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Tampering an image became more manageable due to the advent of photo editing 

software. So, it is essential to detect and correct the tampered locations. This article 

presents an image watermarking scheme that applies a modified version of 8 data bits and 

4 redundant bits of Hamming code. It operates over a block of 3 pixels at a time. The 24 

bits of the 3 pixels are rearranged and divided into 2 processing units, each comprising 12 

bits. Out of 12 bits in a unit, 4 bits are used as redundant bits, and 8 bits are used as data 

bits. Watermark bits (WBs) are generated from data bits using a logistic map (LM) and 

stored in redundant bit positions. Experimental results reveal that this proposed technique 

maintains a fair balance for both capacity and distortion. The measured capacity is 2.67 

bits per pixel (bpp) with a 39.21 decibels (dB) distortion. The estimated structural 

similarity (SSIM) is 0.9844, and the accuracy is 0.9999. Furthermore, it was also found 

that the proposed technique performs fairly well compared to existing techniques in 

capacity and distortion. 
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1. INTRODUCTION

Tampering a watermarked image (WI) is very easy by using 

photo editing tools. So, accurate tamper detection and 

correction mechanisms play a vital role in this field of study. 

Image watermarking can be done in the spatial domain and 

transform domain. In the spatial domain, the watermarking 

techniques use block-by-block or pixel-by-pixel for 

watermark hiding. To ensure the safety of the embedded 

watermark, we can use a chaotic map (CM) or logistic map 

(LM). Different kinds of error correction codes can be used in 

data hiding techniques for error detection and correction [1-3]. 

Hash functions can also be used to improve attack resistance 

[4]. 

Gul and Ozturk [5] proposed a triple data embedding 

approach for watermarking. Here, the recovery bits (RBs) are 

created based on the partner block concept with 4×4 size and 

embedded in the 2 least significant bits (LSBs). Sinhal et al. 

[6] arranged the color image pixels into 2×4 blocks of color

components. A block has 8 bytes. From the most significant

bits (MSBs) of the color components, watermark bits (WBs)

are generated and stored in LSBs applying a base-9 numbering

system. Authors claim they could detect 99% of tampering and

correct 80% of it successfully. Qin et al. [7] brought a tamper

detection and localization scheme using 3×3 blocks in an

overlapped manner. In this technique, WBs and RBs are

brought up from the 6 MSBs of the mean value. The WBs 

replace central pixel LSBs, and the RBs replace the remaining 

pixel LSBs. This technique effectively recovers the tampered 

locations.  

To improve security, the WBs can be scrambled using CM 

and LM. Rawat and Raman [8] used Arnold’s map for this. In 

this approach, WBs and bits from the map are made exclusive-

or (XORed) and then stored in LSBs. Botta et al. [9] argued 

that Rawat and Raman could not localize the tampered places. 

This issue is solved by using 7 MSBs to create the WBs. The 

LSBs are substituted by the WBs. Prasad and Pal [10] plied 

LM with shift and mod operators. Here, WBs are computed 

using 5 MSBs, which are camouflaged plying mod and shift 

operators. Tampered zones could be localized very effectively 

in this approach. Sahu [11] coupled LM and XOR functions to 

bury the WBs. The collage attack, text addition attack, 

cropping attack, and copy-paste attack cannot affect the 

watermark in Sahu’s technique. Nazari et al. [12] considered 

2×2 pixels as a block and applied CM for watermarking. Here, 

WBs are generated from higher planes and buried in lower 

planes. The watermark is protected because of CM. Shehab et 

al. [13] devised a watermarking approach applying singular 

value factorization and LSB substitution with 4×4 blocks. 

Used Arnold transformation to decide the insertion of RBs. 

The authentication bits are plied to protect from vector 

quantization threats. This technique improves the peak signal-
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to-noise ratio (PSNR) and tamper localization accuracy.  

Kosuru et al. [14] considered 2×2 pixel blocks and 

computed quotients and remainders from these 4 pixels of a 

block. The quotients are treated as leaf nodes of the Merkle 

tree and the root node is computed from the leaf nodes. The 

root node is converted to binary and treated as WBs. Gull et al. 

[15] also used the block concept for tamper localization. For a 

4×4 pixel block, the WBs are generated from 4 MSBs of these 

16 pixels. Furthermore, RBs are computed from the pixel 

value average in the block. Here, the payload is only 1 bpp 

with PSNR 51.94 dB. Laishram and Sing [16] proposed a 

multipurpose watermarking approach based on the zone of 

interest in frequency coefficients. It can achieve source 

authentication, confidentiality, integrity check, ownership 

identification, and tamper correction. It has built-in recovery 

against various attacks like scaling, translation, rotation, etc. 

This technique achieved a PSNR value of 53.17 dB, but the 

hiding capacity (HC) is very poor. 

Rinki et al. [17] used a non-consecutive matrix of pixels and 

a matrix multiplication process to replace the 3 LSBs of the 

channels of a color image with the bits of a secret grey image. 

It achieves content integrity verification and copyright 

protection. Chen et al. [18] brought a data-hiding technique 

using Huffman code. Using this code, the MSB plane (4 MSBs) 

is compressed, and LSBs are buried in vacant MSBs. Thus, the 

room is created in LSBs to embed the data. The Huffman code 

performs compression by computing the difference among the 

higher nibbles. High embedding capacity is achieved. Jana et 

al. [19] performed watermarking over 4×4 blocks using a 

similarity matrix. A block may be categorized into one of 2 

types: (i) smooth and (ii) complex. WBs are created from 8 

MSBs. If the block is in the smooth category, then the block 

mean is used as RBs. If the block is a complex category, then 

fuzzy logic and imaging concept is utilized to generate RBs. 

WBs and RBs are buried in lower-bit planes. Pal et al. [20] 

applied interpolation to expand a 2×2 block into a 4×4 size. 

Used local binary pattern and Hamming code to embed the 

WBs. The error detection is possible at the receiver to some 

extent. It possesses high embedding capacity.  

Patsariya and Dixit [21] proposed watermarking for 

copyright protection and authenticity using the CM for 

improved security. They achieved security in addition to 

robustness, but the resultant correlation values are not 

appreciable. Chennamma et al. [22] proposed authentication 

for medical images based on statistical correlations. This 

approach divides the image into 4 by 4 blocks and in each 

block estimates statistical correlations. The correlations serve 

as watermarks and are embedded in lower bit planes. The 

experimental readings like PSNR and SSIM are all right. 

A majority of the articles detect the tamper locations 

effectively, but are not able to correct those locations 

accurately. This is a very crucial research issue in image 

authentication. 

 

 

2. REVIEW OF RELATED RESEARCH WORK AND 

AUTHORS’ CONTRIBUTIONS 

 

2.1 Review of related work 

 

Figure 1 depicts the basic (7, 4) Hamming code [23]. The 

redundant bit r1 is derived by doing an XOR operation over 

bits f1, f2, and f4. Similarly, r2 is derived by doing an XOR 

operation over bits f1, f3, and f4. Furthermore, r3 is derived by 

doing XOR operation over bits f2, f3, and f4. Chang et al. [24] 

plied Hamming code along with LM to generate the WBs from 

4 MSBs. The LSBs are replaced by these WBs. They claimed 

that the tampered pixels are correctly localized. The 

application of LM protects from different attacks. The security 

has been increased by the use of LM. The recorded value of 

PSNR is acceptable, and this value is 37 dB. Wang et al. [25] 

did watermarking using Hamming code for object verification. 

In this technique, the watermark has been created using 

Hamming code and embedded in LSBs. The integrity of the 

watermark is verified by Hamming code. The original model 

is not necessary for integrity verification and tamper 

correction. It is simple and achieves lower distortion. Medical 

images are very important objects. While transmitted over the 

internet, errors may occur due to various reasons. Islam et al. 

[26] did watermarking for medical images plying (8, 4) 

Hamming code. This method is implemented in an 

independent processor to be useful for real-life scenarios. 

Trivedy and Pal [27] used LM with Hamming weight to make 

the WBs, and these bits are concealed in pixels either by 

altering their value by ±1 or by keeping their value the same. 

If a bit of watermark is 1, then the pixel value is altered by ±1; 

otherwise, the pixel value is not altered. The tamper detection 

is possible. Hamming code has been used to identify the 

positions where the WBs can be hidden. This technique 

possesses very little HC.  

Prasad and Pal [28] did watermarking using pixel value 

differencing (PVD) and Hamming code. In their scheme, a 

block (P1, P2) is considered. The 4 MSBs (2 from each pixel) 

are the data bits; 3 redundant bits are derived as WBs, which 

are then hidden in the lower bit plane by the PVD mechanism. 

It eradicates the pixel boundary problem and gives a higher 

PSNR value and higher SSIM. Prasad and Pal [29] also 

detected tampering at the pixel level plying LM and Hamming 

code. Using a generator matrix. Derived WBs from 4 MSBs. 

This matrix creates 7 bits, out of which the 3 rightmost bits are 

picked up as WBs and concealed at 3 LSBs. The PVD concept 

is applied to hide the 3 WBs in LSBs. Security is surely 

enhanced when LM is used. Jana et al. [30] also used basic 

Hamming code for watermarking and error correction using 

LSBs of 7 pixels. Nguyen and Le [31] performed data hiding 

over 5 pixels using (5,3) Hamming code. This code is used to 

detect possible places where the message bits can be buried. 

Although the HC is only 12.2 bpp, the security is high because 

the embedding positions are the key positions to secure the 

embedded data. Ramos et al. [1] used an error-correcting code 

to develop a fragile watermarking scheme, wherein the WBs 

are created from redundant bits and hidden in frequency bands. 

The primary objectives of data hiding techniques are higher 

HC, lower distortion, and higher security. Khadse and Swain 

[2] used quotient value differencing to hide data. They 

generated the authentication bits from MSBs using Merkle tree 

root and stored them in LSBs. The authentication bits can help 

detect errors. Kosuru et.al. [3] also used the principle of 

quotient value differencing for data hiding. They used the 

Hamming code to create the parity bits from MSBs and store 

them in LSBs. The error detection and correction happened 

accurately. 

 

f4 f3 f2 r3 f1 r2 r1 

 

Figure 1. The (7, 4) Hamming code 
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2.2 Research contribution 

 

There exists a good number of watermarking techniques for 

tamper detection, but very few of them provide perfect tamper 

correction. So, it is also essential and interesting work to detect 

the tampered pixels accurately and correct them perfectly. This 

article proposes a watermarking technique using a modified 

Hamming code version. The contribution is briefed below: 

·The (12, 8) Hamming code is based on Hamming code (7, 

4). Figure 2 can be referred to now. The 4 parity bits (P4, P3, 

P2, and P1) are computed from the 8 data bits. To use this in 

image watermarking, we have modified it by repositioning the 

redundant bit positions towards the LSB side and altering their 

computations appropriately. 

·Three pixels are taken and divided into 2 units in such a 

way that the LSBs are used as redundant bits. The computation 

of redundant bits is modified as compared to the original way 

in Hamming code.  

·The reorganization of redundant bits is performed so that 

the distortion will be minimal after storing the WBs in 

redundant bit positions. The modified Hamming code is 

described in Section 3.2. 

Furthermore, we apply the LM sequence with the redundant 

bits to improve security and generate the WBs. The details of 

the computation are described in Section 3.1. 

 

f8 f7 f6 f5 P4 f4 f3 f2 P3 f1 P2 P1 

 

Figure 2. The (12, 8) Hamming code 

 

 

3. PROPOSED TECHNIQUE: MODIFIED HAMMING 

CODE BASED WATERMARKING (MHCBW) 

 

Section 3.1 describes LM's generation of a random 

sequence of bits. Section 3.2 explains the generation of WBs 

and their hiding in the image. Section 3.3 explains the 

extraction of WBs, localization of tampered pixels, and 

correction of tampered pixels. 

 

3.1 Used logistic map 

 

The LM generates random values using 2 initial seeds α0 

and γ. These seed values are constrained as follows: 0≤α0≤1 

and 0<γ≤ 4. Our initial value α0 is 0.0396, and γ is 3.58. The 

subsequent values αi can be computed by Eq. (1). 

 

𝛼𝑖=γ×(1-𝛼𝑖−1)×𝛼𝑖−1 (1) 

 

The LM can generate perfect random values if we take 3.57 

<γ≤ 4. After obtaining αi value, we multiply it by 255 to derive 

another value Xi. This Xi value is rounded up to get Yi. Eq. (2) 

depicts this computation. The integer value Yi<255. Thereafter, 

representing Yi value in 8-bit binary, we get Si. The 4 MSBs of 

Si are termed as K and 4 LSBs of Si as T. So, K=k4 k3 k2 k1 and 

T=t4 t3 t2 t1. 

 

𝑋𝑖=𝛼𝑖×255 and 𝑌𝑖=Round (𝑋𝑖) (2) 

 

3.2 Watermark embedding 

 

The cover image is virtually split into 1×3 size disjoint 

blocks. Suppose (P1, P2, P3) is a sample block. The various bits 

of these 3 pixels are designated in Figure 3. The watermark 

hiding in this sample block is illustrated in the below steps. 

 

------------------------ 𝐏𝟏 --------------------------------------- 

f8 f7 f6 f5 f4 r4 r3 r2 

----------------------- 𝐏𝟐 --------------------------------------- 

f3 f2 f1 q8 q7 r1 v4 v3 

------------------------ 𝐏𝟑 --------------------------------------- 

q6 q5 q4 q3 q2 q1 v2 v1 

 

Figure 3. Original 1×3 block 

 

Step 1: Partition the 24 bits of the block into 2 units, U1 and 

U2, as shown in Figure 4. 

 

------------------------------------ 𝐔𝟏 ------------------------------ 

f8 f7 f6 f5 f4 f3 f2 f1 r4 r3 r2 r1 

----------------------------------- 𝐔𝟐 ------------------------------ 

q8 q7 q6 q5 q4 q3 q2 q1 v4 v3 v2 v1 

 

Figure 4. Two data units, each 12-bit 

 

Step 2: For U1 compute r1
′ , r2

′ , r3
′  and r4

′  using Eq. (3) and 

Eq. (4) respectively. 

 

𝑟1
′= 𝑓7 ⊕ 𝑓5 ⊕ 𝑓4 ⊕ 𝑓2 ⊕ 𝑓1, 

𝑟2
′= 𝑓7 ⊕ 𝑓6 ⊕ 𝑓4 ⊕ 𝑓3 ⊕ 𝑓1 

(3) 

 

𝑟3
′= 𝑓8 ⊕ 𝑓4 ⊕ 𝑓3 ⊕ 𝑓2, 

𝑟4
′= 𝑓8 ⊕ 𝑓7 ⊕ 𝑓6 ⊕ 𝑓5 

(4) 

 

Step 3: For U2 compute v1
′ , v2

′ , v3
′  and v4

′  using Eq. (5) and 

Eq. (6) respectively. 

 

𝑣1
′ = 𝑞7 ⊕ 𝑞5 ⊕ 𝑞4 ⊕ 𝑞2 ⊕ 𝑞1,  

𝑣2
′ = 𝑞7 ⊕ 𝑞6 ⊕ 𝑞4 ⊕ 𝑞3 ⊕ 𝑞1 

(5) 

 

𝑣3
′ = 𝑞8 ⊕ 𝑞4 ⊕ 𝑞3 ⊕ 𝑞2,  

𝑣4
′ = 𝑞8 ⊕ 𝑞7 ⊕ 𝑞6 ⊕ 𝑞5 

(6) 

 

Step 4: Accept the next 8 bits from the LM generator. Say it 

is Si, which is depicted in Eq. (7). 

 

𝑆𝑖=KT, where K= 𝑘4 𝑘3 𝑘2 𝑘1 and T= 𝑡4 𝑡3 𝑡2 𝑡1 (7) 

 

Step 5: Compute the WBs r4
′′, r3

′′, r2
′′, r1

′′ for U1 and v4
′′, v3

′′, 

v2
′′, v1

′′ for U2 as in Eq. (8) and Eq. (9) respectively. 

 

𝑟𝑖
′′=𝑟𝑖

′ ⊕ 𝑘𝑖 , for i=1,2,3, and 4 (8) 

 

𝑣𝑖
′′=𝑣𝑖

′ ⊕ 𝑡𝑖 , for i=1,2,3, and 4 (9) 

 

----------------------- 𝐏𝟏
′  ------------------------------------------ 

f8 f7 f6 f5 f4 r4
′′ r3

′′ r2
′′ 

----------------------- 𝐏𝟐
′ ------------------------------------------- 

f3 f2 f1 q8 q7 r1
′′ v4

′′ v3
′′ 

------------------------ 𝐏𝟑
′  ----------------------------------------- 

q6 q5 q4 q3 q2 q1 v2
′′ v1

′′ 

 

Figure 5. The watermarked block 

1873



 

Step 6: To form the watermarked block, replace each ri by 

ri
′′ in Figure 4, for i=1, 2, 3 and 4. Similarly, replace each vi 

by vi
′′ in Figure 4, for i=1, 2, 3, and 4. The resultant block after 

watermarking is shown in Figure 5. It is denoted as (P1
′, P2

′, P3
′). 

Diagrammatically, the embedding procedure is shown in 

Figure 6. 

 

 
 

Figure 6. Watermark embedding 

 

3.3 Retrieval of watermark with tamper correction 

 

Divide the WI into 1×3 size blocks. Figure 5 represents a 

sample block. The extraction of WBs is narrated in the below 

steps. 

Step 1: Partition the block (P1
′, P2

′, P3
′) into 2 units U1

′  and U2
′  

as shown in Figure 7. 

Step 2: Take the next 8-bit LM sequence value, Si  and 

represent it as Si=KT, where K=k4 k3 k2 k1 and T=t4 t3 t2 t1. 

Compute r4
′ , r3

′ , r2
′ , r1

′  and v4
′ , v3

′ , v2
′ , v1

′  using Eq. (10) and 

Eq. (11) respectively.  

 

ri
′=ri

′′ ⊕ ki, for i=1,2,3, and 4 (10) 

 

𝑣𝑖
′=𝑣𝑖

′′ ⊕ 𝑡𝑖 , for i=1,2,3, and 4 (11) 

 

Step 3: Compute r1
∗, r2

∗  using Eq. (12) and r3
∗, r4

∗ using Eq. 

(13). 

 

𝑟1
∗=𝑟1

′ ⊕ 𝑓7 ⊕ 𝑓5 ⊕ 𝑓4 ⊕ 𝑓2 ⊕ 𝑓1,  
 𝑟2

∗=𝑟2
′ ⊕ 𝑓7 ⊕ 𝑓6 ⊕ 𝑓4 ⊕ 𝑓3 ⊕ 𝑓1 

(12) 

 

𝑟3
∗=𝑟3

′ ⊕ 𝑓8 ⊕ 𝑓4 ⊕ 𝑓3 ⊕ 𝑓2, 
 𝑟4

∗=𝑟4
′ ⊕ 𝑓8 ⊕ 𝑓7 ⊕ 𝑓6 ⊕ 𝑓5 

(13) 

 

Step 4: Compute v1
∗, v2

∗ , v3
∗, v4

∗ using Eq. (14) and Eq. (15). 

𝑣1
∗=𝑣1

′ ⊕ 𝑞7 ⊕ 𝑞5 ⊕ 𝑞4 ⊕ 𝑞2 ⊕ 𝑞1,  
 𝑣2

∗=𝑣2
′ ⊕ 𝑞7 ⊕ 𝑞6 ⊕ 𝑞4 ⊕ 𝑞3 ⊕ 𝑞1 

(14) 

 

𝑣3
∗=𝑣3

′ ⊕ 𝑞8 ⊕ 𝑞4 ⊕ 𝑞3 ⊕ 𝑞2, 
𝑣4

∗=𝑣4
′ ⊕ 𝑞8 ⊕ 𝑞7 ⊕ 𝑞6 ⊕ 𝑞5 

(15) 

 

Step 5: If r4
∗r3

∗r2
∗r1

∗ ≠ 0000, then there is tampering in U1
′ . 

The correction is done as shown in Table 1. If r4
∗r3

∗r2
∗r1

∗ =
0000. Then there has been no tampering in U1

′ . Extract the 4 

watermarked bits from U1
′ , these are r4

′′r3
′′r2

′′r1
′′.  

 

-----------------------------------𝐔𝟏
′  ------------------------------ 

f8 f7 f6 f5 f4 f3 f2 f1 r4
′′ r3

′′ r2
′′ r1

′′ 

----------------------------------𝐔𝟐
′  ------------------------------- 

q8 q7 q6 q5 q4 q3 q2 q1 v4
′′ v3

′′ v2
′′ v1

′′ 

 

Figure 7. Two data units from the watermarked block 

 

Step 6: If v4
∗v3

∗v2
∗v1

∗ ≠ 0000, then there is tampering in U2
′ . 

The correction is done as shown in Table 2. If v4
∗v3

∗v2
∗v1

∗ =
0000. Then there has been no tampering in U2

′ . Extract the 4 

watermarked bits from U2
′ , these are v4

′′v3
′′v2

′′v1
′′. 

Diagrammatically, the extraction procedure is shown in 

Figure 8. 

 

1874



 

Table 1. Correction in U1
′  

 

𝐫𝟒
∗𝐫𝟑

∗𝐫𝟐
∗𝐫𝟏

∗ 
Tampered 

Location 
Correction 

0001 r1
′′ is tampered 

Correct r1
′′ by complementing 

it 

0010 r2
′′ is tampered 

Correct r2
′′ by complementing 

it 

0011 f1 is tampered 
Correct f1 by complementing 

it 

0100 r3
′′ is tampered 

Correct r3
′′ by complementing 

it 

0101 f2 is tampered 
Correct f2 by complementing 

it 

0110 f3 is tampered 
Correct f3 by complementing 

it 

0111 f4 is tampered 
Correct f4 by complementing 

it 

1000 r4
′′ is tampered 

Correct r4
′′ by complementing 

it 

1001 f5 is tampered 
Correct f5 by complementing 

it 

1010 f6 is tampered 
Correct f6 by complementing 

it 

1011 f7 is tampered 
Correct f7 by complementing 

it 

1100 f8 is tampered 
Correct f8 by complementing 

it 

 

Table 2. Correction in U2
′  

 

𝐯𝟒
∗𝐯𝟑

∗𝐯𝟐
∗𝐯𝟏

∗ 
Tampered 

Location 
Correction 

0001 v1
′′ is tampered 

Correct v1
′′ by 

complementing it 

0010 v2
′′ is tampered 

Correct v2
′′ by 

complementing it 

0011 q1 is tampered 
Correct q1 by complementing 

it 

0100 v3
′′ is tampered 

Correct v3
′′ by 

complementing it 

0101 q2 is tampered 
Correct q2 by complementing 

it 

0110 q3 is tampered 
Correct q3 by complementing 

it 

0111 q4 is tampered 
Correct q4 by complementing 

it 

1000 v4
′′ is tampered 

Correct v4
′′ by 

complementing it 

1001 q5 is tampered 
Correct q5 by complementing 

it 

1010 q6 is tampered 
Correct q6 by complementing 

it 

1011 q7 is tampered 
Correct q7 by complementing 

it 

1100 q8 is tampered 
Correct q8 by complementing 

it 

 
 

Figure 8. The tamper detection, tamper correction, and watermark extraction procedure 
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3.4 Example of watermark embedding and watermark 

extraction 

 

This sub-section presents 3 examples to help you better 

understand the proposed watermarking technique. 

Figure 9 describes an example of watermark embedding in 

a step-by-step manner. 

Figure 10 depicts an example of WB extraction where there 

is no error. This example presents the extraction procedure 

with pixel sample values at the bit level with no error case. 

Figure 11 illustrates the extractions of WBs with error bits 

correction. This example presents the extraction procedure 

with pixel sample values at the bit level and an error correction 

case. 

 

 
 

Figure 9. Example of watermark embedding 

 

 
 

Figure 10. Example of watermark extraction 
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Figure 11. Example of watermark extraction with error correction 

 

 

4. RESULTS ANALYSIS  

 

This MHCBW technique is coded in MATLAB on a 

computing device with an i5 processor. Figure 12 depicts the 

original images (OIs) from the SIPI database [32]. Although 

several images are used for testing, only a few samples are 

shown here. Figure 13 depicts some samples of WIs 

accordingly. Under each WI, the PSNR and SSIM are 

mentioned. 

The effectiveness of the MHCBW scheme is measured by 

parameters like embedding time (ET), extraction time (ExT), 

SSIM, HC, PSNR, and accuracy (ACC). Eq. (16) computes the 

PSNR, a measure of distortion in WI. 

 

PSNR = 10 × log10

m × n × 255 × 255

∑ ∑ (Pij − Qij)
2n

j=1
m
i=1

 (16) 

 

HC is the total hiding capacity in all the pixels of the image. 

Capacity of one pixel is represented as bpp i.e., bits per pixel. 

Eq. (17) represents structural similarity (SSIM) of WI with OI 

[26]. Pij is a pixel of OI and Qij is a pixel of WI. P̅ is mean 

value of all Pij values of OI. Q̅ is mean value of all Qij values 

of WI. Two constants c1 and c2 has been inserted in (P̅2 +

Q̅2+c1) and (σx
2 + σy

2 + c2) to ensure the denominator to be 

non-zero. The constant c1=(K1L)2, K1 ≪ 1 and L value is 255 

for grey image. The constant c2=(K2L)2, and K2 ≪ 1. Here, 

variance of OI to WI is σpq, variance of OI is σp
2 , and variance 

of WI is σq
2 . SSIM value will approach to 1 where the WI is 

very similar with OI. The ACC has been computed in Eq. (18) 

[26] using the counts of false negatives (FN), true negatives 

(TN), false positives (FP) and true positives (TP). 
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Figure 13. WIs 

 

SSIM= 
(2P ̅Q̅+c1)( 2σxy+ c2 )

(P̅2+Q̅2+c1) ( σx
2+ σy

2+c2 )
 (17) 

 

ACC = 
TP+TN

TP+TN+FP+FN
 (18) 

 

Table 3 records the outcomes of this proposed MHCBW 

scheme. Table 3 records the PSNR value as 39.21 dB, so it is 

acceptable. The bpp is 2.67. The average value of SSIM is 

0.9844, which indicates that OI and WI are more than 99% 

alike. ACC value is 0.99, which conveys that the number of 

tampered pixels is identified with 99% correctness. 

Furthermore, embedding and extraction of the watermark can 

be performed in 10.64 and 12.49 secs respectively. 

 

Table 3. Performance measure of MHCBW scheme 

 
512×512 

Images 
SSIM 

PSNR 

(dB) 
ACC bpp 

E×T 

(secs) 

ET 

(secs) 

Lena 0.9818 39.19 0.9999 2.67 11.43 10.35 

Baboon 0.9904 39.19 0.9999 2.67 11.29 10.09 

Goldhill 0.9883 39.16 0.9999 2.67 11.30 10.02 

Crowd 0.9869 39.30 0.9999 2.67 11.34 10.83 

Camera-

man 
0.9723 39.22 0.9999 2.67 11.27 10.96 

Pepper 0.9748 39.27 0.9999 2.67 14.77 10.87 

Barbara 0.9932 39.22 0.9999 2.67 14.17 10.80 

Boat 0.9877 39.18 0.9999 2.67 14.36 11.19 

Average 0.9844 39.21 0.9999 2.67 12.49 10.64 

 

Figure 14 conveys the tampered Lena images with 

tampering % from 5% to 45%. A pixel is tampered with if one 

or more of its 8 bits are changed. The tampered pixels are 

localized and made white color for easy reference by the 

readers. It is shown for only one image. It is performed for all 

the test images. Table 4 depicts the mean value of bpp, PSNR, 

SSIM, and ACC over 8 images with tampering percentages 

starting from 0% to 45%.  
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Figure 14. Tampered Lena images (the tampered location 

pixels are made white color for reference) 
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Figure 15. (a) Tampering rate versus PSNR, (b) Tampering 

rate versus SSIM, and (c) Tampering rate versus ACC 
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Figure 15(a) depicts a graph for the PSNR at tampering rate. 

It can be observed from this graph that if we further raise the 

tampering rate after 45%, PSNR can be at least 30 dB. Figure 

15(b) depicts a plot for SSIM at different tampering rates, and 

Figure 15(c) depicts a plot for ACC at different tampering 

rates. From Figure 15(b), we can achieve an SSIM value 

greater than 0.98 even after raising the tampering by more than 

45%. From Figure 15(c), we can note that the ACC value is 

greater than 0.99 even after raising the tampering rate beyond 

45%. 

Table 5 represents a comparison of the average values of 

different parameters of this MHCBW technique with Nazari et 

al. [12], Chang et al. [24], Prasad and Pal [28], and Prasad and 

Pal [29]. Techniques of Chang et al. [24], Prasad and Pal [28], 

and Prasad and Pal [29] are based on Hamming code. Nazari 

et al.’s [12] scheme includes a chaotic map. Furthermore, 

Figure 16 shows a bar graph distinguishing the HC and PSNR 

of the MHCBW technique with the existing schemes; Figure 

17 depicts a bar graph comparing the SSIM and ACC values 

of the MHCBW technique with existing schemes. 

From Figure 16, it may be noted that there is a better trade-

off between the HC and PSNR of the MHCBW scheme as 

compared to the 4 existing schemes. Prasad and Pal’s [28] 

technique possesses very low bpp but higher PSNR. Nazari et 

al.’s [12] technique possesses both low bpp and low PSNR.  

From Figure 17, it may be observed that the SSIM value in 

MHCBW technique is lesser than the works of Nazari et al. 

[12], Chang et al. [24], Prasad and Pal [28], and Prasad and Pal 

[29], but the ACC values of the MHCBW scheme is higher 

than the works of Nazari et al. [12], Chang et al. [24], Prasad 

and Pal [28], and Prasad and Pal [29]. 

 
 

Figure 16. PSNR, bpp comparison 

 

 
 

Figure 17. SSIM, ACC comparison 

 

Table 4. Efficacy measurement at varied tampering rates 

 
Efficacy 

Parameter 

Tampering Rate 

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 

bpp 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 

PSNR 39.21 38.68 38.22 37.79 37.41 37.07 36.76 36.48 36.23 36.01 

ACC 0.9999 0.9993 0.9986 0.9979 0.9973 0.9967 0.9961 0.9955 0.9948 0.9941 

SSIM 0.9844 0.9821 0.9899 0.9881 0.9864 0.9849 0.9836 0.9825 0.9816 0.9807 

 

Table 5. Comparison of average efficacy parameter values 

 
Technique bpp PSNR SSIM ACC 

Nazari et al.’s [12] 1.66 36.50 0.9928 0.9845 

Chang et al.’s [24]  3.0 37.88 0.9844 0.9969 

Prasad and Pal’s [28]  1.5 42.09 0.9994 0.9995 

Prasad and Pal’s [29]  3.0 37.94 0.9861 0.9990 

Proposed MHCBW scheme 2.67 39.21 0.9844 0.9999 

 

 

5. CONCLUSIONS 

 

This article proposes MHCBW technique for image tamper 

detection and correction. It uses a modified version of 

Hamming code for error detection and correction. It uses an 

LM sequence to improve the security. The WBs are stored in 

redundant bit positions and can be extracted accurately. 

Experimental results reveal that this MHCBW technique 

maintains a fair compromise between HC and PSNR 

compared to existing techniques. Nazari et al.’s technique 

produces lesser PSNR and bpp than the proposed one. The 

other 3 existing techniques produce either higher bpp with 

lower PSNR or vice-versa compared to the MHCBW 

technique. The MHCBW scheme's estimated average PSNR is 

39.21, and bpp is 2.67. The estimated SSIM value of the 

MHCBW technique is 0.9844, which indicates that the OIs are 

structurally similar to the corresponding WIs. The estimated 

ACC value of the MHCBW technique is 0.9999, which 

indicates that the WBs could be correctly extracted.  

The error detection and correction are applied on 3 pixels, 

i.e., 24 bits, by spreading them in 2 evacuation units. In each 

unit, only 1 bit error is identified and corrected by applying the 

modified Hamming code. The error detection and correction 

ideas can be extended to 2 or more bits per unit by changing 

the modified Hamming code or introducing a new error-

detecting and correcting code.  
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