
Image Tamper Detection and Correction Using Modified Hamming Code with Eight Data

Bits and Four Redundant Bits

Anantha Rao Gottimukkala1 , Anita Pradhan1 , Pramoda Patro2 , J. Hemalatha3 , Ranjan K. Senapati4 ,

Gandharba Swain1*

1 Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India
2 School of Computer Science and Artificial Intelligence, SR University, Warangal 506371, India
3 Department of CSE, AAA College of Engineering and Technology, Amathur, Sivakasi 626123, India
4 Department of ECE, VNR Vignana Jyothi Institute of Engineering & Technology, Bachupally, Nizampet (S.O), Hyderabad

500090, India

Corresponding Author Email: gandharba.swain@kluniversity.in

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140621 ABSTRACT

Received: 11 October 2024

Revised: 10 December 2024

Accepted: 19 December 2024

Available online: 31 December 2024

Tampering an image became more manageable due to the advent of photo editing

software. So, it is essential to detect and correct the tampered locations. This article

presents an image watermarking scheme that applies a modified version of 8 data bits and

4 redundant bits of Hamming code. It operates over a block of 3 pixels at a time. The 24

bits of the 3 pixels are rearranged and divided into 2 processing units, each comprising 12

bits. Out of 12 bits in a unit, 4 bits are used as redundant bits, and 8 bits are used as data

bits. Watermark bits (WBs) are generated from data bits using a logistic map (LM) and

stored in redundant bit positions. Experimental results reveal that this proposed technique

maintains a fair balance for both capacity and distortion. The measured capacity is 2.67

bits per pixel (bpp) with a 39.21 decibels (dB) distortion. The estimated structural

similarity (SSIM) is 0.9844, and the accuracy is 0.9999. Furthermore, it was also found

that the proposed technique performs fairly well compared to existing techniques in

capacity and distortion.

Keywords:

data hiding, watermarking, tamper detection,

Hamming code, logistic map

1. INTRODUCTION

Tampering a watermarked image (WI) is very easy by using

photo editing tools. So, accurate tamper detection and

correction mechanisms play a vital role in this field of study.

Image watermarking can be done in the spatial domain and

transform domain. In the spatial domain, the watermarking

techniques use block-by-block or pixel-by-pixel for

watermark hiding. To ensure the safety of the embedded

watermark, we can use a chaotic map (CM) or logistic map

(LM). Different kinds of error correction codes can be used in

data hiding techniques for error detection and correction [1-3].

Hash functions can also be used to improve attack resistance

[4].

Gul and Ozturk [5] proposed a triple data embedding

approach for watermarking. Here, the recovery bits (RBs) are

created based on the partner block concept with 4×4 size and

embedded in the 2 least significant bits (LSBs). Sinhal et al.

[6] arranged the color image pixels into 2×4 blocks of color

components. A block has 8 bytes. From the most significant

bits (MSBs) of the color components, watermark bits (WBs)

are generated and stored in LSBs applying a base-9 numbering

system. Authors claim they could detect 99% of tampering and

correct 80% of it successfully. Qin et al. [7] brought a tamper

detection and localization scheme using 3×3 blocks in an

overlapped manner. In this technique, WBs and RBs are

brought up from the 6 MSBs of the mean value. The WBs

replace central pixel LSBs, and the RBs replace the remaining

pixel LSBs. This technique effectively recovers the tampered

locations.

To improve security, the WBs can be scrambled using CM

and LM. Rawat and Raman [8] used Arnold’s map for this. In

this approach, WBs and bits from the map are made exclusive-

or (XORed) and then stored in LSBs. Botta et al. [9] argued

that Rawat and Raman could not localize the tampered places.

This issue is solved by using 7 MSBs to create the WBs. The

LSBs are substituted by the WBs. Prasad and Pal [10] plied

LM with shift and mod operators. Here, WBs are computed

using 5 MSBs, which are camouflaged plying mod and shift

operators. Tampered zones could be localized very effectively

in this approach. Sahu [11] coupled LM and XOR functions to

bury the WBs. The collage attack, text addition attack,

cropping attack, and copy-paste attack cannot affect the

watermark in Sahu’s technique. Nazari et al. [12] considered

2×2 pixels as a block and applied CM for watermarking. Here,

WBs are generated from higher planes and buried in lower

planes. The watermark is protected because of CM. Shehab et

al. [13] devised a watermarking approach applying singular

value factorization and LSB substitution with 4×4 blocks.

Used Arnold transformation to decide the insertion of RBs.

The authentication bits are plied to protect from vector

quantization threats. This technique improves the peak signal-

International Journal of Safety and Security Engineering
Vol. 14, No. 6, December, 2024, pp. 1871-1881

Journal homepage: http://iieta.org/journals/ijsse

1871

mailto:gandharba.swain@kluniversity.in
https://orcid.org/0000-0002-6629-8191
https://orcid.org/0000-0002-5260-9446
https://orcid.org/0000-0003-3942-3927
https://orcid.org/0000-0003-0793-4191
https://orcid.org/0000-0003-3375-3378
https://orcid.org/0000-0001-6586-1432
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140621&domain=pdf

to-noise ratio (PSNR) and tamper localization accuracy.

Kosuru et al. [14] considered 2×2 pixel blocks and

computed quotients and remainders from these 4 pixels of a

block. The quotients are treated as leaf nodes of the Merkle

tree and the root node is computed from the leaf nodes. The

root node is converted to binary and treated as WBs. Gull et al.

[15] also used the block concept for tamper localization. For a

4×4 pixel block, the WBs are generated from 4 MSBs of these

16 pixels. Furthermore, RBs are computed from the pixel

value average in the block. Here, the payload is only 1 bpp

with PSNR 51.94 dB. Laishram and Sing [16] proposed a

multipurpose watermarking approach based on the zone of

interest in frequency coefficients. It can achieve source

authentication, confidentiality, integrity check, ownership

identification, and tamper correction. It has built-in recovery

against various attacks like scaling, translation, rotation, etc.

This technique achieved a PSNR value of 53.17 dB, but the

hiding capacity (HC) is very poor.

Rinki et al. [17] used a non-consecutive matrix of pixels and

a matrix multiplication process to replace the 3 LSBs of the

channels of a color image with the bits of a secret grey image.

It achieves content integrity verification and copyright

protection. Chen et al. [18] brought a data-hiding technique

using Huffman code. Using this code, the MSB plane (4 MSBs)

is compressed, and LSBs are buried in vacant MSBs. Thus, the

room is created in LSBs to embed the data. The Huffman code

performs compression by computing the difference among the

higher nibbles. High embedding capacity is achieved. Jana et

al. [19] performed watermarking over 4×4 blocks using a

similarity matrix. A block may be categorized into one of 2

types: (i) smooth and (ii) complex. WBs are created from 8

MSBs. If the block is in the smooth category, then the block

mean is used as RBs. If the block is a complex category, then

fuzzy logic and imaging concept is utilized to generate RBs.

WBs and RBs are buried in lower-bit planes. Pal et al. [20]

applied interpolation to expand a 2×2 block into a 4×4 size.

Used local binary pattern and Hamming code to embed the

WBs. The error detection is possible at the receiver to some

extent. It possesses high embedding capacity.

Patsariya and Dixit [21] proposed watermarking for

copyright protection and authenticity using the CM for

improved security. They achieved security in addition to

robustness, but the resultant correlation values are not

appreciable. Chennamma et al. [22] proposed authentication

for medical images based on statistical correlations. This

approach divides the image into 4 by 4 blocks and in each

block estimates statistical correlations. The correlations serve

as watermarks and are embedded in lower bit planes. The

experimental readings like PSNR and SSIM are all right.

A majority of the articles detect the tamper locations

effectively, but are not able to correct those locations

accurately. This is a very crucial research issue in image

authentication.

2. REVIEW OF RELATED RESEARCH WORK AND

AUTHORS’ CONTRIBUTIONS

2.1 Review of related work

Figure 1 depicts the basic (7, 4) Hamming code [23]. The

redundant bit r1 is derived by doing an XOR operation over

bits f1, f2, and f4. Similarly, r2 is derived by doing an XOR

operation over bits f1, f3, and f4. Furthermore, r3 is derived by

doing XOR operation over bits f2, f3, and f4. Chang et al. [24]

plied Hamming code along with LM to generate the WBs from

4 MSBs. The LSBs are replaced by these WBs. They claimed

that the tampered pixels are correctly localized. The

application of LM protects from different attacks. The security

has been increased by the use of LM. The recorded value of

PSNR is acceptable, and this value is 37 dB. Wang et al. [25]

did watermarking using Hamming code for object verification.

In this technique, the watermark has been created using

Hamming code and embedded in LSBs. The integrity of the

watermark is verified by Hamming code. The original model

is not necessary for integrity verification and tamper

correction. It is simple and achieves lower distortion. Medical

images are very important objects. While transmitted over the

internet, errors may occur due to various reasons. Islam et al.

[26] did watermarking for medical images plying (8, 4)

Hamming code. This method is implemented in an

independent processor to be useful for real-life scenarios.

Trivedy and Pal [27] used LM with Hamming weight to make

the WBs, and these bits are concealed in pixels either by

altering their value by ±1 or by keeping their value the same.

If a bit of watermark is 1, then the pixel value is altered by ±1;

otherwise, the pixel value is not altered. The tamper detection

is possible. Hamming code has been used to identify the

positions where the WBs can be hidden. This technique

possesses very little HC.

Prasad and Pal [28] did watermarking using pixel value

differencing (PVD) and Hamming code. In their scheme, a

block (P1, P2) is considered. The 4 MSBs (2 from each pixel)

are the data bits; 3 redundant bits are derived as WBs, which

are then hidden in the lower bit plane by the PVD mechanism.

It eradicates the pixel boundary problem and gives a higher

PSNR value and higher SSIM. Prasad and Pal [29] also

detected tampering at the pixel level plying LM and Hamming

code. Using a generator matrix. Derived WBs from 4 MSBs.

This matrix creates 7 bits, out of which the 3 rightmost bits are

picked up as WBs and concealed at 3 LSBs. The PVD concept

is applied to hide the 3 WBs in LSBs. Security is surely

enhanced when LM is used. Jana et al. [30] also used basic

Hamming code for watermarking and error correction using

LSBs of 7 pixels. Nguyen and Le [31] performed data hiding

over 5 pixels using (5,3) Hamming code. This code is used to

detect possible places where the message bits can be buried.

Although the HC is only 12.2 bpp, the security is high because

the embedding positions are the key positions to secure the

embedded data. Ramos et al. [1] used an error-correcting code

to develop a fragile watermarking scheme, wherein the WBs

are created from redundant bits and hidden in frequency bands.

The primary objectives of data hiding techniques are higher

HC, lower distortion, and higher security. Khadse and Swain

[2] used quotient value differencing to hide data. They

generated the authentication bits from MSBs using Merkle tree

root and stored them in LSBs. The authentication bits can help

detect errors. Kosuru et.al. [3] also used the principle of

quotient value differencing for data hiding. They used the

Hamming code to create the parity bits from MSBs and store

them in LSBs. The error detection and correction happened

accurately.

f4 f3 f2 r3 f1 r2 r1

Figure 1. The (7, 4) Hamming code

1872

2.2 Research contribution

There exists a good number of watermarking techniques for

tamper detection, but very few of them provide perfect tamper

correction. So, it is also essential and interesting work to detect

the tampered pixels accurately and correct them perfectly. This

article proposes a watermarking technique using a modified

Hamming code version. The contribution is briefed below:

·The (12, 8) Hamming code is based on Hamming code (7,

4). Figure 2 can be referred to now. The 4 parity bits (P4, P3,

P2, and P1) are computed from the 8 data bits. To use this in

image watermarking, we have modified it by repositioning the

redundant bit positions towards the LSB side and altering their

computations appropriately.

·Three pixels are taken and divided into 2 units in such a

way that the LSBs are used as redundant bits. The computation

of redundant bits is modified as compared to the original way

in Hamming code.

·The reorganization of redundant bits is performed so that

the distortion will be minimal after storing the WBs in

redundant bit positions. The modified Hamming code is

described in Section 3.2.

Furthermore, we apply the LM sequence with the redundant

bits to improve security and generate the WBs. The details of

the computation are described in Section 3.1.

f8 f7 f6 f5 P4 f4 f3 f2 P3 f1 P2 P1

Figure 2. The (12, 8) Hamming code

3. PROPOSED TECHNIQUE: MODIFIED HAMMING

CODE BASED WATERMARKING (MHCBW)

Section 3.1 describes LM's generation of a random

sequence of bits. Section 3.2 explains the generation of WBs

and their hiding in the image. Section 3.3 explains the

extraction of WBs, localization of tampered pixels, and

correction of tampered pixels.

3.1 Used logistic map

The LM generates random values using 2 initial seeds α0

and γ. These seed values are constrained as follows: 0≤α0≤1

and 0<γ≤ 4. Our initial value α0 is 0.0396, and γ is 3.58. The

subsequent values αi can be computed by Eq. (1).

𝛼𝑖=γ×(1-𝛼𝑖−1)×𝛼𝑖−1 (1)

The LM can generate perfect random values if we take 3.57

<γ≤ 4. After obtaining αi value, we multiply it by 255 to derive

another value Xi. This Xi value is rounded up to get Yi. Eq. (2)

depicts this computation. The integer value Yi<255. Thereafter,

representing Yi value in 8-bit binary, we get Si. The 4 MSBs of

Si are termed as K and 4 LSBs of Si as T. So, K=k4 k3 k2 k1 and

T=t4 t3 t2 t1.

𝑋𝑖=𝛼𝑖×255 and 𝑌𝑖=Round (𝑋𝑖) (2)

3.2 Watermark embedding

The cover image is virtually split into 1×3 size disjoint

blocks. Suppose (P1, P2, P3) is a sample block. The various bits

of these 3 pixels are designated in Figure 3. The watermark

hiding in this sample block is illustrated in the below steps.

------------------------ 𝐏𝟏 ---------------------------------------

f8 f7 f6 f5 f4 r4 r3 r2

----------------------- 𝐏𝟐 ---------------------------------------

f3 f2 f1 q8 q7 r1 v4 v3

------------------------ 𝐏𝟑 ---------------------------------------

q6 q5 q4 q3 q2 q1 v2 v1

Figure 3. Original 1×3 block

Step 1: Partition the 24 bits of the block into 2 units, U1 and

U2, as shown in Figure 4.

------------------------------------ 𝐔𝟏 ------------------------------

f8 f7 f6 f5 f4 f3 f2 f1 r4 r3 r2 r1

----------------------------------- 𝐔𝟐 ------------------------------

q8 q7 q6 q5 q4 q3 q2 q1 v4 v3 v2 v1

Figure 4. Two data units, each 12-bit

Step 2: For U1 compute r1
′ , r2

′ , r3
′ and r4

′ using Eq. (3) and

Eq. (4) respectively.

𝑟1
′= 𝑓7 ⊕ 𝑓5 ⊕ 𝑓4 ⊕ 𝑓2 ⊕ 𝑓1,

𝑟2
′= 𝑓7 ⊕ 𝑓6 ⊕ 𝑓4 ⊕ 𝑓3 ⊕ 𝑓1

(3)

𝑟3
′= 𝑓8 ⊕ 𝑓4 ⊕ 𝑓3 ⊕ 𝑓2,

𝑟4
′= 𝑓8 ⊕ 𝑓7 ⊕ 𝑓6 ⊕ 𝑓5

(4)

Step 3: For U2 compute v1
′ , v2

′ , v3
′ and v4

′ using Eq. (5) and

Eq. (6) respectively.

𝑣1
′ = 𝑞7 ⊕ 𝑞5 ⊕ 𝑞4 ⊕ 𝑞2 ⊕ 𝑞1,

𝑣2
′ = 𝑞7 ⊕ 𝑞6 ⊕ 𝑞4 ⊕ 𝑞3 ⊕ 𝑞1

(5)

𝑣3
′ = 𝑞8 ⊕ 𝑞4 ⊕ 𝑞3 ⊕ 𝑞2,

𝑣4
′ = 𝑞8 ⊕ 𝑞7 ⊕ 𝑞6 ⊕ 𝑞5

(6)

Step 4: Accept the next 8 bits from the LM generator. Say it

is Si, which is depicted in Eq. (7).

𝑆𝑖=KT, where K= 𝑘4 𝑘3 𝑘2 𝑘1 and T= 𝑡4 𝑡3 𝑡2 𝑡1 (7)

Step 5: Compute the WBs r4
′′, r3

′′, r2
′′, r1

′′ for U1 and v4
′′, v3

′′,

v2
′′, v1

′′ for U2 as in Eq. (8) and Eq. (9) respectively.

𝑟𝑖
′′=𝑟𝑖

′ ⊕ 𝑘𝑖 , for i=1,2,3, and 4 (8)

𝑣𝑖
′′=𝑣𝑖

′ ⊕ 𝑡𝑖 , for i=1,2,3, and 4 (9)

----------------------- 𝐏𝟏
′ --

f8 f7 f6 f5 f4 r4
′′ r3

′′ r2
′′

----------------------- 𝐏𝟐
′ ---

f3 f2 f1 q8 q7 r1
′′ v4

′′ v3
′′

------------------------ 𝐏𝟑
′ ---

q6 q5 q4 q3 q2 q1 v2
′′ v1

′′

Figure 5. The watermarked block

1873

Step 6: To form the watermarked block, replace each ri by

ri
′′ in Figure 4, for i=1, 2, 3 and 4. Similarly, replace each vi

by vi
′′ in Figure 4, for i=1, 2, 3, and 4. The resultant block after

watermarking is shown in Figure 5. It is denoted as (P1
′, P2

′, P3
′).

Diagrammatically, the embedding procedure is shown in

Figure 6.

Figure 6. Watermark embedding

3.3 Retrieval of watermark with tamper correction

Divide the WI into 1×3 size blocks. Figure 5 represents a

sample block. The extraction of WBs is narrated in the below

steps.

Step 1: Partition the block (P1
′, P2

′, P3
′) into 2 units U1

′ and U2
′

as shown in Figure 7.

Step 2: Take the next 8-bit LM sequence value, Si and

represent it as Si=KT, where K=k4 k3 k2 k1 and T=t4 t3 t2 t1.

Compute r4
′ , r3

′ , r2
′ , r1

′ and v4
′ , v3

′ , v2
′ , v1

′ using Eq. (10) and

Eq. (11) respectively.

ri
′=ri

′′ ⊕ ki, for i=1,2,3, and 4 (10)

𝑣𝑖
′=𝑣𝑖

′′ ⊕ 𝑡𝑖 , for i=1,2,3, and 4 (11)

Step 3: Compute r1
∗, r2

∗ using Eq. (12) and r3
∗, r4

∗ using Eq.

(13).

𝑟1
∗=𝑟1

′ ⊕ 𝑓7 ⊕ 𝑓5 ⊕ 𝑓4 ⊕ 𝑓2 ⊕ 𝑓1,
 𝑟2

∗=𝑟2
′ ⊕ 𝑓7 ⊕ 𝑓6 ⊕ 𝑓4 ⊕ 𝑓3 ⊕ 𝑓1

(12)

𝑟3
∗=𝑟3

′ ⊕ 𝑓8 ⊕ 𝑓4 ⊕ 𝑓3 ⊕ 𝑓2,
 𝑟4

∗=𝑟4
′ ⊕ 𝑓8 ⊕ 𝑓7 ⊕ 𝑓6 ⊕ 𝑓5

(13)

Step 4: Compute v1
∗, v2

∗ , v3
∗, v4

∗ using Eq. (14) and Eq. (15).

𝑣1
∗=𝑣1

′ ⊕ 𝑞7 ⊕ 𝑞5 ⊕ 𝑞4 ⊕ 𝑞2 ⊕ 𝑞1,
 𝑣2

∗=𝑣2
′ ⊕ 𝑞7 ⊕ 𝑞6 ⊕ 𝑞4 ⊕ 𝑞3 ⊕ 𝑞1

(14)

𝑣3
∗=𝑣3

′ ⊕ 𝑞8 ⊕ 𝑞4 ⊕ 𝑞3 ⊕ 𝑞2,
𝑣4

∗=𝑣4
′ ⊕ 𝑞8 ⊕ 𝑞7 ⊕ 𝑞6 ⊕ 𝑞5

(15)

Step 5: If r4
∗r3

∗r2
∗r1

∗ ≠ 0000, then there is tampering in U1
′ .

The correction is done as shown in Table 1. If r4
∗r3

∗r2
∗r1

∗ =
0000. Then there has been no tampering in U1

′ . Extract the 4

watermarked bits from U1
′ , these are r4

′′r3
′′r2

′′r1
′′.

-----------------------------------𝐔𝟏
′ ------------------------------

f8 f7 f6 f5 f4 f3 f2 f1 r4
′′ r3

′′ r2
′′ r1

′′

----------------------------------𝐔𝟐
′ -------------------------------

q8 q7 q6 q5 q4 q3 q2 q1 v4
′′ v3

′′ v2
′′ v1

′′

Figure 7. Two data units from the watermarked block

Step 6: If v4
∗v3

∗v2
∗v1

∗ ≠ 0000, then there is tampering in U2
′ .

The correction is done as shown in Table 2. If v4
∗v3

∗v2
∗v1

∗ =
0000. Then there has been no tampering in U2

′ . Extract the 4

watermarked bits from U2
′ , these are v4

′′v3
′′v2

′′v1
′′.

Diagrammatically, the extraction procedure is shown in

Figure 8.

1874

Table 1. Correction in U1
′

𝐫𝟒
∗𝐫𝟑

∗𝐫𝟐
∗𝐫𝟏

∗
Tampered

Location
Correction

0001 r1
′′ is tampered

Correct r1
′′ by complementing

it

0010 r2
′′ is tampered

Correct r2
′′ by complementing

it

0011 f1 is tampered
Correct f1 by complementing

it

0100 r3
′′ is tampered

Correct r3
′′ by complementing

it

0101 f2 is tampered
Correct f2 by complementing

it

0110 f3 is tampered
Correct f3 by complementing

it

0111 f4 is tampered
Correct f4 by complementing

it

1000 r4
′′ is tampered

Correct r4
′′ by complementing

it

1001 f5 is tampered
Correct f5 by complementing

it

1010 f6 is tampered
Correct f6 by complementing

it

1011 f7 is tampered
Correct f7 by complementing

it

1100 f8 is tampered
Correct f8 by complementing

it

Table 2. Correction in U2
′

𝐯𝟒
∗𝐯𝟑

∗𝐯𝟐
∗𝐯𝟏

∗
Tampered

Location
Correction

0001 v1
′′ is tampered

Correct v1
′′ by

complementing it

0010 v2
′′ is tampered

Correct v2
′′ by

complementing it

0011 q1 is tampered
Correct q1 by complementing

it

0100 v3
′′ is tampered

Correct v3
′′ by

complementing it

0101 q2 is tampered
Correct q2 by complementing

it

0110 q3 is tampered
Correct q3 by complementing

it

0111 q4 is tampered
Correct q4 by complementing

it

1000 v4
′′ is tampered

Correct v4
′′ by

complementing it

1001 q5 is tampered
Correct q5 by complementing

it

1010 q6 is tampered
Correct q6 by complementing

it

1011 q7 is tampered
Correct q7 by complementing

it

1100 q8 is tampered
Correct q8 by complementing

it

Figure 8. The tamper detection, tamper correction, and watermark extraction procedure

1875

3.4 Example of watermark embedding and watermark

extraction

This sub-section presents 3 examples to help you better

understand the proposed watermarking technique.

Figure 9 describes an example of watermark embedding in

a step-by-step manner.

Figure 10 depicts an example of WB extraction where there

is no error. This example presents the extraction procedure

with pixel sample values at the bit level with no error case.

Figure 11 illustrates the extractions of WBs with error bits

correction. This example presents the extraction procedure

with pixel sample values at the bit level and an error correction

case.

Figure 9. Example of watermark embedding

Figure 10. Example of watermark extraction

1876

Figure 11. Example of watermark extraction with error correction

4. RESULTS ANALYSIS

This MHCBW technique is coded in MATLAB on a

computing device with an i5 processor. Figure 12 depicts the

original images (OIs) from the SIPI database [32]. Although

several images are used for testing, only a few samples are

shown here. Figure 13 depicts some samples of WIs

accordingly. Under each WI, the PSNR and SSIM are

mentioned.

The effectiveness of the MHCBW scheme is measured by

parameters like embedding time (ET), extraction time (ExT),

SSIM, HC, PSNR, and accuracy (ACC). Eq. (16) computes the

PSNR, a measure of distortion in WI.

PSNR = 10 × log10

m × n × 255 × 255

∑ ∑ (Pij − Qij)
2n

j=1
m
i=1

 (16)

HC is the total hiding capacity in all the pixels of the image.

Capacity of one pixel is represented as bpp i.e., bits per pixel.

Eq. (17) represents structural similarity (SSIM) of WI with OI

[26]. Pij is a pixel of OI and Qij is a pixel of WI. P̅ is mean

value of all Pij values of OI. Q̅ is mean value of all Qij values

of WI. Two constants c1 and c2 has been inserted in (P̅2 +

Q̅2+c1) and (σx
2 + σy

2 + c2) to ensure the denominator to be

non-zero. The constant c1=(K1L)2, K1 ≪ 1 and L value is 255

for grey image. The constant c2=(K2L)2, and K2 ≪ 1. Here,

variance of OI to WI is σpq, variance of OI is σp
2 , and variance

of WI is σq
2 . SSIM value will approach to 1 where the WI is

very similar with OI. The ACC has been computed in Eq. (18)

[26] using the counts of false negatives (FN), true negatives

(TN), false positives (FP) and true positives (TP).

Lena Baboon Goldhill

Crowd Cameraman Peppers

Barbara Boat

Figure 12. OIs

1877

(SSIM, PSNR) =

(0.9818, 39.19)
(0.9904, 39.19) (0.9883, 39.16)

(0.9869, 39.30) (0.9723, 39.22) (0.9748, 39.27)

(0.9932, 39.22) (0.9877, 39.18)

Figure 13. WIs

SSIM=
(2P ̅Q̅+c1)(2σxy+ c2)

(P̅2+Q̅2+c1) (σx
2+ σy

2+c2)
 (17)

ACC =
TP+TN

TP+TN+FP+FN
 (18)

Table 3 records the outcomes of this proposed MHCBW

scheme. Table 3 records the PSNR value as 39.21 dB, so it is

acceptable. The bpp is 2.67. The average value of SSIM is

0.9844, which indicates that OI and WI are more than 99%

alike. ACC value is 0.99, which conveys that the number of

tampered pixels is identified with 99% correctness.

Furthermore, embedding and extraction of the watermark can

be performed in 10.64 and 12.49 secs respectively.

Table 3. Performance measure of MHCBW scheme

512×512

Images
SSIM

PSNR

(dB)
ACC bpp

E×T

(secs)

ET

(secs)

Lena 0.9818 39.19 0.9999 2.67 11.43 10.35

Baboon 0.9904 39.19 0.9999 2.67 11.29 10.09

Goldhill 0.9883 39.16 0.9999 2.67 11.30 10.02

Crowd 0.9869 39.30 0.9999 2.67 11.34 10.83

Camera-

man
0.9723 39.22 0.9999 2.67 11.27 10.96

Pepper 0.9748 39.27 0.9999 2.67 14.77 10.87

Barbara 0.9932 39.22 0.9999 2.67 14.17 10.80

Boat 0.9877 39.18 0.9999 2.67 14.36 11.19

Average 0.9844 39.21 0.9999 2.67 12.49 10.64

Figure 14 conveys the tampered Lena images with

tampering % from 5% to 45%. A pixel is tampered with if one

or more of its 8 bits are changed. The tampered pixels are

localized and made white color for easy reference by the

readers. It is shown for only one image. It is performed for all

the test images. Table 4 depicts the mean value of bpp, PSNR,

SSIM, and ACC over 8 images with tampering percentages

starting from 0% to 45%.

5% tampered 10% tampered 15% tampered

20% tampered 25% tampered 30% tampered

35% tampered 40% tampered 45% tampered

Figure 14. Tampered Lena images (the tampered location

pixels are made white color for reference)

(a)

(b)

(c)

Figure 15. (a) Tampering rate versus PSNR, (b) Tampering

rate versus SSIM, and (c) Tampering rate versus ACC

39.21 38.68 38.22 37.79 37.41 37.07 36.76 36.48 36.23 36.01

0

10

20

30

40

50

60

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

P
S

N
R

Tampering percentage

0.9844 0.9821 0.9899 0.9881 0.9864 0.9849 0.98360.9825 0.9816
0.9807

0.56

0.66

0.76

0.86

0.96

1.06

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

S
S

IM

Tampering percentage

0.9999 0.9993 0.9986 0.9979 0.9973 0.9967 0.9961 0.9955 0.9948
0.9941

0.84

0.89

0.94

0.99

1.04

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

A
C

C

Tampering percentage

1878

Figure 15(a) depicts a graph for the PSNR at tampering rate.

It can be observed from this graph that if we further raise the

tampering rate after 45%, PSNR can be at least 30 dB. Figure

15(b) depicts a plot for SSIM at different tampering rates, and

Figure 15(c) depicts a plot for ACC at different tampering

rates. From Figure 15(b), we can achieve an SSIM value

greater than 0.98 even after raising the tampering by more than

45%. From Figure 15(c), we can note that the ACC value is

greater than 0.99 even after raising the tampering rate beyond

45%.

Table 5 represents a comparison of the average values of

different parameters of this MHCBW technique with Nazari et

al. [12], Chang et al. [24], Prasad and Pal [28], and Prasad and

Pal [29]. Techniques of Chang et al. [24], Prasad and Pal [28],

and Prasad and Pal [29] are based on Hamming code. Nazari

et al.’s [12] scheme includes a chaotic map. Furthermore,

Figure 16 shows a bar graph distinguishing the HC and PSNR

of the MHCBW technique with the existing schemes; Figure

17 depicts a bar graph comparing the SSIM and ACC values

of the MHCBW technique with existing schemes.

From Figure 16, it may be noted that there is a better trade-

off between the HC and PSNR of the MHCBW scheme as

compared to the 4 existing schemes. Prasad and Pal’s [28]

technique possesses very low bpp but higher PSNR. Nazari et

al.’s [12] technique possesses both low bpp and low PSNR.

From Figure 17, it may be observed that the SSIM value in

MHCBW technique is lesser than the works of Nazari et al.

[12], Chang et al. [24], Prasad and Pal [28], and Prasad and Pal

[29], but the ACC values of the MHCBW scheme is higher

than the works of Nazari et al. [12], Chang et al. [24], Prasad

and Pal [28], and Prasad and Pal [29].

Figure 16. PSNR, bpp comparison

Figure 17. SSIM, ACC comparison

Table 4. Efficacy measurement at varied tampering rates

Efficacy

Parameter

Tampering Rate

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

bpp 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67

PSNR 39.21 38.68 38.22 37.79 37.41 37.07 36.76 36.48 36.23 36.01

ACC 0.9999 0.9993 0.9986 0.9979 0.9973 0.9967 0.9961 0.9955 0.9948 0.9941

SSIM 0.9844 0.9821 0.9899 0.9881 0.9864 0.9849 0.9836 0.9825 0.9816 0.9807

Table 5. Comparison of average efficacy parameter values

Technique bpp PSNR SSIM ACC

Nazari et al.’s [12] 1.66 36.50 0.9928 0.9845

Chang et al.’s [24] 3.0 37.88 0.9844 0.9969

Prasad and Pal’s [28] 1.5 42.09 0.9994 0.9995

Prasad and Pal’s [29] 3.0 37.94 0.9861 0.9990

Proposed MHCBW scheme 2.67 39.21 0.9844 0.9999

5. CONCLUSIONS

This article proposes MHCBW technique for image tamper

detection and correction. It uses a modified version of

Hamming code for error detection and correction. It uses an

LM sequence to improve the security. The WBs are stored in

redundant bit positions and can be extracted accurately.

Experimental results reveal that this MHCBW technique

maintains a fair compromise between HC and PSNR

compared to existing techniques. Nazari et al.’s technique

produces lesser PSNR and bpp than the proposed one. The

other 3 existing techniques produce either higher bpp with

lower PSNR or vice-versa compared to the MHCBW

technique. The MHCBW scheme's estimated average PSNR is

39.21, and bpp is 2.67. The estimated SSIM value of the

MHCBW technique is 0.9844, which indicates that the OIs are

structurally similar to the corresponding WIs. The estimated

ACC value of the MHCBW technique is 0.9999, which

indicates that the WBs could be correctly extracted.

The error detection and correction are applied on 3 pixels,

i.e., 24 bits, by spreading them in 2 evacuation units. In each

unit, only 1 bit error is identified and corrected by applying the

modified Hamming code. The error detection and correction

ideas can be extended to 2 or more bits per unit by changing

the modified Hamming code or introducing a new error-

detecting and correcting code.

REFERENCES

[1] Ramos, A.M., Artiles, J.A.P., Chaves, D.P.B., Pimentel,

C. (2023). A fragile image watermarking scheme in

DWT domain using chaotic sequences and error-

correction codes. Entropy, 25(3): 1-23.

https://doi.org/10.3390/e25030508

[2] Khadse, D.B., Swain, G. (2023). Data hiding and

integrity verification based on quotient value

differencing and Merkle tree. Arabian Journal for

1.66 3 1.5 3 2.67

36.5 37.88
42.09

37.94 39.21

0

10

20

30

40

50

 Nazari et al.

[12]

 Chang et al.

[24]

 Prasad &

Pal [28]

 Prasad &

Pal [29]

Proposed

PSNR and bpp comparison bpp PSNR (dB)

0.9928 0.9844 0.9994 0.9861
0.9844

0.9845 0.9969 0.9995 0.999 0.9999

0.26

0.46

0.66

0.86

1.06

 Nazari et
al. [12]

 Chang et
al. [24]

 Prasad &
Pal [28]

 Prasad &
Pal [29]

Proposed

SSIM and ACC comparison SSIM ACC

1879

https://doi.org/10.3390/e25030508

Science and Engineering, 48: 1793-1805.

https://doi.org/10.1007/s13369-022-06961-9

[3] Kosuru, S.N.V.J.D., Pradhan, A., Basith, K.A., Sonar, R.,

Swain, G. (2023). Digital image steganography with

error correction on extracted data. IEEE Access, 11:

80945-80957.

https://doi.org/10.1109/ACCESS.2023.3300918

[4] Bhalerao, S., Ansari, I.A., Kumar, A. (2021). A secure

image watermarking for tamper detection and

localization. Journal of Ambient Intelligence and

Humanized Computing, 12: 1057-1068.

https://doi.org/10.1007/s12652-020-02135-3

[5] Gul, E., Ozturk, S. (2020). A novel triple recovery

information embedding approach for self-embedded

digital image watermarking. Multimedia Tools and

Applications, 79: 31239–31264.

https://doi.org/10.1007/s11042-020-09548-4

[6] Sinhal, R., Ansari, I.A., Ahn, C.W. (2020). Blind image

watermarking for localization and restoration of color

images. IEEE Access, 8: 200157-200169.

https://doi.org/10.1109/ACCESS.2020.3035428

[7] Qin, C., Ji, P., Zhang, X., Dong, J., Wang, J. (2017).

Fragile image watermarking with pixel-wise recovery

based on overlapping embedding strategy. Signal

Processing, 138: 280-293.

https://doi.org/10.1016/j.sigpro.2017.03.033

[8] Rawat, S., Raman, B. (2011). A chaotic system based

fragile watermarking scheme for image tamper detection.

International Journal of Electronics and Communications

(AEU), 65: 840-847.

https://doi.org/10.1016/j.aeue.2011.01.016

[9] Botta, M., Cavagnino, D., Pomponiu, V. (2015). A

successful attack and revision of chaotic system based

fragile watermarking scheme for image tamper detection.

International Journal of Electronics and Communications

(AEU), 69(1): 242-245.

https://doi.org/10.1016/j.aeue.2014.09.004

[10] Prasad, S., Pal, A.K. (2020). A secure fragile

watermarking scheme for protecting integrity of digital

images. Iranian Journal of Science and Technology,

Transactions of Electrical Engineering, 44: 703-727.

https://doi.org/10.1007/s40998-019-00275-7

[11] Sahu, A.K. (2022). A logistic map based blind and fragile

watermarking for tamper detection and localization in

images. Journal of Ambient Intelligence and Humanizes

Computing, 13: 3869-3881.

https://doi.org/10.1007/s12652-021-03365-9

[12] Nazari, M., Sharif, A., Mollaeefar, M. (2017). An

improved method for digital image fragile watermarking

based on chaotic maps. Multimedia Tools and

Applications, 76: 16107-16123.

https://doi.org/10.1007/s11042-016-3897-x

[13] Shehab, A., Elhoseny, M., Muhammad, K., Sangaiah,

A.K., Yang, P., Huang, H., Hou, G. (2018). Secure and

Robust fragile watermarking scheme for medical images.

IEEE Access, 6: 10269-10278.

https://doi.org/10.1109/ACCESS.2018.2799240

[14] Kosuru, S.N.V.J.D., Swain, G., Kumar, N., Pradhan, A.

(2022). Image tamper detection and correction using

Merkle tree and remainder value differencing. Optik,

261(169212): 1-11.

https://doi.org/10.1016/j.ijleo.2022.169212

[15] Gull, S., Mansour, R.F., Aljehane, N.O., Parah, S.A.

(2021). A self-embedding technique for tamper detection

and localization of medical images for smart health.

Multimedia Tools and Applications, 80: 29939-29964.

https://doi.org/10.1007/s11042-021-11170-x

[16] Laishram, D., Sing, K.M. (2021). A watermarking

scheme for source authentication, ownership

identification, tamper detection, and restoration for color

medical images. Multimedia Tools and Applications, 80:

23815-23875. https://doi.org/10.1007/s11042-020-

10389-4

[17] Rinki, K., Verma, P., Singh, R.K. (2022). A novel matrix

multiplication based LSB substitution mechanism for

data security and authentication. Journal of King Saud

University - Computer and Information Sciences, 34:

5510-5524. https://doi.org/10.1016/j.jksuci.2021.01.013

[18] Chen, C.C., Chang, C.C., Chen, K. (2021). High capacity

reversible data hiding in encrypted image based on

Huffman coding and differences of high nibbles of pixels.

Journal of Visual Communication and Image

Representation, 76: 103060.

https://doi.org/10.1016/j.jvcir.2021.103060

[19] Jana, M., Jana, B., Joardar, S. (2022). Local feature based

self-embedding fragile watermarking scheme for

tampered detection and recovery utilizing AMBTC with

fuzzy logic. Journal of King Saud University - Computer

and Information Sciences, 34(10): 9822-9835.

https://doi.org/10.1016/j.jksuci.2021.12.011

[20] Pal, P., Jana, B., Bhaumik, J. (2021). An image

authentication and tampered detection scheme exploiting

local binary pattern along with Hamming error correcting

code. Wireless Personal Communication, 121: 939-961.

https://doi.org/10.1007/s11277-021-08666-y

[21] Patsariya, S., Dixit, M. (2022). A new block based non-

blind hybrid color image watermarking approach using

lifting scheme and chaotic encryption based on Arnold

cat map. Traitment du Signal, 39(4): 1159-1168.

https://doi.org/10.18280/ts.390408

[22] Chennamma, H.R., Basavarajappa, B.K.H., Basavaraju,

M., Sowmya, K.N., Kumar, A.V.S. (2024). Medical

image authentication using statistical correlations.

International Journal of Safety and Security Engineering,

14(5): 1487-1493. https://doi.org/10.18280/ijsse.140516

[23] Hamming, R.W. (1950). Error detecting and error

correcting codes. Bell System Technical Journal, 29(2):

147-160. https://doi.org/10.1002/j.1538-

7305.1950.tb00463.x

[24] Chang, C.C., Chen, K.N., Lee, C.F., Liu, L.J. (2011). A

secure fragile watermarking scheme based on chaos-and-

hamming code. Journal of Systems and Software, 84(9):

1462-1470. https://doi.org/10.1016/j.jss.2011.02.029

[25] Wang, J.T., Chang, Y.C., Yu, C.Y., Yu, S.S. (2014).

Hamming code based watermarking scheme for 3D

model verification. Mathematical Problems in

Engineering, 2014(241093): 1-7.

https://doi.org/10.1155/2014/241093

[26] Islam, M.S., Kim, C.H., Kim, J.M. (2015). A GPU-based

(8,4) Hamming decoder for secure transmission of

watermarked medical images. Cluster Computing, 18:

333-341. https://doi.org/10.1007/s10586-014-0392-x

[27] Trivedy, S., Pal, A.K. (2017). A LM-based fragile

watermarking scheme of digital images with tamper

detection. Iranian Journal of Science and Technology,

Transactions of Electrical Engineering, 41: 103-113.

https://doi.org/10.1007/s40998-017-0021-9

[28] Prasad, S., Pal, A.K. (2020). A tamper detection suitable

1880

https://doi.org/10.1007/s12652-020-02135-3
https://doi.org/10.1007/s11042-020-09548-4
https://doi.org/10.1016/j.sigpro.2017.03.033
https://doi.org/10.1016/j.aeue.2011.01.016
https://doi.org/10.1016/j.aeue.2014.09.004
https://link.springer.com/journal/40998
https://link.springer.com/journal/40998
https://doi.org/10.1007/s40998-019-00275-7
https://doi.org/10.1007/s12652-021-03365-9
https://doi.org/10.1109/ACCESS.2018.2799240
https://doi.org/10.1016/j.ijleo.2022.169212
https://doi.org/10.1007/s11042-020-10389-4
https://doi.org/10.1007/s11042-020-10389-4
https://doi.org/10.1016/j.jksuci.2021.01.013
https://doi.org/10.1016/j.jvcir.2021.103060
https://doi.org/10.1016/j.jksuci.2021.12.011
https://doi.org/10.1007/s11277-021-08666-y
https://doi.org/10.18280/ts.390408
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1016/j.jss.2011.02.029
https://link.springer.com/journal/40998
https://link.springer.com/journal/40998
https://doi.org/10.1007/s40998-017-0021-9

fragile watermarking scheme based on novel payload

embedding strategy. Multimedia Tools and Applications,

79: 1673-1705. https://doi.org/10.1007/s11042-019-

08144-5

[29] Prasad, S., Pal, A.K. (2020). Hamming code and logistic-

map based pixel-level active forgery detection scheme

using fragile watermarking. Multimedia Tools and

Applications, 79: 20897-20928.

https://doi.org/10.1007/s11042-020-08715-x

[30] Jana, B., Giri, D., Mondal, S.K. (2018). Dual image

based reversible data hiding scheme using (7,4)

Hamming code. Multimedia Tools and Applications,

77(1): 763-785. https://doi.org/10.1007/s11042-016-

4230-4

[31] Nguyen, T.D., Le, H.D. (2021). A reversible data hiding

scheme based on (5, 3) Hamming code using extra

information on overlapped pixel blocks of grayscale

images. Multimedia Tools and Applications, 80: 13099-

13120. https://doi.org/10.1007/s11042-020-10347-0

[32] University of Southern California (USC) Signal and

Image Processing Institute, “USC-SIPI image database,”

http://sipi.usc.edu/database/database.php?volume=misc/,

accessed on December 15, 2022.

1881

https://doi.org/10.1007/s11042-019-08144-5
https://doi.org/10.1007/s11042-019-08144-5
https://doi.org/10.1007/s11042-020-08715-x
https://doi.org/10.1007/s11042-016-4230-4
https://doi.org/10.1007/s11042-016-4230-4
https://doi.org/10.1007/s11042-020-10347-0

