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Due to rapid advancements in robotics technology, mobile robots are now utilized across 

various industries and applications. Understanding the terrain on which a robot operates 

can greatly aid its navigation and movement adjustments, ultimately minimizing potential 

hazards and ensuring seamless operation. This study aims to identify the specific terrain 

on which a mobile robot travel. Data was gathered using an inertial measurement unit 

(IMU) installed on the robot for experimental testing. The key contributions of this 

research are twofold: firstly, the implementation and evaluation of various machine 

learning techniques using the IMU sensor dataset, comparing their performance using 

metrics like accuracy, precision, recall, and F1-score. Secondly, after assessing the 

different techniques, the most effective one is chosen for the final system implementation. 

Following the experimental evaluation of machine learning techniques, it was determined 

that the light gradient boosting machine (LGBM) classifier outperformed the others. 

Consequently, LGBM was utilized for the proposed system's implementation, achieving a 

91% accuracy in surface classification. The experimental results highlight the efficiency 

and viability of the proposed system. 
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1. INTRODUCTION

With the rapid development and advances in robotics 

technology, mobile robots are being used in various 

applications across various industries and domains [1, 2]. 

These applications include manufacturing, logistics, 

healthcare, agriculture, security, and surveillance. Because of 

their high capabilities and ease of interface with the 

surrounding environment, mobile robots are becoming 

prevalent in day-to-day life. 

In recent years, surface classification for robots has 

garnered increased interest in civilian and military 

applications. Mobile robots rely on environmental data to 

change their movements intelligently and respond 

accordingly. Thus, the prompt identification of surface types 

is crucial for these robots to effectively accomplish their 

assigned tasks and goals [3]. In typical environments, surfaces 

vary extensively with a wide range of characteristics. While 

most floors are generally flat and pose little challenge for 

traversal, there can be instances where surfaces may be bumpy 

or slippery. Such surfaces may be impeding robots' mobility 

or leading to safety hazards. Consequently, awareness of 

surface types can assist mobile robots in navigating and 

adjusting their movements accordingly to mitigate potential 

risks and ensure smooth operation [4, 5]. For example, when a 

mobile robot detects a surface as a wooden floor, it can run at 

a higher speed since wooden floors provide a relatively smooth 

and easy terrain for movement. However, surfaces like carpets 

are soft and uneven, impeding the robot's movement and 

necessitating a speed reduction. Thus, accurate methods for 

assessing the current or upcoming characteristics of floors help 

enhance the manoeuvrability of robots [6]. 

Surface classification is grouped into two main categories 

based on different sensing methods: contact-based 

classification, involving techniques such as vibration and 

touch sensing, and contactless classification, primarily relying 

on vision and sound sensing [7]. A big obstacle in the contact-

based classification is for the sensory data to be looked over 

for noise and/or fluctuations caused by different contact 

conditions. External factors such as temperature, humidity, 

and surface variations might corrupt the sensor readings' 

reliability and lead to mis-classifications. These hurdles can be 

accomplished using a higher-grade signal processing system 

and machine learning to improve the reliability and accuracy 

of contact-based classification systems [8]. While contactless 

classification using vision and sound sensing holds 

demarcated chances, it still has several issues. Among them 

are shifts in lighting circumstances, occlusions, ambient noise, 

and the strong demand for massive amounts of labelled 

training data of ML models. Facing these hindrances requires 

the development of agile algorithms that can change according 

to different environments and extract information proficiently 

from heterogeneous sensor data [9]. 

This paper compares machine learning algorithms trained 

on inertial measurement unit (IMU) sensor data [10]. The aim 
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is to identify the terrain type out of nine different terrains using 

sensor data such as acceleration and velocity. This prediction 

will enhance the autonomous navigation capabilities of robots 

on diverse surfaces, ensuring they perform their tasks without 

the risk of falling. 

 

 

2. RELATED WORK 

 

Numerous techniques have been suggested in scholarly 

works for distinguishing the surface over which a vehicle or 

robot moves. Various sensor principles are employed to aid in 

identifying the physical features [11], which provide valuable 

terrain data for the vehicle's operation. The methods outlined 

in the literature can be classified into IMU-based 

identification, tactile sensor-based identification, image-based 

identification, and acoustic-based identification [12]. 

 

2.1 IMU-based identification 

 

Surface identification using IMUs is widely used. IMUs are 

strategically placed and equipped with multiple sensors to 

measure acceleration and angular velocity. Typically, the IMU 

is affixed to the vehicle, such as on the chassis. Algorithms are 

then utilized to analyze the sensor data, determine the 

difference in linear and angular acceleration, and assign a 

corresponding surface label to the feature set. Nampoothiri et 

al. [13] present a comprehensive survey of advanced 

algorithms used for terrain identification, focusing on deep 

learning and fuzzy logic methods. Tick et al. [6] introduced a 

novel approach that utilized a classifier for surface 

identification, achieving an accuracy of approximately 90% 

over a 20-minute drive. The measurements were taken at 

various velocities, enhancing the algorithm's reliability. 

Before the experiment, the IMU data was filtered to address 

significant noise and gyro sensor drift, often using a Kalman 

filter to refine the data. In one of the studies,  

Csík et al. [14] proposed a new approach for terrain 

classification using a multi-layered perceptron (MLP) neural 

net as a classifier. A prototype measurement system gathered 

data from inertial sensors across diverse outdoor terrains. Both 

the accelerometer and gyroscope data were independently and 

jointly tested with different processing window sizes. The 

results indicate that the proposed system can achieve a 

classification efficiency of over 99%. Shin et al. [15], in one 

of the studies, used IMU sensor data and a Gaussian mixture 

model to develop a system for terrain identification. In their 

study, Knuth and Groves [16] used IMU to record 

acceleration, angular rate, and magnetic field data. A total of 

44 features are extracted from the magnitude of the data, 

including time domain and frequency domain features. Five 

classifiers were trained and tested on these features to classify 

terrain types. In another study, Thavitchasri et al. [17] used 

IMU sensor data to predict surface type to facilitate improved 

navigation for autonomous tractors. IMU sensor data was 

recorded for seven different surface types, and various ML 

algorithms like logistic regression, SVM, random forest, 

AdaBoost, and XGBoost were used to classify surface types. 

 

2.2 Tactile sensor-based identification 

 

In this approach, an IMU is also employed to identify the 

surface by positioning the IMU on the rod attached to the 

vehicle's rear end, making direct contact with the surface. This 

direct contact facilitates the capture of characteristic 

irregularities more effectively in the sensor data. Tactile 

sensing is essential, especially when optical sensors cannot 

directly observe surface properties, for instance, in fog and 

dust scenarios [18]. Mason et al. [19] presented a study on the 

use of acoustic tactile sensors to enhance the identification of 

terrain materials, types, and structures for mobile robots. In a 

study by Giguere and Dudek [20], ten different surfaces were 

examined with variable time windows achieving the highest 

accuracy of 94.6%, respectively. These experiments were 

conducted at a constant speed. So, there is a need for further 

validation at the robot's varying speeds. Moreover, it's 

essential to note that in practical applications, using a rigid rod 

to contact the ground is not feasible. This approach introduces 

complexities in the vehicle's kinematics and requires 

additional design considerations, which are not currently 

addressed in the kinematic model. In another research, Nagy 

et al. [21] used tactile sensor data and machine learning models 

for road quality classification. Accelerometer and gyroscope 

sensors were used to record the data. Further machine learning 

models like decision tree were used to classify road quality 

based on features obtained using power spectrum and principal 

component analysis. 

 

2.3 Image-based identification 

 

Numerous methods in literature used the most popular 

convolutional neural networks (CNN) for image-based surface 

identification [22]. The difficulty with such methods lies in 

generating a sufficient number of images for proper training of 

the neural networks. A benefit of such an approach is its 

capability to identify the surface even when the robot is not in 

motion. Wang et al. [23] present a deep learning and support 

vector machine-based combined approach to identify types of 

terrains for the robots. The algorithms were trained using a 

dataset comprising 30,000 images representing six distinct 

types of terrain. This method achieved an accuracy of up to 

87%. Demirtaş et al. [24] introduced a method for classifying 

indoor and outdoor surfaces based on images. Initially, they 

created a database of 2081 images representing various 

surfaces like carpets, tiles, and wood. The surfaces above were 

effectively categorized utilizing a robust deep-learning model, 

resulting in an outstanding accuracy rate of 99.52%. 

Additionally, the authors expressed a high level of confidence 

in asserting that their model offers expedited loading and 

decreased processing durations compared to other models 

documented in the existing literature. In another study, the 

authors combined vibration and image texture data for a terrain 

identification task [25]. Time and frequency domain features 

of vibration signal and Gray-level co-occurrence matrix 

feature from the image are extracted, and a weighted k-nearest 

neighbor classifier is used further to classify different terrains. 

 

2.4 Acoustic-based identification 

 

The utilization of this technique for surface identification is 

uncommon. Acoustic-based surface identification is 

advantageous for mobile robots operating outdoors, where 

conventional visual or tactile sensing techniques may 

encounter limitations or inconsistencies. These methods 

involve capturing and analyzing acoustic signals generated 

during the interaction between a robot and various surfaces. In 

their work, Libby and Stentz [26] explore the application of 

sound data as an innovative sensing modality for categorizing 
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different surfaces on which a robot traverses in an outdoor 

setting. 

Acoustic recordings were acquired by mounting them on a 

mobile robot that navigated diverse outdoor terrains. The 

measurements were taken for different velocities and features 

like spectral flux and rate of energy change, which were 

considered in the classification model building. Subsequently, 

the data is assigned with labels and used to train the multi-class 

classifier. This trained classifier can then discern between 

distinct interactions solely based on acoustic data and is 

subsequently used to classify five different surfaces. Overall, 

they achieved a 92% true positive rate. Valada et al. [27] 

presented a standard method for categorizing audio sequences, 

utilizing spectrogram extraction from recorded audio data for 

classification with a CNN. Their dataset spans 2.15 hours and 

encompasses nine distinct surfaces, with recordings conducted 

at various vehicle speeds. They report an impressive overall 

classification accuracy of 98.5%. However, it is worth 

mentioning that classification accuracy notably declines when 

the vehicle speed falls below 1 m/s.  

 

 

3. METHOD 

 

The proposed machine-learning-based method for mobile 

robot terrain classification is shown in Figure 1. In the initial 

phase, sensor readings are collected using robot and IMU 

sensors. The collected data is then pre-processed, and 

important features are extracted. The extracted features are 

then used to build the machine learning model, and in the final 

stage, the trained model is used for terrain classification. Each 

of these stages is explained as follows:  

 

 
 

Figure 1. Proposed machine learning pipeline for terrain identification 

 

3.1 Robot with IMU sensors 

 

The system work starts with data collection using the robot, 

as shown in Figure 2. This robot is an in-house development 

designed with compact dimensions: a width of 21 cm, a length 

of 28 cm, and a height of 8 cm. It has a total weight of 685 

grams, making it lightweight and efficient for its intended 

applications. The robot equipped with an IMU sensors are 

used to record the readings. The IMU sensor used in 

experimentation is an XSENS MTi-300. The XSENS MTi-

300 has high accuracy, robust performance, and ease of 

integration. Key specifications of this sensor are as follows: 

Roll/Pitch accuracy: ±0.2° RMS; Supports real-time data rates 

up to 2 kHz; Dimensions: 57 × 41.9 × 23.6 mm; Weight: 55g; 

Operating temperature: -40℃ to +85℃; Power consumption: 

Typical 520 mW. 

An IMU device can measure and communicate specific 

gravity and angular rate about an object to which it is affixed. 

An IMU comprises gyroscopes for measuring angular rate and 

accelerometers for measuring specific acceleration. So, IMU 

is a sensor capable of tracking movement across various axes. 

The system measures orientation, angular velocity, and linear 

acceleration along various axes. These readings are then given 

as input to the proposed system. In data collection process, for 

each terrain type 900 to 1000 samples have been collected. 

Each sample has 128 measurements per time series of 1 

second, plus three ID columns for identifying the terrain type 

and measurement number. The sampling rate of IMU sensor 

was 128 Hz.  

 
 

Figure 2. Robot used in the experiment with IMU sensors 

 

3.2 Data pre-processing 

 

Pre-processing is necessary for keeping data integrity by 

detecting and rectifying errors, filling in missing values, 

addressing outliers, and resolving inconsistencies within the 

dataset. Pre-processing methods like smoothing or filtering 

help diminish noise or extraneous details within the data, 

thereby facilitating the model's ability to discern patterns and 

generate precise predictions. In our case, analysis of collected 

data showed no corrupted values within the data series, and the 

time axis was consistently sampled. Therefore, there is no need 

to interpolate missing values. The interquartile range (IQR) 
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method removed outliers in the angular velocity readings. The 

linear acceleration reading had high kurtosis, and the data was 

almost centered to zero. So, to make the features linearly 

separable, the feature extraction step extracts the important 

statistical features from the available features. 

 

3.3 Feature extraction 

 

To capture the nature of the movement of the robot, we have 

extracted a total of 13 statistics, including mean, standard 

deviation, minimum value, maximum value, median, absolute 

deviation, mean absolute change, absolute minimum, absolute 

maximum, absolute average, quantile, skewness, and kurtosis. 

These derived features represent various statistical 

characteristics and the nature of robot movement. These 

features are then used to train the machine learning model. 

Statistical features are computed for each window of 1 

second independently. For the classification of robot terrain 

using IMU sensor data, statistical features are essential for 

capturing the subtle variations in sensor readings. These 

features condense raw sensor data, facilitating the 

differentiation of various terrain types. By extracting and 

analyzing statistical features, the system can effectively 

identify terrain characteristics, even when the sensor data is 

complex or contains a degree of noise. Incorporating a diverse 

range of statistical features enhances the input for machine 

learning models, enabling them to identify intricate patterns 

and improve predictive accuracy. Features such as the median 

and absolute deviation are particularly valuable as they are less 

affected by noise or outliers, enhancing classification 

performance on irregular surfaces. Statistical features also 

distil large datasets into a concise set of descriptors, making 

them computationally efficient for use in classification 

models. The significance of each statistical feature is 

explained below: 

 

(1) Mean: Mean Indicates the central tendency of the data 

and helps identify overall trends. For example, a 

consistently higher mean in acceleration relates to harder 

terrains like concrete. 

(2) Standard deviation: High variability might indicate 

uneven terrains like hard tiles with gaps, while low 

variability signifies smoother surfaces like carpets. 

(3) Minimum value: Minimum value is useful for detecting 

outliers or extreme dips in sensor readings, which might 

occur during sudden drops or soft terrain interactions like 

carpet. 

(4) Maximum value: It reflects extreme forces or impacts, 

such as those experienced on hard tiles or wooden 

surfaces. 

(5) Median: Median provides a robust measure of central 

tendency less affected by outliers. It represents typical 

values on uneven terrains. 

(6) Absolute deviation: This statistical feature highlights 

variability and is less sensitive to extreme outliers. It is 

effective in distinguishing terrains with subtle 

irregularities. 

(7) Mean absolute change: This measures the rate at which 

sensor readings change over time. Elevated values could 

signify sudden transitions in terrain, such as moving 

from soft PVC flooring to hard tile surfaces. 

(8) Absolute minimum: Useful for assessing the least intense 

interactions, which can occur on softer terrains. 

(9) Absolute maximum: Highlights extreme intensity, often 

a key feature of hard or uneven terrains. 

(10) Absolute average: This statistical feature offers a 

balanced magnitude assessment, accounting for both 

positive and negative variations. It is particularly 

effective for describing overall terrain roughness. 

(11) Quantile: Quantiles help to identify the data distribution 

and variability, which is critical for terrains with mixed 

characteristics. 

(12) Skewness: Positive skewness indicates that occasional 

high readings dominate, such as large bumps, while 

negative skewness could suggest predominantly low 

readings. 

(13) Kurtosis: High kurtosis indicates the presence of outliers 

or extreme events, characteristic of irregular terrains like 

hard tiles with significant gaps. 

 

3.4 Machine learning models 

 

Multiple machine learning models, including decision trees, 

random forests, support vector machines, light gradient 

boosting machine (LGBM), and extreme gradient boosting 

(XGBoost) classifiers, are tested on the derived features. After 

evaluating the different models, it was found that the LGBM 

classifier outperformed the rest of the classifiers. So, finally, 

the system was implemented using the LGBM classifier.  

LGBM and XGBoost are both widely used ensemble 

models for classification tasks. LGBM employs a leaf-wise 

tree growth strategy, resulting in deeper decision trees that 

capture detailed information. On the other hand, XGBoost 

uses a level-wise tree growth approach, leading to a more 

balanced tree structure at a higher computational cost. 

Notably, LGBM requires less time and memory compared to 

XGBoost when handling large datasets [28]. Developed by 

researchers at Microsoft and Peking University, LGBM is an 

innovative tree-based ensemble learning technique designed to 

tackle the efficiency and scalability challenges encountered by 

XGBoost in scenarios involving high-dimensional input 

features and large datasets. LGBM leverages two main 

approaches: exclusive feature bundling (EFB) and gradient-

based one-side sampling (GOSS) [29]. Additionally, LGBM 

utilizes a histogram-based algorithm, binning continuous 

feature values into discrete bins to expedite the training 

process [30, 31]. 

 

3.5 Prediction of surface  

 

The final step of the proposed system is to predict the type 

of surface on which the robot is moving. The system predicts 

nine different surfaces such as fine concrete, concrete, soft 

tiles, tiled, soft PVC, carpet, wood, hard tiles, and hard tiles 

with large space. The selected nine terrains represent unique 

physical properties of surfaces, such as texture, hardness, and 

flexibility. These surfaces cover a wide spectrum of rigid 

surfaces (e.g., fine concrete, concrete, hard tiles), flexible or 

soft surfaces (e.g., carpet, soft PVC), and moderate textures 

(e.g., wood, tiled surfaces). Differentiating these terrains 

allows the robot to adapt to environments ranging from 

industrial floors to domestic settings, improving navigation 

and functionality. The study ensures the relevance of robot 

applications in diverse fields by including these common 

indoor and outdoor terrains. Also, by selecting these terrains, 

the study balances practical relevance, sensor diversity, and 

algorithmic challenges, ensuring a robust evaluation of the 

robot's terrain classification capabilities. 
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4. RESULTS AND DISCUSSIONS  

 

This section focuses on the experimentation carried out 

using the proposed system, the results obtained for different 

machine learning methods, their performance comparison, and 

the discussion about the real-time use of the proposed system. 

The robot has IMU sensors to record movement readings 

and create a dataset. The following three parameters are 

measured using the IMU sensors [32]. 

Orientation: Four values for attitude quaternion channels 

represent the scalar and vector values. 

Angular rate: Comprises three orthogonal IMU coordinate 

axes X, Y, and Z. 

Acceleration: Three force values corresponding to three 

orthogonal IMU coordinate axes X, Y, and Z. 

 

 
 

Figure 3. Density plot for linear acceleration in X direction 

 

After data pre-processing and initial analysis, it was 

observed that a few features were not linearly separable. 

Figure 3 shows the density plot for linear acceleration in the 

X-direction, measured using the IMU sensors. This figure 

shows that the data is not linearly separable and is almost 

centered at zero. So, to overcome this problem, we have 

extracted the 12 statistical features from the dataset. These 

features are then used for the proposed system's 

implementation and experimental evaluation. Feature 

extraction is performed in the time domain and aims to acquire 

a concise and straightforward representation of the reading 

from the IMU sensors. Here, we have extracted 12 features, 

including mean, standard deviation, maximum and minimum 

values, median absolute deviation, mean absolute change, 

absolute minimum, absolute maximum, absolute average, 

quantile, skewness, and kurtosis. These derived features 

represent various statistical characteristics and insights into the 

nature of the motion being measured. 

The various machine learning algorithms are then 

implemented using the derived features, and their performance 

is evaluated using different metrics such as accuracy, 

precision, recall, and F1-score, as shown in Eqs. (1)-(4), 

respectively.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃 × 𝑅

𝑃 + 𝑅
 (4) 

 

where, TP is true positives, TN is true negatives, FP is false 

positives and FN is false negatives. 

Thus, we have finally selected LGBM to implement the 

system. Extensive experimentation is carried out using the 

LGBM classifier. The classification report of the LGBM 

classifier is shown in Table 1. 

 

Table 1. Classification report for LGBM classifier 

 
 Precision Recall F1-Score 

0 0.88 0.90 0.89 

1 0.87 0.94 0.90 

2 0.97 0.93 0.95 

3 0.91 0.92 0.92 

4 0.95 0.92 0.94 

5 0.97 0.90 0.93 

6 0.92 0.77 0.84 

7 1.00 0.50 0.67 

8 0.88 0.90 0.89 

Accuracy   0.91 

Macro avg 0.93 0.85 0.88 

Weighted avg 0.91 0.91 0.91 

 

Table 2. Comparative analysis of the performance of different classifiers for terrain identification 

 
Model Accuracy Balanced Accuracy F1-Score Time Taken 

LGBM classifier  0.91 0.88 0.91 16.55 

XGB classifier  0.89 0.86 0.89 17.00 

Random Forest 0.88 0.83 0.88 10.15 

Bagging classifier 0.83 0.78 0.83 15.22 

Extra trees classifier 0.76 0.74 0.76 01.50 

Decision tree 0.76 0.70 0.76 1.80 

K-nearest neighbour 0.74 0.69 0.74 0.56 

SVC 0.71 0.59 0.69 2.16 

Logistic regression 0.68 0.42 0.68 0.46 

Linear SVC 0.67 0.60 0.67 8.17 

Linear discriminant analysis 0.62 0.56 0.62 0.28 
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We have implemented and evaluated 11 machine-learning 

algorithms on the dataset for terrain classification. Table 2 

presents comparative results for various machine learning 

models. The LGBM classifier outperforms all other machine 

learning algorithms. It is a fast, distributed, high-performance 

gradient-boosting framework constructed using decision tree 

classifiers. It uses a gradient-boosting framework to construct 

the ensemble of weak learners sequentially such that a new 

weak learner is constructed to reduce the classification errors 

made by the previous learner. Unlike the traditional gradient 

boosting techniques, it uses a histogram-based algorithm to 

select the best feature to split at the node of the decision tree. 

Thus, its ability to handle large datasets with higher 

dimensional feature sets, speed, and memory efficiency makes 

it the best-performing and most popular in the literature. 

From experimental evaluation, it is clear that the proposed 

method achieved an overall classification accuracy of 91%. 

Table 1 also shows the precision, recall, and F1-score [33], 

along with the support for all the nine classes in the dataset. 

For most of the classes, these values are greater than 90%. This 

indicates a high-performance level and demonstrates the 

proposed approach's effectiveness in predicting the terrain on 

which the robot is moving. The achieved accuracy highlights 

the potential of our model in mobile robot terrain 

classification.  

The robot's speed impacts the accuracy of terrain 

classification. This impact is due to how sensor data is 

collected and processed. At higher speeds, there is increased 

noise in the IMU sensor’s data. This increases the fuzziness in 

the distinct patterns associated with different terrains and 

reduces the resolution of the terrain's features. Lower speed 

captures the stable data and better resolution of terrain-specific 

features. Also, speed affects how the robot wheels interact 

with the terrain. On slippery surfaces (e.g., tiles), higher speed 

might cause skidding, which could distort classification 

patterns. In this study, the impact of the robot's speed on terrain 

classification accuracy was not explicitly considered. The 

primary objective was to evaluate the system's ability to 

distinguish between nine distinct terrains under consistent 

operational conditions. While speed influences sensor 

readings and classification performance, it was assumed the 

robot would operate within a moderate and constant speed 

range appropriate for a typical surface and environment.  

 

 
 

Figure 4. Normalized confusion matrix of LGBM classifier 

Figure 4 shows the normalized confusion matrix for the 

LGBM classifier. The rows in the confusion matrix represent 

the instances of the actual class, that is, the true floor type, and 

the columns represent the surface types predicted by the 

classifier. Consequently, the diagonal values represent 

correctly predicted classes, that is, the accuracy of the 

classifier in predicting the instances of a particular class. On 

the other hand, the off-diagonal values represent the degree of 

incorrectly classified instances.  

The receiver operating characteristic (ROC) and the area 

under the ROC curve (ROC-AUC) are important metrics for 

evaluating the classification model [34]. The x- and y-axes 

represent false positive rate (FPR) and true positive rate (TPR) 

defined in Eq. (5) and Eq. (6), respectively. The false positives 

(FP) represent the number of negative instances wrongly 

classified as positive, true negatives (TN) represent the 

number of instances correctly classified as positive, and false 

negatives (FN) represent the number of positive instances 

wrongly classified as negative. 

 

𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) (5) 

 

𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (6) 

 

The ROC curve and ROC-AUC for the classifier are shown 

in Figure 5. For almost all classes, the ROC-AUC is above 

0.94. This indicates that the classifier has excellent 

discriminatory power and performs very well in distinguishing 

the positive and negative classes in the classification problem. 

As ROC-AUC values are close to 1, this specifies that the 

classifier's predictions are highly consistent with the true class 

labels and the model is making accurate predictions and is 

reliable for predicting the terrain type on which the robot is 

moving. 

 

 
 

Figure 5. ROC curve for LGBM classifier 

 

The proposed system has two limitations. First, the terrain 

classification system may struggle to obtain clear, consistent 

data if the robot's sensors are blocked or misaligned due to 

physical objects. This could lead to misclassifications, as the 

terrain data might not represent the actual surface but rather a 

disturbed sensor reading caused by the obstruction. Second, in 

the proposed system the impact of the robot's speed on terrain 

classification accuracy was not explicitly considered.  

Our analysis revealed that misclassified samples are 
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complex and of poor quality, making them hard to classify. To 

address this, we plan to improve data quality and diversity by 

incorporating more complex samples. The model will be 

retrained and fine-tuned with these enhancements. This 

approach aims to make the model more robust for challenging 

cases.  

 

 

5. CONCLUSION 

 

The use of mobile robots in various fields has increased 

significantly. Predicting the type of terrain on which a robot is 

moving is crucial for its navigation and movement. This paper 

aims to identify the terrain a robot operates by creating a 

dataset for experimental evaluation using IMU sensors 

mounted on a mobile robot. The dataset contains information 

about the robot's orientation, angular speed, and linear 

acceleration while traversing nine distinct surface types. From 

this data, 12 statistical features are extracted for the 

experimentation of the proposed system. Various state-of-the-

art machine learning models were tested on this dataset, and 

their performance was compared. The analysis indicated that 

the LGBM model outperformed other techniques. Extensive 

experimentation with LGBM resulted in a 91% accuracy in 

predicting a mobile robot's terrain type, demonstrating the 

efficiency and feasibility of the proposed system.  

Future work could involve further deep-learning techniques 

to improve accuracy and overall performance, analyzing the 

effect of varying speeds to enhance the model's robustness and 

generalizability across diverse real-world scenarios. Also, the 

work could be extended for a more detailed analysis of the 

misclassified samples and potential strategies to improve the 

classification accuracy for these cases.  
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