic models. 

Awasthi et al. [36] investigated the use of fuzzy TOPSIS, 

fuzzy VIKOR, and fuzzy GRA, three ideal solution-based 

MCDM methodologies, to assess the sustainability of urban 

mobility programs. In their study, Gholinejad et al. [37] 

introduced a sophisticated charging methodology for off-

board EV devices utilized in home-energy hub (HEH) 

scenarios when coupled with DC power sources like battery 

storage and photovoltaic systems. A comprehensive model 

was developed by Lu et al. [38] to estimate the energy 

consumption of EVs. An extensive examination was 

conducted by the authors into the effects of traffic flow on 

driving resistances and motor efficacy. Wei et al. [39] 

modified an advanced deep reinforcement learning (DRL) 

framework to propose an online battery anti-aging energy 

management approach for the energy-transportation nexus. 

Bongiovanni et al. [40] suggested an updated machine learning 

(ML) approach that utilizes the differential search optimized 

random forest regression (RFR) algorithm to precisely and 

robustly determine the state of charge (SOC) of EV batteries. 

Lipu et al. [41] offered regulatory options for recycling retired 

EV batteries. A bottom-up, technology-rich model was 

devised by Lin et al. [42] to assess the overall cost of 

ownership (TCO), performance, and economy of battery 

electric vehicles (BEVs). This study underscores the criticality 

of developing BEVs with exceptionally extended driving 

ranges. Liu et al. [43] determined the most appropriate number 

of charging stations and EV costs for each scenario. Utilizing 

the MCDM method, Wang et al. [44] introduced a paradigm 

for the sustainable supplier selection of batteries for BSS. The 

criteria weights are concurrently established by implementing 

the Maximizing Deviation technique. 

 

 

2.1 Electric vehicle motors 

 

Climate change's critical consequences and the imperative 

to mitigate carbon emissions propel the global transition 

towards sustainable transportation. In this regard, EV 

propulsion systems play a pivotal role. The progressions in 

automotive technology since the early 19th century can be 

ascribed to the revolutionary contributions of scientists 

exploring electromagnetic phenomena, including Nikola Tesla 

and Michael Faraday [45]. An increased focus on electric 

propulsion emerged at the turn of the 21st century, spurred by 

concerns over dependence on fossil fuels, environmental 

degradation, and the need to diversify energy sources. The 

operating mechanism of EV motors relies on electromagnetic 

induction to convert electrical energy stored in batteries to 

mechanical energy. The predominant motor types within the 

domain of EVs are BLDC and IM. BLDC motors have gained 

significant recognition due to their exceptional efficiency, 

reliability, and reduced maintenance needs compared to 

alternative motor varieties. By minimizing wear and strain, the 

lack of brushes in these motors effectively prolongs their 

operational lifespan [46]. EV propulsion motors are at the 

forefront of environmentally sustainable vehicle propulsion 

technology and signify a significant paradigm shift within the 

automotive sector. Unlike conventional internal combustion 

engines, EV motors operate via electromagnetic induction. 

This mechanism transforms electrical energy in the vehicle's 

batteries into rotational motion [47].  

 

2.1.1 Permanent magnet synchronous motors (PMSM) 

PMSM is frequently employed in EVs owing to their 
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manifold advantages. Due to their exceptional power density 

and efficiency, these motors are ideally suited for EV traction 

applications. PMSM leverage permanent magnets housed 

within their rotors to produce a robust magnetic field and 

facilitate efficient power conversion. This configuration 

facilitates increased torque generation and overall motor 

efficiency [48]. 

PMSM has higher efficiency, which reduces EV energy 

utilization and increases driving range, which is one of their 

primary advantages. Furthermore, their reduced dimensions 

and light weight contribute to an increased power density, 

facilitating enhanced acceleration and overall performance. 

Nonetheless, PMSM is not without its limitations. Permanent 

magnets can be comparatively expensive, which impacts the 

motor's total cost. In addition, temperature fluctuations can 

impact PMSM's performance, necessitating effective thermal 

management systems to guarantee optimal operation. PMSM 

is currently engaged in continuous research and development 

efforts to enhance its performance and cost-effectiveness to 

overcome these limitations. The aforementioned comprise 

advancements in thermal management techniques, motor 

control algorithms, and magnet materials [49]. 

 

Synchronous Speed (Ns) =
120𝑓

𝑃
 (1) 

 

where, P represents the number of poles, f is the electrical 

frequency of the system in Hertz (Hz), and Ns represents the 

synchronous speed in revolutions per minute (RPM). 

 

2.1.2 Induction motors (IM) 

Due to their low cost and dependability, IMs, known as 

asynchronous motors, are utilized in various industrial and 

commercial applications. These motors generate torque by 

interacting with a rotating magnetic field in the stator and the 

rotor. Durability is a key advantage of IMs, enabling them to 

operate effectively in hostile environments. Additionally, their 

design is relatively uncomplicated, necessitating only a 

minimal amount of maintenance compared to alternative 

motor varieties [50]. 

However, IMs have some limitations. They generally have 

lower efficiency than permanent magnet motors, resulting in 

higher energy consumption and operating costs. Additionally, 

IMs have poor starting torque, which can be a drawback in 

certain applications. They also tend to have a lagging power 

factor, leading to lower power quality and potential issues with 

power distribution systems. To address these limitations, 

ongoing research efforts focus on improving IMs' efficiency 

and power density [51]. This includes advancements in 

materials, such as using amorphous alloys to reduce losses and 

improve motor performance. Design strategies and control 

algorithms are also being developed to improve motor 

performance and energy economy. IM provides cost-effective 

and dependable solutions for a variety of applications. 

Induction motors have constraints regarding efficiency, 

starting torque, and power factor, but continuing research and 

development efforts attempt to overcome these problems and 

increase their performance [52]. 

 

Slip (s) =
𝑁𝑠 − 𝑁

𝑁𝑠

 (2) 

 

where, N represents the actual rotor speed, while Ns denotes 

the synchronous speed. 

2.1.3 Permanent magnet brushless DC (PMBLDC) 

PMBLDC motors are a subtype of electric motors in which 

the rotor is composed of permanent magnets instead of 

electromagnets. The motors possess many advantages, such as 

optimal performance, minimal upkeep, compact dimensions, 

silent functioning, and dependability. PMBLDC motors 

achieve rapid dynamic performance and enhanced efficiency 

by using permanent magnets. They are utilized extensively in 

numerous contexts, such as vehicles, EVs, robotics, 

automation, and power generation on aircraft and ships [53]. 

Since regulating the winding currents of PMBLDC motors 

necessitates rotor-position sensing, sensor-less control 

strategies are frequently implemented. The selection of 

permanent magnet materials, including Nd-Fe-B rare earth 

magnets, is application-specific and contingent upon the 

intended energy density. The current investigation aims to 

enhance the efficiency and economic viability of PMBLDC 

motors by employing advancements in control algorithms, 

construction methodologies, materials, and additional aspects 

[54]. 

 

2.1.4 Switched reluctance motors (SRMs) 

Utilizing magnetic reluctance as their driving force, SRMs 

are electric motors. SRMs have salient poles on the rotor and 

stator but lack windings or magnets, in contrast to 

conventional motors, which employ permanent magnets or 

electromagnets on the rotor and stator. Motivated by magnetic 

attraction and repulsion, the energized rotor generates torque 

as its salient poles align with those of the stator [55]. 

The fundamental advantages of SRMs are their simple and 

strong design, making them cost-effective and reliable. They 

require fewer components because of their intrinsic simplicity, 

making production and maintenance easier. Furthermore, 

SRMs can survive difficult working conditions and tolerate 

high temperatures, making them useful for various 

applications, including EVs, industrial motors, and appliances 

[56]. SRMs have advantages, including high torque density, a 

broad speed range, and increased efficiency under partial 

loads. Their speed and torque control may be performed by 

properly switching the stator phases, providing versatility in 

various applications. Furthermore, the absence of rotor 

windings and magnets decreases the possibility of 

demagnetization, adding to the motor's long-term reliability 

[57]. 

 

Torque Equation (T) =
1

2

𝐿𝑑 − 𝐿𝑞

𝐿𝑑𝐿𝑞

𝑖2 (3) 

 

where, T is the torque, Ld and Lq are the direct and quadrature 

inductances, and i is the current. 

 

2.1.5 Direct current (DC) motors 

DC motors are electrical devices utilized to transform 

electrical energy into mechanical energy. These entities are 

widely utilized across various domains due to their simplicity, 

dependability, and capacity for regulation. DC motors function 

according to the Lorentz force principle, which posits that the 

presence of a magnetic field induces force on a current-

carrying conductor. Although there are numerous types of DC 

motors, the two most prevalent are: 

 

Brushed DC motors 

At specific locations, the commutator, which is a rotary 

switch, reverses the direction of current in the coils when 
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connected to the rotor (armature) of a brushed DC motor. 

Carbon brushes influence rotor rotation by establishing 

physical contact with the commutator and allowing current to 

flow through the coils, generating a magnetic field that 

interacts with the stator's magnetic field. Due to brush wear 

and tear, regular maintenance is required for brushed DC 

motors, notwithstanding their affordability and simplicity 

[58]. 

 

Back EMF (E) = 𝐾𝜔 (4) 

 

where, ω represents the angular velocity, K denotes the motor 

constant, and E signifies the reverse electromotive force. 

 

Brushless DC motors (BLDC) 

BLDC motors have gained favor over brushed DC motors 

due to their higher efficiency and lower maintenance 

requirements. They don't use brushes or commutators. Instead, 

they use a permanent magnet rotor and a stator with 

electronically controlled coils. The current in the coils is 

switched electronically via a controller, which affects the 

motor's rotation. BLDC motors are widely utilized in various 

applications, including consumer electronics and EVs. DC 

motors originate in various dimensions and designs, and their 

performance may be regulated by varying the voltage applied 

to the motor. Lower voltage usually results in slower speeds 

and reduced torque, whereas higher voltage delivers higher 

speeds and greater torque [59]. 

 

Back EMF (E) = 𝐾𝑏𝜔 (5) 

 

Motor equation 

 

𝑉 = 𝐼𝑎𝑅𝑎 +E (6) 

 

where, V is the applied voltage, Ia is the armature current, Ra 

is the armature resistance, E is the back electromotive force, K 

is the motor constant, and ω is the angular velocity. Kb is the 

back EMF constant. 

 

 

3. METHODOLOGY 

 

Established in the middle of the 20th century, MCDM is a 

multidisciplinary domain originating in operations research 

and decision analysis. It tackles decision problems that involve 

the consideration of multiple criteria, frequently with 

competing priorities. Herbert A. Simon and Ronald A. 

Howard, among others, contributed significantly to its 

foundational concepts. Common approaches in MCDM 

include ELECTRE and TOPSIS [60, 61]. 

 

 
 

Figure 2. Flowchart of methodology 

 

On the other hand, ELECTRE prioritizes the outranking of 

alternatives. In contrast, TOPSIS evaluates alternatives 

according to their proximity to an ideal solution, as opposed to 

AHP's hierarchical approach to problem organization. Fuzzy 

logic is employed to reduce uncertainties, whereas Data 

Envelopment Analysis (DEA) is utilized to assess the 

performance of decision-making appliances. Contemporary 

progressions in computational techniques and Artificial 

Intelligence (AI) have significantly broadened the 

functionalities of MCDM, furnishing decision-makers with 

sophisticated instruments to navigate intricate, multifaceted 

dilemmas in various domains, including business, 

engineering, and environmental management. Maintaining its 

status as a dynamic and developing field, MCDM is essential 

for traversing the complexities of decision landscapes in an 

ever more complex world [62]. Figure 2 shows the 

methodology flow chart of different MCDM techniques 

implemented in this article and other important parameters. 

The significance of MCDM resides in its capacity to 

methodically tackle decision-making scenarios that involve 

numerous, frequently contradictory objectives. By employing 

decision matrices and methodologies such as AHP, TOPSIS, 

and ELECTRE, decision-makers can navigate the intricacies 

of assessing alternatives based on various criteria using a 
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structured approach. Fuzzy logic is a method that can be 

applied to real-world decision problems to account for 

uncertainties, and recognizing the intrinsic ambiguity of 

preferences. Furthermore, the integration of DEA enables the 

evaluation of efficacy in the management of numerous 

decision-making entities [63]. Incorporating sophisticated AI 

and advanced computational methods signifies the ongoing 

development of MCDM, which facilitates the implementation 

of more sophisticated analyses and adaptive decision support 

systems. This interdisciplinary domain has become essential 

in contemporary decision-making procedures, as it offers a 

structured approach to tackle the intricate difficulties 

presented by conflicting goals and unpredictable contexts. In 

an increasingly linked and complex global world, MCDM is a 

leading framework that enables industry-spanning decision-

makers to create well-informed and strategic judgements that 

harmonise with various, frequently competing objectives [64]. 

There are a few crucial phases or steps in the MCDM 

process for choosing appropriate electric motors for 

application in EVs with certain parameters that are included in 

this study, such as efficiency, power density, reliability, 

controllability, cost, and technical maturity. The AHP method 

has different steps for getting the results for selecting 

appropriate motors. In contrast, the SAW and TOPSIS are the 

MCDM techniques that are implemented for EV motors using 

the below steps [65]: 

Identification of criteria: The initial phase is establishing 

the essential criteria for selecting a suitable electric car motor. 

The criteria above may comprise motor horsepower, 

efficiency, cost, and mass. 

Assign weights to the criteria: Once the criteria have been 

defined, each criterion is weighted according to its relative 

value. Weights can be allotted in various ways, including 

pairwise comparison or expert judgment. 

Normalize the data: Normalization should be performed 

on the data for each criterion to ensure that they all fall on the 

same scale. Several approaches to accomplish this include 

min-max normalization and z-score normalization. 

Calculate the weighted score: To compute the weighted 

score for each motor, multiply the normalized value for each 

criterion by its associated weight and then sum the results. 

Rank the motors: Finally, the motors can be evaluated 

based on their weighted scores, and the motor with the greatest 

score is the most appropriate choice [66]. 

 

3.1 SAW method 

 

The most prevalent and uncomplicated MCDM method is 

weighted sum. Considering this attribute, the overall 

significance of the system must be equal to one. Every 

potential option is considered for a given attribute. The 

subsequent measurements employ this methodology: 

• Decide on the objective and have an understanding of the 

relevant evaluation criteria for this objective. 

• A choice matrix can be obtained from Eq. (1). Every row 

in this matrix represents a different option or alternative, 

which in this case is motors, and every column represents a 

different characteristic, which includes power density, 

efficiency, controllability, dependability, technological 

maturity, and cost [32]. As an outcome, an element Eij is 

utilized as an input from the decision matrix 'DM' [Eij; i = 1, 

2,..., the number of alternatives (n); j = 1,2,..., number of 

attributes (m)] [67]. 

 

DM=

[
 
 
 
 
 
E11 E12 _ _

E21 E22 _ _

_ _ _ _ _ _

𝐸i1 Ei2 _ _

_ _ _ _ _ _

En1 En2 _ _

  E1j _ _ E1m

  E2j _ _ E2m

  _ _ _ _ _ _

  Eij _ _ Eim

  _ _ _ _ _ _

  Enj _ _ Enm]
 
 
 
 
 

 (7) 

 

• In order to construct the normalized decision matrix, the 

linear normalization approach is utilized, NDMij, for 

favourable conditions (profit) and non-en. 

 

NDMij =
𝐸𝑖𝑗

𝑀𝑎𝑥 𝐸𝑖𝑗

 

For advantageous criteria, j = 1, 2, …, m 

(8) 

 

NDMij =
𝑀𝑖𝑛 𝐸𝑖𝑗

𝐸𝑖𝑗

 

For non-advantageous criteria, j = 1, 2, …, m 

(9) 

 

• Make your selection based on the relative importance of a 

multitude of objective criteria. Assign importance weights (wj) 

to attributes so that ∑wj = 1. The present investigation employs 

the Equal weights method to assign weights to attributes [68]. 

 

3.1.1 Equal weights method 

Eq. (10) calculates the weight of each attribute (m) by 

dividing 1 by the total amount of attributes (using the equal 

weight technique). 

 

wj = 1/m for j =1, 2,…, m (10) 

 

The result of multiplying each column aspect of NDMij by 

wj is the weighted and normalized matrix WZij. Eq. (11) 

displays the components of the weighted, normalized matrix 

WZij [69]. 

 

WZij=[wj𝑁𝐷Mij] (11) 

 

Eq. (12) gives an alternative composite performance score 

(CPS). 

 

𝐶𝑃𝑆𝑆𝐴𝑊 = ∑ 𝑊𝑍𝑖𝑗

𝑚

𝑗=1

 (12) 

 

The technique generates alternatives based on CPS value, 

identifying the most and least superior solutions [70]. 

 

3.2 TOPSIS method  

 

Throughout the 1980s, TOPSIS emerged as an MCDM 

methodology. When determining the optimal or negative ideal 

solution, TOPSIS selects the option that is the greatest 

Euclidean distance from either. A methodology for selecting 

the most effective motors for EVs is utilized in this 

investigation. The factors above comprise technological 

maturity, power density, efficiency, dependability, 

controllability, and cost [68]. 

Step 1: Calculate the normalised matrix and weighted 

normalized matrix 

Weighted Normalised Matrix and Normalised Matrix 

Calculations. Each value is normalized as follows: where n is 

the number of columns and m is the number of rows in the 
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dataset. While j varies along the columns, I fluctuate along the 

rows. 

 

�̅�𝑖𝑗 =
𝑋𝑖𝑗

√∑ 𝑋𝑖𝑗
2𝑛

𝑖=1

 
(13) 

 

𝑉𝑖𝑗 = �̅�𝑖𝑗 × 𝑊𝑗 (14) 

 

Step 2: Calculate the ideal best and ideal worst value 

The calculations to determine the ideal best and ideal worst 

values for our scenario are currently underway. The minimum 

allowable value and maximum acceptable value of the cost 

factor also referred to as criterion C1, are in opposition to 

being beneficial. Similar to how the minimum value represents 

the optimal worst-case scenario, the maximum value 

corresponds to the optimal best-case scenario concerning each 

Beneficial Criteria (C2, C3, C4, and C5). The ideal best and 

worst values must be determined to initiate the process. Here, 

it is necessary to ascertain the direction of the influence ('+' or 

'-'). The "+" impact denotes the condition that the minimum 

and maximum values of the column are ideal worst and ideal 

best, respectively. The "-" impact signifies the contrary [69]. 

Step 3: Calculate the Euclidean distance from the ideal best 

and ideal worst  

At this point, calculate the Euclidean distance between each 

row element and the ideal worst. The ideal best Euclidean 

distance for the ith row is Si
+, where Vi,j is the element value, 

and Vj
+ is the ideal worst for that column. Similarly, the worst 

Euclidian distance on the ith row is Si
-. Eq. (15) calculates the 

ideal best-case Euclidean distance, whereas Eq. (16) computes 

the ideal worst-case [70]. 

 

𝑆𝑖
+ = [∑ (𝑉𝐼𝐽 − 𝑉𝐽

+)
𝑀

𝑗=1

2

]

0.5

 (15) 

 

𝑆𝑖
− = [∑ (𝑉𝐼𝐽 − 𝑉𝐽

−)
2𝑀

𝑗=1
]

0.5

 (16) 

 

Step 4: Calculation of performance score and distribution 

of ranks 

The TOPSIS Score is computed. Let us compute the 

TOPSIS score for each row using the Euclidean distances for 

the Ideal Best and Ideal Worst cases, which are now in our 

possession. 
 

𝑃𝑖 =
𝑆𝑖

−

𝑆𝑖
+ + 𝑆𝑖

− (17) 

 

The alternatives are subsequently ranked following their 

relative proximity; the option receiving the highest 

recommendation is the one farthest from the anti-ideal solution 

and closest to the ideal solution [71]. 

 

3.3 Analytical hierarchy process (AHP)  

 

In 1980, Saaty introduced a practicable and resilient 

instrument designed to supervise quantitative and qualitative 

multi-criteria factors influencing the decision-making process. 

The AHP paradigm is constructed hierarchically. AHP is a 

highly inclusive system for evaluating judgments by 

considering multiple factors. Its distinctive feature is its belief 

in combining qualitative and quantitative parameters and its 

ability to facilitate hierarchical problem descriptions. To 

commence, the problem must be arranged hierarchically. 

Assigning a nominal value to each level of the hierarchy and 

constructing a matrix of pairwise comparison judgments 

comprise the second stage [72]. Figure 3 shows the hierarchal 

structure of AHP for motor selection. 

Utilizing a step-by-step process, the relative weights of 

criteria were determined. Those above are the stages 

comprised of AHP. 

Step 1: Determination of the issue about decision-making. 

Step 2: Establishment of the bilateral comparison matrix. 

Step 3: Construct the normalized matrix through 

calculation. 

Step 4: Establish the coefficient of weight for each criterion. 

Step 5: Determining the ratio of consistency. 

 

 
 

Figure 3. Model of motor selection in AHP 
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Table 1. Different scales used for the AHP analysis 

 
Intensity on Scale Based on 

Absolute Importance 
Definition Explanation 

1 Equally important Two criteria equally contribute to the objectives 

3 
Moderately important to one over 

another 

Experience and judgement strongly slightly favour one 

activity over another 

5 Strongly essential and important 
Experience and judgment clearly indicate a strong 

preference for one activity 

7 Very strongly important 
An activity is favoured heavily and its dominance is 

demonstrated in practice 

9 Extremely important 
The evidence supporting a particular course of action has 

the greatest degree of confirmation attainable 

2,4,6,8 
Intermediate values between the two 

adjacent values 
Prerequisites for compromise 

 

As shown in Table 1, each of these evaluations is designated 

a numerical value ranging from one to nine. The consistency 

of decisions executed in AHP is denoted by the consistency 

ratio (CR) [73]. The CR is calculated using the following 

formula: 

 

𝐶𝑅 =
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼)

𝑅𝑎𝑛𝑑𝑜𝑚 𝐼𝑛𝑑𝑒𝑥 (𝑅𝐼)
 (18) 

 

The N-order matrix is computed through the 

implementation of the given formula.  

 

𝐶𝐼 =
𝜆𝑀𝑎𝑥−𝑁

𝑁 − 1
 (19) 

 

In this context, λMax represents the highest eigenvalue, while 

N signifies the Random Index (RI) or criteria (CN) for the 

matrix order specified in Figure 4. When dealing with matrices 

of greater scale, a CR below 0.1 is considered acceptable. An 

evaluation is considered suitable and maintains an adequate 

level of consistency when the observed value is equal to or 

lower than the predetermined value [74]. 

 

 
 

Figure 4. RI values for matrix order preferences 

 

 

4. RESULTS AND DISCUSSION 

 

We employed an extensive array of decision-making 

methodologies in our comprehensive investigation into the 

optimal battery selection for EVs, recognizing the diverse 

characteristics of the parameters at play. By assigning criteria 

weights and calculating the mean of their outcomes, the SAW 

method enabled us to ascertain the overall desirability of each 

alternative. As an adjunct to AHP, the TOPSIS conducted a 

comparative analysis of various battery alternatives, 

identifying the greatest benefits. The AHP facilitated the 

systematic organization of the decision hierarchy by assigning 

relative importance to various factors. The capability above 

enabled a more thorough assessment of various aspects, 

including but not limited to environmental impact, cost, 

energy density, and lifespan. By integrating these disparate 

methodologies, we aimed to illustrate the complexities and 

trade-offs associated with the critical decision of motor 

selection for EVs. By utilizing this all-encompassing 

approach, stakeholders are guaranteed a rigorous evaluation 

procedure and are provided with a holistic comprehension of 

the optimal battery selections; this contributes to the 

advancement of electric mobility. 

 

Table 2. Assignment of weights in % 

 
Attributes C1 C2 C3 C4 C5 C6 

Weightage 16.67 16.67 16.67 16.67 16.67 16.67 

 

Table 2 shows the weight allocation, stated as a percentage, 

for the features or criteria (C-1 to C-6) in the decision-making 

process. The phrase "Weightage" in each row denotes the 

degree of relevance assigned to the relevant criterion. In this 

case, each criterion is allocated the same weight of 16.67%, 

indicating that decision-makers believe all factors have similar 

importance in influencing the ultimate decision. Employing 

the equal-weighting technique ensures that all factors are 

accorded equal weight in the decision-making process and that 

no single criterion is considered more significant than others. 

In this instance, the weightage allocated to each criterion is 

calculated to guarantee an impartial and symmetrical 

evaluation of its contribution to the comprehensive assessment 

of alternatives, including EV motors. The aggregate weighting 

assigned to each criterion is one hundred percent. The weight 

allocation is crucial for the final phases of the decision-making 

process, specifically when calculating the weighted scores for 

each alternative according to their performance in the 

Normalized Decision Matrix. 

 

4.1 Validation using SAW  

 

Table 3 describes the experimental setup in detail, including 

comparing four distinct types of EV motors: BLDC, IM, 

PMSM, and SRM. Each motor is evaluated based on six 

criteria: power density, controllability, efficiency, reliability, 

cost, and technological maturity. These criteria are rated on a 

scale from 1 to 5. The cumulative scores (ΣΣ Total) reflect 

overall achievement in various categories. The Induction 

Motor received the highest overall score of 27, signifying 

superior performance in this testing setting. The PMSM and 

SRM values are 25 and 23, respectively. The BLDC motor 

trails behind with a total score of 22. This comprehensive 

evaluation provides substantial insights into the benefits and 

drawbacks of each type of motor, allowing for well-informed 

judgments for specific EV applications depending on the 

prioritized qualities. 
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Table 3. Distribution of characteristics for 4 different EV motors 

 

Electric 

Motors/Parameters 

BLDC 

 

IM 

 

PMSM 

 

ARM 

 
Power density 2.5 3.5 5 3.5 

Controllability 5 5 4 3 

Efficiency 2.5 3.5 5 3.5 

Reliability 3 5 4 5 

Cost 4 5 3 4 

Technological maturity 5 5 4 4 

∑Total  22 27 25 23 

 

Using SAW to make motor selection decisions. The motor 

data and the four decision matrix characteristics are separated 

into four levels: low (1-2p), medium (2.5-3.5p), high (4p), and 

very high (4.5-5p). 

 

4.1.1 Different criteria 

a) Criteria 1: Power density (PD) 

An electric motor's power density (PD) is measured by 

dividing its power output (P) by its volume (V) or mass (M). 

The following equation can describe the density of motor 

power: 

 

𝑃𝐷 =
𝑃

𝑉
 (20) 

 

The motor's PD is denoted in watts per kilogram or per cubic 

meter. The variables denoted as P (power output in watts), V 

(volume in cubic meters), and M (mass in kilograms) represent 

the motor, where P represents power output and V represents 

volume. Power density is a critical parameter when assessing 

the effectiveness and efficacy of electric motors, particularly 

in applications where weight and space constraints are 

substantial, as in the case of portable devices and EVs. When 

volume or mass is insufficient to generate power, a motor with 

a higher power density can accomplish this, which is 

advantageous for applications where weight and size 

restrictions are of the utmost importance [75, 76]. 

b) Criteria 2: Efficiency (η) 

In the realm of electric motors, efficiency (η) denotes how 

the motor transforms electrical input power into mechanical 

output power with optimal effectiveness. This critical 

parameter is denoted as a percentage and is utilized to evaluate 

the performance of electric motors. The formula for 

calculating efficiency is: 

 

𝜂 =
𝑃𝑂𝑢𝑡𝑝𝑢𝑡

𝑃𝐼𝑛𝑝𝑢𝑡

 (21) 

 

η represents the motor's efficacy. The power supply to the 

motor is denoted by PInput and POutput, both measured in watts 

[77]. Efficiency is critical when choosing electric motors, 

particularly for energy-conserving applications such as 

industrial apparatus, appliances, and EVs. An increased 

efficacy of a motor results in decreased electrical energy 

consumption and waste heat generation, promoting overall 

energy conservation and mitigating environmental harm. 

c) Criteria 3: Controllability (C) 

In the context of electric motors, the term "controllability" 

refers to the ease and accuracy with which the behavior of the 

motor may be changed and controlled by the user. It covers 

various topics, including the motor's responsiveness to control 

inputs, dynamic properties, and the system's overall 

controllability. Although controllability is frequently a 

qualitative feature, several quantitative measurements can be 

considered in various applications. The degree to which a 

motor reacts to control signals, such as input voltage or 

current, is an important aspect of its degree of controllability. 

The motor's dynamic response to changes in control signals is 

referred to as its dynamic behavior, and it plays an important 

part in the controllability of the system. The equations that 

govern the dynamic behavior of the motor can be fairly 

complex. Differential equations are often used to represent 

these equations since they reflect the relationship between 

input and output over time [47].  

d) Criteria 4: Reliability (R) 

In the context of electric motors and systems, "reliability" 

refers to the motor's ability to perform its intended function 

consistently and predictably over a given period and in line 

with a set of predetermined operating parameters. It is critical 

to consider when considering a motor's performance and 

suitability for a specific application. In the context of electric 

motors, dependability is often characterized by the device's 

longevity and the frequency with which operational 

breakdowns occur [78]. It can be influenced by factors like 

Mean Time Between Failures (MTBF) and failure rate. 

External factors such as MTBF and failure rate may impact it. 

The MTBF metric is frequently employed to quantify 

reliability. It signifies the mean duration of operation for 

which a motor fails. An increased MTBF signifies enhanced 

dependability [79]. 

 

𝑀𝑇𝐵𝐹 =
𝑇𝑂𝑇𝐴𝐿𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠
 (22) 

 

e) Criteria 5: Technological (T) 

The technological component may include innovative 

manufacturing processes, sophisticated materials, or novel 

designs, among other elements, contingent on the specific 

context. A particular equation about technological aspects 

might lack universal applicability [80]. 

f) Criteria 6: Cost (C) 

The cost can be represented as: 

 

𝐶 = 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙 + 𝐶𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙  (23) 

 

where, C is the overall cost, CInitial is the initial cost of the 

motor, COperational is the operational cost over the motor's 

lifecycle. 
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It is crucial to acknowledge that the following equations 

have been simplified and may necessitate modification in 

accordance with the unique specifications and attributes of the 

electric motor selection procedure in your specific application. 

In addition to mathematical equations, qualitative factors such 

as dependability, controllability, and technological aspects 

frequently necessitate a comprehensive evaluation [81]. 

The decision matrix utilized to assess four distinct EV 

motors (Motor 1, Motor 2, Motor 3, and Motor 4) using six 

criteria denoted as C1 through C6 is presented in Table 4. The 

performance scores assigned to each motor are denoted by the 

numerical values in each cell for the corresponding criterion. 

A greater score signifies superior performance. Technological 

maturity (C6), power density (C1), controllability (C2), 

efficiency (C3), dependability (C4), and cost (C5) are the 

criteria. Motor 2 exhibits remarkable performance across the 

board, emphasizing efficiency, controllability, and 

technological advancement significantly. Motor 3 performs 

admirably, nevertheless, concerning power density and 

dependability. The Decision Matrix presents an all-

encompassing graphical depiction of the performance of each 

motor concerning the predetermined criteria. This process 

enables a thorough assessment and allows decision-makers to 

choose the most suitable vehicle for a specific purpose, 

considering their individual goals and preferences. 

Table 5 presents the Normalized Decision Matrix, a 

derivative of the original Decision Matrix. The purpose of 

generating this matrix is to ensure a uniform collection of 

scores that can be exploited to evaluate and equate the 

performance of four different EV motors (Motor 1, Motor 2, 

Motor 3, and Motor 4) concerning six criteria (C1 through C6). 

The normalization process involves dividing every score in the 

Decision Matrix by the column containing the highest value. 

The data are rescaled to a range of 0 to 1 during the 

normalization process; the greatest score achieved for each 

criterion is denoted by 1. Motor 1, with a normalized Power 

Density (C-1), demonstrates the maximum power density 

among the evaluated motors, as its score is 1. Utilizing the 

Normalized Decision Matrix enhances the fairness of the 

comparison by emphasizing the comparative merits and 

demerits of each vehicle according to the predetermined 

criteria while preventing any influence from the scale or range 

of the initial scores. The standardized representation of EV 

motor performance facilitates the comprehension and 

comparison of various motors' performance by decision-

makers, thereby aiding them in identifying the most 

appropriate solution in accordance with their specific 

priorities. 

 

Table 4. Decision matrix for 4 different EV motors 

 
Alternatives C1 C2 C3 C4 C5 C6 

Motor 1 2.5 2.5 5 3 5 4 

Motor 2 3.5 3.5 5 5 5 5 

Motor 3 5 5 4 4 4 3 

Motor 4 3.5 3.5 3 5 4 4 

 

Table 5. Normalized decision matrix 

 
Alternatives C1 C2 C3 C4 C5 C6 

Motor 1 1 0.5 1 0.6 1 0.8 

Motor 2 0.7142 0.7 1 1 1 1 

Motor 3 0.5 1 0.8 0.8 0.8 0.6 

Motor 4 0.7142 0.7 0.6 1 0.8 0.8 

 

An indispensable element of the MCDM procedure, Table 

6 is also referred to as the Weighted Normalised Matrix. In 

order to generate the weighted scores for the specified criteria 

(C1 to C6), the normalized performance ratings from the 

Normalised Decision Matrix are integrated with the weights 

assigned to each criterion for each alternative (in this case, EV 

motors). Multiplying each designated weight for a given 

criterion by its corresponding standardized score yields the 

calculation. The Power Density (C1) weighted score is 

computed in Motor 1 through the multiplication of the 

designated weight (16.67%) by the normalized score (0.1667). 

Iteratively applying the procedure to each criterion generates 

a set of weighted scores to illustrate each criterion's relative 

importance in the decision-making process. Motor 2, Motor 3, 

and Motor 4 each utilize the same methodology. The Weighted 

Normalized Matrix is an essential instrument when assessing 

the comprehensive performance of each alternative using the 

designated criteria and weights. The results facilitate a 

definitive assessment of how each EV motor corresponds with 

the decision-maker's preferences. A comprehensive and 

informed decision-making process is guaranteed through a 

systematic approach that considers both the ascribed 

significance of each criterion and the standardized 

performance. 

 

Table 6. Weighted normalized matrix 

 
Alternatives C1 C2 C3 C4 C5 C6 

Motor 1 0.1667 0.083 0.1667 0.1 0.1667 0.1333 

Motor 2 0.119 0.1166 0.1667 0.1667 0.1667 0.1667 

Motor 3 0.083 0.1667 0.1333 0.1333 0.1333 0.1 

Motor 4 0.119 0.1166 0.1 0.1667 0.1333 0.1333 

 

Table 7. The CPS and alternative ranking in descending 

order 

 

Rank 
SAW 

Alternative CPS 

1 Motor 1 0.8164 

2 Motor 4 0.7689 

3 Motor 3 0.7496 

4 Motor 2 0.7357 

 

 
 

Figure 5. Plot for the CPS 

 

The final outcomes of the decision-making process utilizing 

the SAW method are presented in Table 7. The rank 

distribution for these outcomes is illustrated in Figure 5. In 

terms of CPS, the various EV motors (Motor 1, Motor 2, 

Motor 3, and Motor 4) are presented in descending sequence. 

Motor 1 has the greatest rank, with a CPS score of 0.8164, 
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indicating the best overall performance compared to the other 

criteria under consideration. Motor 4 is close behind Motor 1, 

ranking second with a CPS rating of 0.7689, showing solid 

performance but somewhat lower than Motor 1. Motor 3 is 

rated third with a CPS (cycles per second) value of 0.7496, and 

Motor 2 is ranked fourth with the lowest CPS value of 0.7357. 

The ranking order provides a distinct and prioritized 

comprehension of the performance of EV motors to decision-

makers. This assists in determining which option is most 

suitable given the predetermined criteria and their respective 

weights. 

 

4.2 Validation using TOPSIS 

 

Before selecting motors, the following criteria are utilized 

to generate the decision matrix, to which weights are 

subsequently assigned according to their significance. Table 8 

presents the weights assigned to various criteria.  

Table 9 looks to be a decision matrix utilized in the TOPSIS 

method, which is a way for making multi-criteria decisions. In 

this matrix, the rows represent several alternatives (Motor 1 to 

Motor 4), and the columns reflect various criteria (C1 to C6) 

used to evaluate these alternatives. Each cell's values represent 

a single alternative's performance or score in relation to a 

certain criterion. For example, Motor 1 has scores of 4, 5, 4, 5, 

5, and 3 for criteria C1 through C6. The bottom row labeled 

"Sum" shows the aggregated performance of all alternatives 

across each criterion. Subsequent computations in the TOPSIS 

method are determined using these aggregates as input. These 

computations consist of normalization, identification of 

positive and negative ideal solutions, computation of the 

approach to the ideal solution, and weighted normalized 

decision matrix determination. In conclusion, proximity 

ratings assist in evaluating alternatives according to their 

comprehensive performance across the specified criteria. 

 

Table 8. Assigning the weights for different criteria 

 
Criteria C1 C2 C3 C4 C5 C6 

Weights 0.4 0.2 0.3 0.1 0.2 0.2 

 

Table 9. Decision matrix TOPSIS 

 
Attributes C1 C2 C3 C4 C5 C6 

Motor 1 4 5 4 5 5 3 

Motor 2 3 4 5 4 3 5 

Motor 3 2 3 5 4 4 2 

Motor 4 2 2 3 3 2 4 

Sum 5.744 7.348 8.660 8.124 7.348 7.348 

 

Table 10 depicts the normalized choice matrix using the 

TOPSIS technique. Each column in this matrix contains a 

normalized score for a particular alternative (Motor 1 to Motor 

4) in relation to a certain criterion (C1 to C6). Normalization 

is an important stage in TOPSIS because it guarantees that the 

scores from various criteria are uniform, allowing for a fair 

comparison. Higher normalized scores indicate better 

performance. For example, Motor 1 normalized scores across 

criteria vary from 0.369 to 0.696, indicating its performance 

on a scale of 0 to 1. 

Similarly, the normalized scores for Motor 2, Motor 3, and 

Motor 4 are displayed. The normalized values are utilized as 

the basis for subsequent procedures in TOPSIS, culminating 

in ranking alternatives according to their overall performance 

across the specified criteria. This includes the weighted 

normalized decision matrix computation and identifying 

positive and negative ideal solutions. 

 

Table 10. Normalized decision matrix 

 
Attributes C1 C2 C3 C4 C5 C6 

Motor 1 0.696 0.680 0.461 0.615 0.615 0.369 

Motor 2 0.522 0.544 0.577 0.492 0.369 0.615 

Motor 3 0.348 0.408 0.577 0.492 0.492 0.246 

Motor 4 0.348 0.272 0.346 0.369 0.246 0.492 

 

Table 11 shows the weighted normalized choice matrix, an 

important intermediate step in the TOPSIS technique. Each 

cell in this matrix represents an alternative (Motor 1 to Motor 

4) or criterion (C1 to C6). The values in the table are calculated 

by multiplying the normalized scores from the previous step 

by the weights allocated to each criterion. These weights 

indicate the relative importance of each criterion in the 

decision-making process. The positive and negative ideal 

solutions, denoted in the bottom rows as "V+" and "V-", were 

obtained by locating the highest and lowest values for each 

criterion across all possible outcomes. A positive ideal 

solution represents optimal efficiency, whereas a negative 

ideal solution represents the bare minimum of performance. 

These solutions are utilized during the final phases of TOPSIS 

when the distances between the beneficial and detrimental 

ideal solutions are calculated in order to determine the 

alternatives by their proximity to the ideal solution. 

Table 12 shows the TOPSIS technique results, summarising 

the calculated performance scores for each alternative (Motor 

1 to Motor 4). The columns "Si+" and "Si-" show the distances 

between each alternative and the positive (ideal) and negative 

(anti-ideal) solutions, respectively. The Si+ values represent 

the proximity of an option to the positive ideal solution, with 

lower values indicating greater performance. In contrast, Si- 

values are near the negative ideal solution, with greater values 

indicating worse performance. The final column, 

"Performance Score (PI)," is calculated by comparing Si- to 

the total of Si+ and Si-, yielding an overall performance score. 

Following this, the alternatives are assessed based on their PI 

values, where lesser scores indicate superior performance 

compared to the ideal options. Motor 1 is the most favorable 

option in this context due to its superior performance score of 

0.609. Motor 2, Motor 3, and Motor 4 follow in decreasing 

performance order. The TOPSIS-based rank allocation of 

motors is depicted in Figure 6. 

 

Table 11. Weighted normalized decision matrix 

 
Attributes C1 C2 C3 C4 C5 C6 

Motor 1 0.278 0.136 0.138 0.061 0.061 0.036 

Motor 2 0.208 0.108 0.173 0.049 0.036 0.061 

Motor 3 0.139 0.081 0.173 0.049 0.049 0.024 

Motor 4 0.139 0.054 0.103 0.036 0.024 0.049 

V+ 0.278 0.054 0.173 0.036 0.061 0.061 

V- 0.139 0.136 0.103 0.061 0.024 0.024 

 

Table 12. Ideal maximum and ideal minimum Euclidean 

distances 

 
Attributes (Si

+) (Si
-) Performance Score (PI) 

Motor 1 0.092 0.143 0.609 

Motor 2 0.089 0.102 0.534 

Motor 3 0.142 0.088 0.384 

Motor 4 0.155 0.085 0.35418 

 

1836



 

 
 

Figure 6. Rank allocation based on performance score 

 

4.3 Validation using AHP 

 

A pairwise comparison matrix delineating the relative 

importance of six criteria (C1 through C6) in a decision-

making scenario is presented in Table 13. Every individual 

element within the matrix represents the degree of preference 

that one criterion has over another. As an illustration, a score 

of 5.0 signifies that C2 is five times more critical in importance 

than C1. The diagonal elements, denoted as C1 versus C1, 

each possess a value of 1.00, indicating that each criterion is 

equally important in and of itself. The aggregate significance 

of each criterion is quantified by the sum of the values in each 

column; greater sums denote greater significance. With a sum 

of 20.00, C2 has the highest total sum in this matrix; therefore, 

it is considered the most essential criterion. Pairwise 

comparisons are fundamental elements of methodologies such 

as the AHP, which encompasses a systematic approach to 

decision-making through capturing and quantifying subjective 

assessments regarding the relevance of criteria. 

The normalized values of pairwise comparisons for six 

criteria (C1 to C6) are included in the standardized matrix 

shown in Table 14. The relative importance of each criterion 

is represented in this matrix in a standardized and comparable 

fashion. The proportionate significance assigned to each 

criterion relative to the others is denoted by the scaled values 

of the matrix, which range from 0 to 1. For example, greater 

significance is denoted by an increased value. The percentages 

of weight placed on each criterion represent how much it 

influences the overall decision-making process. C6 holds the 

most conspicuous position in this representation, weighing 

35.3%. C1, in turn, is positioned at a distance of 26.1%. By 

enabling a consistent evaluation of criteria, standardization 

improves understanding of the relative importance of each 

criterion in the context of the given decision and streamlines 

the decision-making procedure. 

Table 15 appears to be related to the AHP, which is often 

used for decision-making with numerous criteria. Each row of 

the matrix, from C1 to C6, has normalized scores indicating 

the relative relevance of one criterion vs another. The "SUM" 

column averages the numbers in each criterion's column to 

provide an overall relevance assessment. The following 

column, "SUM/Weight," shows the average relevance of each 

criterion. The eigenvalue (λMax) of 0.07 is the major 

eigenvector's biggest eigenvalue. 

Regarding consistency, the CI is reported as -1.18, while the 

CR is given as -0.95. It is vital to note that the CR value for 

larger matrices is normally less than 0.1 to maintain a fair level 

of consistency in the decision-making process. The negative 

values for CI and CR may be unorthodox; nonetheless, the 

major aim is normally to ensure the CR remains below 0.1 for 

dependable outcomes. In Figure 7, according to the weights, a 

decision is formed that Criteria (C6) Cost is the most important 

in the current market scenario, followed by Criteria (C1), 

Criteria (C5), Criteria (C3), Criteria (C4) and last Criteria (C2) 

at least priority. But in terms of EV parameters, all these 

criteria are equally important for the motor selection. 

 

Table 13. Pairwise comparison matrix 

 
Criteria 

Description C1 C2 C3 C4 C5 C6 

C1 1.00 5.00 3.00 4.00 2.00 0.50 

C2 0.20 1.00 0.50 0.33 0.25 0.20 

C3 0.33 2.00 1.00 2.00 1.00 0.33 

C4 0.25 3.00 0.50 1.00 0.50 0.25 

C5 0.50 4.00 1.00 2.00 1.00 0.33 

C6 2.00 5.00 3.00 4.00 3.00 1.00 

Total ∑ 4.28 20.00 9.00 13.33 7.75 2.62 

 

Table 14. Standardized matrix  
 

Criteria C1 C2 C3 C4 C5 C6 Weightage (%) 

C1 0.23 0.25 0.33 0.30 0.26 0.19 26.1% 

C2 0.05 0.05 0.06 0.03 0.03 0.08 4.8% 

C3 0.08 0.10 0.11 0.15 0.13 0.13 11.6% 

C4 0.06 0.15 0.06 0.08 0.06 0.10 8.3% 

C5 0.12 0.20 0.11 0.15 0.13 0.13 13.9% 

C6 0.47 0.25 0.33 0.30 0.39 0.38 35.3% 
 

Table 15. Worksheet of CI and CR values 
 

Criteria C1 C2 C3 C4 C5 C6 SUM SUM/Weight 

C1 0.26 0.24 0.35 0.33 0.28 0.18 2.65 1.10 

C2 0.05 0.05 0.06 0.03 0.03 0.07 0.29 0.06 

C3 0.09 0.10 0.12 0.17 0.14 0.12 0.65 0.05 

C4 0.07 0.14 0.06 0.08 0.07 0.09 0.58 0.06 

C5 0.13 0.19 0.12 0.17 0.14 0.12 1.14 0.08 

C6 0.52 0.24 0.35 0.33 0.42 0.35 2.21 0.06 

λMax 0.07 

C.I -1.18 

C.R. -0.95 
Note: The consistency ratio value is acceptable below 0.1 for the larger matrices 
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Figure 7. Weights of criteria 

 

 

5. MCDM TECHNIQUES LIMITATIONS 

 

SAW, TOPSIS, and AHP are effective MCDM strategies 

for supporting complicated scenario decision-making. 

However, like any other approach, they have a set of limits. 

One key disadvantage of these systems is that they are prone 

to the initial subjective judgments provided by the individuals 

making the decisions [82]. Pairwise comparisons in AHP, for 

example, necessitate those participants designate numerical 

values to the relative importance of alternatives and criteria, 

which can be difficult due to ignorance or personal biases. The 

precision of the ultimate determination is substantially 

contingent upon the caliber and uniformity of these 

assessments. Likewise, within SAW and TOPSIS, the 

determination of weights and the normalization process entail 

subjective judgments, and even minor discrepancies in these 

parameters can result in notably distinct conclusions [83]. An 

additional significant limitation pertains to the presumption of 

autonomous criteria, which might not consistently hold when 

confronted with true-life dilemmas. Criteria can occasionally 

be interconnected, so alterations to one criterion may influence 

others. Frequently, MCDM approaches operate under the 

assumption that the criteria are autonomous from each other. 

This supposition can lead to the abandonment of intricate 

interrelationships that possess the capacity to impact the 

decision-making process [84]. Such oversimplification may 

result in less-than-ideal consequences, particularly when 

applied to dynamic and complex environments. 

Furthermore, the computing complexity of these methods 

may limit their effectiveness. The computation of eigenvectors 

and eigenvalues in AHP is a computationally costly procedure, 

especially when dealing with large decision matrices. 

Furthermore, SAW and TOPSIS necessitate many 

mathematical computations, which become increasingly 

difficult as the number of choices and criteria analyzed grows. 

This may provide a pragmatic problem when presented with 

enormous datasets or the necessity for quick decision-making 

[85, 86]. 

Additionally, these methods are constrained by the 

assumption of linearity. The assumptions made by SAW, 

TOPSIS, and AHP generally posit linear associations between 

criteria and alternatives. Although this simplification 

contributes to improved computational efficiency, it might not 

faithfully depict the intricacies of real-life decision scenarios, 

which frequently involve non-linear relationships. Inaccurate 

assessments may result from the inaccurate representation of 

decisions impacted by non-linear factors [87]. Moreover, 

MCDM techniques may encounter difficulties when 

encountering ambiguous or imprecise data. Numerous 

decision problems are inherently uncertain, and methods that 

rely on precise numerical inputs may fail to sufficiently 

account for the intrinsic vagueness or ambiguity in decision 

data. This constraint assumes particular significance in 

decision-making situations where data is limited, insufficient, 

or susceptible to substantial fluctuations. An additional 

obstacle emerges due to the possible lack of consistency in 

decision-maker preferences [88]. As an illustration, the CR is 

employed by AHP to evaluate the consistency of pairwise 

comparisons. However, achieving absolute consistency in 

practice proves challenging; decision-makers may 

inadvertently introduce inconsistencies into their assessments. 

The existence of these inconsistencies possesses the capacity 

to compromise the reliability of the decision model and erode 

the caliber of the results [89]. 

Moreover, it is common for these MCDM techniques to 

operate under the assumption that preferences remain constant 

over time, thereby disregarding the possibility of shifts in 

decision-makers preferences or the ever-changing 

characteristics of the decision environment [90]. Preferences 

are susceptible to change due to many factors, including 

external circumstances, newly acquired information, and 

organizational priorities. Neglecting to consider these ever-

changing elements may lead to decisions that are superseded 

or less under the present objectives of the organization. Ethical 

and social considerations are not explicitly integrated into the 

development of these methodologies. MCDM techniques 

emphasize quantitative factors and might not sufficiently 

consider ethical or qualitative considerations when making 

decisions [91]. For example, inadequate consideration of 

social and environmental consequences, cultural subtleties, 

and ethical ramifications of choices could result in omitting 

vital ethical aspects. 

In summary, although MCDM techniques such as SAW, 

TOPSIS, and AHP offer valuable decision support 

frameworks, their implementation is not devoid of constraints 

[92]. Critical drawbacks include sensitivity to subjective 

judgments, assumptions of independence and linearity, 

computational complexity, difficulties in managing 

uncertainty, and disregard for dynamic preferences. 

Professionals must acknowledge these constraints to employ 

these approaches prudently. They should augment them with 

qualitative observations and consistently improve and validate 

models to fortify their resilience across various decision-

making scenarios [93, 94]. 

 

5.1 Future recommendations 

 

MCDM is an exceptional approach for addressing complex 

decision-making problems involving numerous diametrically 

opposed criteria. The traditional MCDM approach referred to 

as the SAW method, rates alternatives according to the 

performance of criteria that are assigned weights. As society 

progresses, several suggestions can be put forth to enhance the 

effectiveness and practicality of the SAW methodology across 

diverse decision-making procedures [95]. In the first place, 

technological progress has enabled the integration of SAW 

with other nascent technologies, including AI and ML. This 

results in a multitude of benefits. SAW could become more 

dynamic and adaptable by incorporating predictive analytics 

into its design. This will allow decision-makers to react in real-

time to changing environmental conditions. Combining 

regular MCDM procedures with cutting-edge technologies can 

improve decision-making accuracy and efficiency. This is 

especially useful in firms requiring immediate flexibility to 

change market trends. 

Furthermore, resolving uncertainties and including risk 

management strategies, which include the SAW approach, are 
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critical to the future of MCDM [96]. Ambiguity & 

unpredictability are usually identified as defining aspects of 

the decision-making environments. Developing robust models 

that effectively manage uncertainty, unpredictability, and risk 

should be the primary objective of forthcoming SAW research 

and applications. To offer decision-makers a comprehensive 

comprehension of potential outcomes and their associated 

risks, this involves incorporating probabilistic methodologies, 

scenario analysis, and sensitivity analysis into the SAW 

framework. The SAW approach can be modified to 

incorporate ecological, social, and economic factors when 

environmental and sustainable decision-making is considered. 

Decision-makers require tools capable of conducting 

comprehensive analyses of the environmental, social, and 

economic repercussions of different alternatives, given the 

current global predicament, which includes the acceleration of 

climate change and the depletion of natural resources. 

Subsequent investigations should explore alternative 

methodologies for incorporating sustainability considerations 

into the SAW process. This facilitates decision-makers ability 

to make selections that align with enduring environmental and 

social goals [97]. 

Collaborative decision-making is an additional domain in 

which the SAW technique may encounter future expansion. 

Problems involving decision-making are frequently complex 

and involve many parties with varying interests. To optimize 

the advantages offered by this methodology, subsequent SAW 

implementations ought to explore alternative methods of 

engaging a diverse array of stakeholders in the deliberative 

procedure. This improves the judgments' validity and ensures 

that a broader range of perspectives and values are considered 

during the assessment process. Integrating SAW with other 

MCDM approaches is a potentially fruitful field for further 

study [98]. Hybrid models, which combine the benefits of 

many methodologies, can provide more robust and nuanced 

decision support. Researchers should look into how SAW can 

be efficiently combined with other methods like AHP, 

TOPSIS, and ELECTRE to create hybrid models that benefit 

from the advantages of each methodology. Creating user-

friendly software and decision support tools is one of the 

future recommendations for utilizing the SAW technology. 

This refers to the method's practical implementation. The ease 

of access to MCDM tools across various enterprises and 

decision settings is critical for their widespread adoption. User 

interfaces should be built to make the input of criteria, weights, 

and performance data as simple as possible while delivering 

clear and intelligible results [99].  

 

5.2 Future scope of electric motors for sustainable 

transportation 

 

A wealth of opportunities for innovation and optimization 

exists in EVs and sustainable transportation, as evidenced by 

the extensive research conducted on electric motor 

optimization for environmentally friendly EVs. Subsequent 

research endeavors might explore enhancing motor 

performance by integrating cutting-edge technologies such as 

intelligent control systems, enhanced materials, and artificial 

intelligence [100]. Electric motor efficiency and power-to-

weight ratios could be greatly improved using novel materials, 

such as advanced alloys or composites, and exploring 3D-

printed components. Further optimization of electric motor 

functions, guaranteeing dynamic responsiveness to driving 

conditions, and maximizing energy economy may be possible 

by integrating AI algorithms for real-time performance 

monitoring and adaptive control systems [101]. In the future, 

EV sustainability may surpass basic motor economy concerns. 

The comprehensive life cycle of an EV is examined to mitigate 

its environmental footprint, encompassing activities such as 

responsible waste disposal or recycling and raw material 

extraction. Coordination between material scientists, 

environmental engineers, and recycling specialists would be 

required to implement a closed-loop system following circular 

economy principles [102]. 

Electric motor optimization, intelligent transportation 

systems, and vehicle-to-everything (V2X) communication are 

all areas that could be investigated in the context of connected 

and autonomous EVs, which could be the focus of the study. 

Better traffic management, less congestion, and more efficient 

use of energy could result from taking this strategy. Exploring 

the convergence of EVs with smart grids is also crucial, as is 

investigating how improved electric motors might contribute 

to grid stability, demand response, and energy storage options, 

thereby encouraging a more sustainable energy ecosystem 

[103]. The advent of Industry 4.0 technology presents doors 

for new manufacturing procedures, and the study could look 

into adopting smart manufacturing processes for electric motor 

production. The creation and customization of electric motors 

could benefit from investigating techniques like additive 

manufacturing and digital twins, which can streamline the 

manufacturing process, decrease waste, and speed up the 

prototype process [104]. Potential future extensions of the 

study may encompass socio-economic assessments, legislative 

recommendations, and technological advancements. A 

comprehensive shift towards intelligent, eco-friendly EVs 

necessitates knowledge of the policy frameworks necessary to 

incentivize sustainable practices in the automotive sector and 

an evaluation of the economic feasibility of adopting 

optimized electric motors on a large scale. The development 

of strategies that support global sustainability goals could be 

enhanced through cooperation with industry participants, 

policymakers, and economists. Ultimately, research into the 

optimization of electric motors for intelligent, eco-friendly 

EVs has a vast and multifaceted future [105]. The research 

possesses the capacity to make a substantial contribution to the 

continuous development of sustainable transportation through 

the integration of emerging technologies, examination of the 

complete life cycle of EV components, exploration of the 

intersections between connected and autonomous systems, 

adoption of advanced manufacturing techniques, and 

incorporation of socio-economic factors. This all-

encompassing strategy keeps the study cutting edge, directing 

the development of EV technology toward a more sustainable 

and performance-driven future [106]. 

 

5.3 Implications of the study for providing sustainable 

energy 

 

Exploring the field of MCDM procedures in sustainable 

energy is analogous to beginning a voyage through a terrain 

filled with various possibilities and challenges. These 

methods, which have become influential tools in decision 

science, are essential for dealing with the complex network of 

factors related to sustainable energy solutions. The essence of 

MCDM resides in the capacity to concurrently evaluate and 

harmonize several factors, thereby converting decision-

making processes into a refined art that smoothly corresponds 

to the intricacies of the sustainable energy domain [107]. 
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The consequences of employing MCDM techniques are 

especially significant when striving to achieve sustainable 

energy objectives, as the risks involved are substantial, and the 

decisions made have enduring effects on our environment and 

future welfare. Imagine a scenario where the world is actively 

working towards shifting away from its reliance on fossil fuels 

and instead embracing a balanced combination of renewable 

energy sources [108]. MCDM techniques serve as a 

dependable instrument that aids decision-makers in navigating 

the intricate array of alternatives. These methodologies 

empower decision-makers to contemplate the environmental 

and social ramifications of their choices in addition to the 

economic ones. One significant benefit of MCDM is its ability 

to provide a systematic structure for evaluating numerous 

possibilities. Envision oneself at the juncture of an extensive 

array of renewable energy systems, including but not limited 

to solar, wind, and hydro. MCDM enables a comprehensive 

analysis by considering societal acceptance, carbon footprint, 

and energy efficacy [109]. It is akin to possessing a 

multidimensional lens that enables decision-makers to 

comprehend the comprehensive consequences of their 

decisions. Being new to this sector, I am amazed by how 

MCDM converts potentially daunting decisions into an 

organized, well-informed procedure [110]. Let's examine the 

concept of Pareto efficiency in MCDM, which I find 

fascinating due to its elegant and practical nature. Pareto 

efficiency is achieved when an option is considered ideal and 

cannot be improved without hurting another alternative. 

Depicting solutions that provide comprehensive benefits to the 

environment, society, and economy is a critical undertaking in 

the pursuit of sustainable energy; thus, this notion is extremely 

significant. After initially confronting its foundational 

principles, progressively comprehending the profound 

ramifications of Pareto efficiency has proven to be an 

intellectually stimulating and enlightening voyage [111]. 

 

5.4 Sustainable development goals (SDGs) for EV  

 

EVs are critical in facilitating sustainable development 

goals (SDGs), including features connected to the 

environment, economy, and civilization. By increasing the use 

of renewable energy sources and decreasing reliance on fossil 

fuels, EVs contribute to generating affordable, 

environmentally friendly energy. This satisfies the criteria 

outlined in SDG 7. SDG 9, which encompasses industry, 

infrastructure, and innovation, is enhanced by advocating for 

innovation in the automotive industry. EVs are of utmost 

importance in urban settings for achieving Sustainable 

Development Goal 11, as they reduce air pollution and 

greenhouse gas emissions, thereby fostering the development 

of sustainable communities and cities [112]. SDG 13 

objectives for climate action are furthered by the extensive 

adoption of EVs, which significantly mitigate the adverse 

effects of climate change. Following SDG 12, the production 

and operation of EVs adhere to responsible consumption and 

production patterns. Employment opportunities are also 

created as a result of the expansion of the EV industry, which 

contributes to the attainment of SDG 8 (decent work and 

economic growth). Enhanced EV utilization positively 

impacts public health and contributes to SDG 3 [113]. 

Providing populations that are disproportionately affected by 

air pollution with access to cleaner alternatives through the use 

of EVs is one way in which accessible and sustainable 

transportation options contribute to the reduction of 

inequalities SDG 10. Although only indirectly, the transition 

to environmentally responsible modes of transportation, such 

as EVs, correlates with SDG 16 by supporting environmental 

sustainability and ethical business practices. Overall, the 

incorporation of EVs into transportation systems plays a 

varied role in the advancement of interconnected SDGS, 

contributing to a future that is more sustainable and inclusive 

[114]. The United Nations has identified a set of SDGs, and 

EVs play a significant part in helping to contribute to those 

goals. Several important SDGs can be addressed more 

effectively by promoting the widespread usage and acceptance 

of EVs). An examination of the EV's role in advancing 

sustainable development is presented here. The SDGs that are 

pertinent to the development of EVs are depicted in Figure 5. 

These SDGs will play an essential part in the process. 

 

 

6. CONCLUSIONS 

 

In conclusion, utilizing the SAW technique has resulted in 

the provision of final decision-making outcomes in the process 

of selecting motors for EVs. According to the ranking based 

on CPS, Motor 1 has been determined to be the best-

performing choice. It has received a CPS score of 0.8164, 

which indicates that it has the best overall performance among 

the parameters considered. The CPS value of Motor 4 is 

0.7689, which places it in second place, closely followed by 

Motor 3, which holds the third position, and Motor 2, which 

holds the fourth position. The decision-makers are provided 

with a clear and prioritized understanding of the performance 

of the motors through this ranked order, which assists in 

selecting the most suitable alternative based on the criteria set 

and the weights that correspond to them. In addition, the 

decision-making process is reinforced by the TOPSIS method, 

which generates calculated performance scores for every 

alternative (Motor 1 through Motor 4). This enhances the 

efficacy of the decision-making process as a whole. Motor 1 is 

the preferred option based on their respective performance 

levels, with the highest PI of 0.609. Motor 2, Motor 3, and 

Motor 4 are ranked in descending performance sequence after 

that. This underscores the importance of incorporating diverse 

methodologies to develop a comprehensive decision-making 

strategy. By incorporating the AHP methodology into the 

decision-making process, the significance of several factors 

has been shed light on. Given the present market conditions, 

the AHP's criteria evaluation establishes Cost (C6) as the most 

pivotal element in the ranking. The factors designated C1, C5, 

C3, C4, and C2 are presented in descending order of priority 

in the sequence above. 

Nevertheless, a thought-provoking contrast emerges when 

scrutinizing the EV specifications. Each of these components 

is considered equally significant in ascertaining the motor 

utilized. The contentious nature of this issue has brought to 

light the contextual sensitivity of the decision-making process, 

in which the significance of criteria may differ according to 

the particular requirements of a given sector or industry. 

Integrating SAW, TOPSIS, and AHP methodologies provides 

decision-makers with a comprehensive and nuanced approach 

to selecting motors for EVs. In summary, this motor selection 

methodology offers several benefits. In contrast to SAW, 

which computes a basic ranking utilizing Composite PI, 

TOPSIS presents an alternative viewpoint by implementing 

Performance Scores and prioritizing alternatives according to 

their proximity to optimal solutions. 
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On the contrary, AHP assigns significant weight to the idea 

that the applicability of criteria may differ depending on the 

circumstances. Those in positions of authority can make more 

informed and situation-dependent decisions when they 

recognize the results produced by these methodologies. The 

reason for this is the ever-changing environment surrounding 

the selection of motors for EVs. The findings derived from the 

SAW and TOPSIS methodologies are inappropriate, as 

demonstrated by the analysis. Based on these results, BLDC 

motors are the most viable choice for EVs. The order above of 

preference is then applied to the induction motor, PMSM, and 

SRM. On the contrary, the motor selection process in the 

current EV technology market has become prohibitively 

complex because the AHP method has produced the most 

optimal prioritization criteria. 
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