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The fingerprint is a valuable tool for both forensic analysis and community security. State-

of-the-art fingerprint classification methods tend to ignore image quality enhancement as 

well as use high-dimension feature sets resulting in unnecessary computational 

complexities. To address these issues, this study proposes an efficient fingerprint 

classification method that combines Histogram of Oriented Gradient (HOG) and Gabor 

Filter features with Random Forest (RF) and Naïve Bayes (NAÏVE) classifiers. It 

sequentially preprocesses the input with a series of receiving functions that enhance the 

image, such as grayscale, morphological, and binary. The method’s performance was 

evaluated on the SOCOFing dataset, and 99% classification accuracy was demonstrated 

using the Gabor-Naïve approach, surpassing some sophisticated techniques in terms of 

accuracy and computational efficiency. This work contributes to the field by addressing 

gaps in image enhancement and feature dimensionality, offering a robust solution for 

authenticating and distinguishing altered fingerprints. Future research could build on this 

by examining different classifiers for additional optimization and testing the methodology 

on a variety of datasets. 
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1. INTRODUCTION

Biometric systems, or Identity Verification (IV) systems, 

use biometric traits to automatically identify, assess, and 

authenticate individuals. These systems are based on the 

fundamental premise that each individual has unique physical 

and behavioral characteristics [1]. Currently, Fingerprints 

exhibit various distinctive attributes that render them a favored 

option for access authentication when recognizing handprints. 

Furthermore, fingerprints are employed at incident locations 

to determine an individual's involvement. One notable 

attribute is the unwavering constancy of fingerprints, and it is 

worth noting that fingerprints are unique to each individual, 

even among twins. According to the previous study [2], 

fingerprints can be categorized into three distinct types: visible 

(patent) prints, plastic prints, and concealed (latent) prints. 

Patent prints are easily visible to the naked eye and do not 

necessitate the use of a microscope for recognition. These 

prints are formed when fingers meet colored substances like 

bodily fluids, liquids, or soil. In contrast, plastic prints are 

impressions with three-dimensional features that are formed 

when a finger meets materials like soap, fresh paint, or wax. 

Latent fingerprints, which cannot be seen with the naked eye, 

require the application of chemical reagents for detection. 

Fingerprint images possess specific features that are dependent 

on the resolution of the acquisition [3].  

As illustrated in Figure 1, typically, the image of a 

fingerprint reveals a recurring arrangement of "delta" to the 

mix, the distinction between valleys (light sections) and ridges 

(dark sections) gains prominence. 

Figure 1. A fingerprint with ridges and delta [3] 

Aligning the ridges represents an essential aspect of 

fingerprint images. Most fingerprint recognition algorithms 

require the extraction of the orientation as a necessary step. 

When the image quality is sufficiently high, computing the 

orientation is relatively straightforward. However, extracting 

the orientation accurately from poor-quality images still poses 

an ongoing challenge. Given the remarkable accuracy of 
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fingerprints in criminal identification, perpetrators 

consistently make efforts to evade fingerprint recognition 

systems. In response to this, Deliberate classifications are 

performed by the FBI's Criminal Justice Information Services 

division. fingerprint modifications based on the specific 

technique employed for alteration [4]. Figure 2 shows these 

alterations can be generally categorized into four primary 

groups: vertical cuts, Z-shaped cuts, burns, and unclassified 

modifications. 

 

 
 

Figure 2. Fingerprint alteration types [5] 

 

The study's key objective is to develop an efficient 

fingerprint classification method that addresses key limitations 

in the existing techniques, specifically the dependence on 

features with high dimensionality and enhancement of 

insufficient images. The paper's contributions aim to 

classification accuracy and computational efficiency by 

leveraging a combination of Gabor filters, HOG features, and 

machine learning classifiers (Random Forest and Naïve 

Bayes). Additionally, the study validates the proposed method 

on the dataset (SOCOFing) and compares its performance 

against the latest methods. 

The remaining parts of this article are structured as follows: 

Section 2 presents the literature review and previous studies, 

Section 3 presents the proposed method, Section 4 outlines the 

results, and Section 5 concludes the study. 

 

 

2. LITERATURE REVIEW 

 

Extensive research has explored various aspects of 

fingerprint classification algorithms, including classification, 

detection, reconstruction, and recognition. A study by Peralta 

et al. [5] analyzed and categorized minutiae-based fingerprint-

matching algorithms, evaluating their accuracy and speed for 

verification and identification tasks. Singla et al. [6] reviewed 

the fundamental concepts of latent fingerprinting, as well as 

recent methods for enhancement, reconstruction, and 

matching of lifted fingerprints 

Various machine-learning techniques and processes for 

feature extraction are employed in fingerprint classification. 

Yang et al. [7] developed an image classification technique for 

fingerprints with 94.7% accuracy (four-class) and 91.5% 

accuracy (five-class) on the NIST-4 database, effectively 

handling low-quality fingerprints but with limitations 

including sensitivity to noise, small block sizes, and 

unsuitability for certain fingerprint types. Furthermore, 

Narayanan and Sajith [8] implemented a gender detection 

system for fingerprints achieving 90.2% accuracy for females 

and 96.4% for males using a time domain approach and 

systematic pixel counting, but the method is not suitable for 

low-quality latent fingerprints. Revathy et al. [9] combined 

fingerprint ridge orientation with local ridge frequency 

features for latent fingerprint segmentation. The disadvantage 

of the proposed work is that they used small and different 

datasets. Moreover, the proposal needs to add additional 

features like Ridge types and matching algorithms. Scholars 

have put forward diverse methodologies leveraging deep 

learning to classify and detect fingerprints. Saponara et al. 

introduced a method that utilizes deep learning and sparse 

auto-encoder algorithms to reconstruct low-resolution or 

partial fingerprint images, enhancing their quality. The 

model's robustness was tested on three local fingerprint 

datasets [10], but the computational complexity of deep 

learning may limit its scalability for large-scale datasets. In a 

previous study [11], two models (CNN and transfer learning) 

were proposed for classifying fingerprint images as real or 

altered. The CNN model achieved an 81% classification 

accuracy on the SOCOFing dataset, while the transfer learning 

model achieved 97.5% accuracy. Transfer learning effectively 

addressed the insufficient dataset issue, but the CNN model's 

accuracy was impacted by the lack of image enhancement in 

the SOCOFing dataset. 

Gabor filters are commonly used in fingerprint analysis to 

enhance and extract features like ridges and minutiae points. 

In a previous study [12], an authentication technique based on 

a filter bank-based matching algorithm with Gabor filters. 

However, the scalability and image quality sensitivity were 

limited. Moreover, a previous study [13] proposed a two-stage 

fingerprint classification approach using Gabor filters and twin 

support vector machines (TWSVM) with a 98% accuracy, but 

TWSVM limitations such as computational complexity and 

overfitting should be considered. Görgel and Ekşi [14] 

proposed a fingerprint identification method using Gabor 

wavelets and CNN, achieving 91.50% accuracy on the 

FVC2006 dataset, but with potential limitations of 

computational complexity and effectiveness depending on 

image quality and generalization ability of the CNN model. 

In a previous study [15], a deep learning strategy utilizing 

pre-trained CNN and EfficientNetB0 achieves 99.91% 

accuracy in determining the gender of fingerprints using the 

SOCOFing dataset and RF classifier. 

Through careful literature analysis, two gaps were 

discovered. Poor use of image enhancement, as well as high-

dimension features, are used to build a classification model. 

To address these gaps, our proposed approach utilizes 

impactful features and machine learning to classify real and 

altered fingerprint images. The objective is to improve 

accuracy, reduce computational complexity, enhance the 

image database, and increase the efficiency of fingerprint 

authentication. 

 

 

3. MATERIALS AND METHODS 

 

This article aims to accurately classify fingerprints as either 

authentic or altered. This task can be formulated as a two-class 

classification problem. To achieve this, our proposed method 

for classifying index fingerprints comprises three primary 

stages: image enhancement, feature extraction, and 

classification. The overall process of our approach is shown in 

Figure 3. Furthermore, Algorithm 1 outlines the proposed 

steps. Subsequent subsections provide a comprehensive 

explanation of the method's intricacies and details. 
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Figure 3. The proposed method block diagram 

 

Algorithm 1: Fingerprint classification utilizing the NAÏVE 

and RF classifier approach 

Begin 

For each image: 

1. Read the image using the "Imread()" function. 

2. Apply enhancement operations: 

    2.1. Convert the RGB image to grayscale using the 

"rgb2gray()"  function. 

 

     2.2. Remove any black frames present in the original        

            image. 

     2.3. Convert the image to binary. 

     2.4. Perform morphology operations. 

     2.5. Filter and retain only the most prominent object. 

     2.6. Apply additional morphology operations to obtain  

            the final finger mask. 

 

     2.7. Obtain the final enhanced image. 

3. Extract HOG features to obtain a 1 × 81-dimensional   

     feature vector. 

4. Extract Gabor features: 

     4.1. Apply 2D Gabor filters to each enhanced image. 

     4.2.  Using mean squared energy and mean amplitude as  

            Gabor features, create a 12-dimensional feature 

vector. 

5. Training: 

     5.1. Train the RF classifier using the above-mentioned     

            feature vector. 

     5.2. Train the Naïve classifier using the above feature  

            vectors. 

6. Testing: 

    6.1. Test the trained RF model to determine if the image 

is real or    

            altered. 

    6.2. Test the trained Naïve model to determine if the 

image is real    

            or altered. 

End for 

End 

 

3.1 Techniques for enhancing images 

 

The purpose of employing image enhancement techniques 

is to enhance the quality of fingerprint images. Within our 

dataset, fingerprint images frequently exhibit the presence of 

noise and unwanted frames, which can effectively impede the 

extraction of features. To overcome these challenges, we 

employ a series of image enhancement techniques as outlined 

below: 

 

 
 

Figure 4. Fingerprint image enhancement steps 

 

Step 1: Initially, we convert the fingerprint image which is 

an RGB representation into a grayscale image to simplify 

further processing. 

Step 2: In order to eliminate the dark borders evident in the 

initial image (Figure 4(a)), a technique was employed to alter 

the pixel values of the first four rows and columns to 255. This 

adjustment effectively eliminates the undesired frames from 

the image (Figure 4(b)). 

Step 3: Subsequently, the image is transformed into a binary 

format using a threshold set at a relatively high value to retain 

all the details of the image (Figure 4(c)). Following this, the 

image is inverted to create the complementary version as 

depicted in (Figure 4(d)). 

Step 4: Morphological operations, including the removal of 

tiny objects, gap closure, and hole filling, are executed to 

generate a comprehensive fingerprint mask (Figure 4(e)). 

Step 5: In this phase, we aim to selectively preserve the most 

significant object (the fingerprint) while eliminating any 

undesirable noise, we can make use of the size attributes 

associated with these objects. By identifying the index 

associated with the largest object, we maintain it within the 
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image and eliminate tiny elements. The outcome of this 

filtration procedure is illustrated in (Figure 4(f)). 

Step 6: To enhance the quality of the ultimate finger mask 

and achieve smoother edges, we implement an additional 

series of morphology operations. The mask obtained as a result 

of this process is presented in (Figure 4(g)). 

Step 7: Ultimately, Utilizing the mask acquired from the 

preceding stage (Figure 4(g)), we superimpose it onto the 

original image (Figure 4(a)), resulting in the generation of the 

ultimate enhanced image demonstrated in (Figure 4 (h)). 

 

3.2 Features extraction techniques 

 

Features extraction are distinctive characteristics of the 

fingerprint that are identified and quantified [16, 17]. These 

features serve as discriminative attributes that can effectively 

differentiate between authentic and altered fingerprints. In this 

stage, the final enhanced image is subjected to feature 

extraction, wherein the essential features are extracted. A 

pivotal role is played by the extracted features in the image 

classification process. In this paper, the features utilized are 

outlined as stated below. 

 

3.2.1 Histogram of Oriented Gradient (HOG) 

In the beginning, the region of interest (ROI) is divided into 

cells of a predetermined size (e.g., 8 × 8). Next, for each cell, 

a gradient histogram is calculated. Later, to deal with the 

problem of illumination variation, the next stage is 

normalization using histograms of each cell. Finally, for every 

overlapping block in all blocks, an assembly of HOG features 

will be obtained. The utilization of HOG features has gained 

considerable popularity as it can efficiently collect good local 

image structures. Breaking up the detection window into small 

cells has an advantage because more points of interest can be 

identified, and where there are many peaks and troughs in the 

given area. A similar step in which the direction of edge 

orientation is divided into different zones is particularly 

helpful in cases when, for example, one object differs from the 

other in terms of two patterns. Then, normalization of these 

histograms will increase the reliability of HOG features even 

more due to the decrease in the impact of light conditions on 

image formation. For each block in the image, after collecting 

HOG features, we get a more detailed idea of its local structure 

and consequently more reliable parameters for further analysis. 

The 81 HOG features are computed for finger images based 

on 1 × 12 feature vectors' dimensions. The process of 

extracting HOG features involves multiple steps, as depicted 

in Figure 5. 

 

 
 

Figure 5. HOG features extraction block diagram 

 

3.2.2 Gabor wavelet filter 

Gabor filtering is a linear filter commonly used in image 

processing and computer vision tasks, and is applied to the 

fingerprint image to enhance ridges and reduce valleys. It 

captures both spatial and frequency information, providing 

precise spatio-spectral information and exhibiting robustness 

against variations in contrast and brightness. Gabor wavelet 

filters are commonly employed for texture analysis, edge 

detection, and various pattern recognition tasks. The Eq. (1) 

for a Gabor Wavelet Filter is as follows: 
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• G(x,y) represents the Gabor filter response at 

coordinates (x,y). 

• x' and y' are the rotated and scaled coordinates 

obtained by rotating and scaling the original 

coordinates (x,y). 

• γ is the aspect ratio that controls the ellipticity of the 

Gaussian envelope. 

• σ determines the filter's size by measuring the 

Gaussian envelope standard deviation. 

• f represents the sinusoidal component's spatial 

frequency. 

• φ is the sinusoidal component's phase offset. 

 

Mean Squared Energy and Mean Amplitude are examples 

of typical Gabor features [18]. These features can be obtained 

at various scales and orientations. The Mean Squared Energy 

and Mean Amplitude are feature vectors supplied by Response 

Matrices. The Mean Squared Energy is calculated by squaring 

each value in a response matrix. Finally, add these squared 

values. To calculate the mean amplitude, each matrix value in 

a response matrix must be determined in absolute terms. 

Finally, add the following values. Through our experiments, 

we were able to determine the Mean Squared Energy and 

Mean Amplitude for orientation 2 and scale 3. The feature 

vectors measure 1 × 12. 

 

3.3 Classifications 

 

The objective of the study is to employ machine learning as 

an efficient approach to categorize input images as real or 

altered fingerprint images, addressing the classification 

challenge effectively. Various machine learning algorithms 

have been proposed to learn from training data and make 

intelligent decisions automatically [2]. In this study, our 

proposal focuses on two specific machine-learning algorithms: 

Random Forest classifier (RF) and Naïve Bayes classifier 

(NAÏVE). 

 

3.3.1 Random Forest (RF) classifier 

A Random Forest is a collection of decision trees that are 

chosen randomly from the input feature set. Utilizing input 

data, the system trains several models, aggregates predictions 

from each model, and subsequently utilizes a voting process to 

determine the optimal option. Random Forests classifier trains 

fingerprint data and their labels, using features. It constructs 

multiple decision trees, which collectively classify 

fingerprints based on majority voting or averaging of their 

predictions, enabling accurate and robust fingerprint 

recognition. 

 

3.3.2 Naïve Bayes (NAÏVE) classifier 

A Naïve Bayes classifier is a simple probabilistic model that 

assumes feature independence and uses Bayes' theorem. The 

model performs admirably in intricate real-world situations 

and needs minimal training data. With the training set's 

relative frequencies, model parameters are estimated. 
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4. RESULT AND DISCUSSION 

 

4.1 Dataset 

 

The dataset includes 600 African people's 6,000 fingerprint 

images. Ten fingerprints were taken by everyone. To introduce 

diversity, three types of modifications were employed: 

"obliteration, central rotation, and z-cut", the generation of 

synthetic replicas of the authentic fingerprints is underway. All 

images are presented in a grayscale format; Figure 6 and 

Figure 7 present images that showcase genuine, 

straightforward, and complex alterations. The dataset is 

accessible at the following link: 

https://www.kaggle.com/ruizgara/socofing. To ensure 

unbiased results, the prepared dataset was randomly divided 

into two subsets. The training subset comprised 70% of the 

total database, while the testing subset consisted of the 

remaining 30%. To reduce any reliance on specific training or 

test data, A technique of k-fold cross-validation was utilized 

with k equal to 10. This approach involved splitting the dataset 

into ten equal segments, using each segment as the test set once 

while the remaining nine segments served as the training set. 

This procedure was repeated ten times to ensure accurate and 

reliable results. 

 

 
 

Figure 6. The caption of a selection of the images of 

fingerprints from the SOCOFing dataset, including: (a) 

genuine fingerprint images; (b) modified fingerprint with 

easy central rotation; (c) modified fingerprint with easy 

obliteration, and (d) modified fingerprint with an easy z-cut 

 

 
 

Figure 7. The caption selection of the images of fingerprints 

from the SOCOFing dataset, including: (a) images of genuine 

fingerprint; (b) fingerprint images that have been 

intentionally modified or manipulated, including central 

rotation adjustments; (c) fingerprint images that have been 

intentionally modified or manipulated, including obliteration, 

and (d) altered images of fingerprint with a hard-altered z-cut 

 

4.2 Performance evaluation measures 

 

The performance of the proposed approach can be evaluated 

by utilizing the classification accuracy and error measure. The 

accuracy (Ac) can be determined using Eq. (2) below: 

 

( ) ( )( )/ 100%Ac TP TN TP TN FP FN= + + + +   (2) 

 

Error represents the ratio of the total number of images to 

the number of incorrectly classified images, as defined in Eq 

(3). 

 

FP FN
Error

TP TN FP FN

+
=

+ + +
 (3) 

 

In Eq. (3), True Positive (TP) denotes the number of 

correctly identified altered fingerprint images. False Negative 

(FN) indicates the number of altered fingerprint images that 

were misclassified. False Positive (FP) measures the number 

of genuine fingerprint images incorrectly classified as altered, 

while True Negative (TN) represents the number of genuine 

fingerprint images correctly identified. 
 

4.3 Results of the proposed performance evaluation 
 

In order to identify the most efficient classifier, the 

performance of several classifiers using various features is 

compared in order to calculate the classification accuracy and 

error. Tables 1 and 2 illustrate the classification accuracy and 

error rates of the proposed approach, evaluated using two 

feature extraction methods and two classifiers on the altered 

image databases of SOCOFing_Easy and SOCOFing_Hard. 

Additionally, the method's classification accuracy and error 

were compared to different feature types, as illustrated in 

Figures 8-11. 

Despite the fact that the classifiers employ identical pattern 

feature vectors as input, their outcomes vary due to the 

distinctive characteristics inherent in each classifier. The 

efficacy of each individual classifier will be thoroughly 

evaluated and analyzed in the following section. 
 

Table 1. Performance results for features, classifiers, and 

SOCOFing_Easy database 
 

Classifier 

Accuracy (%) Error (%) 

HOG 

Feature 

GABOR 

Feature 

HOG 

Feature 

GABOR 

Feature 

RF 74 76 26 24 

NAÏVE 83 98 17 2 

 

Table 2. Performance results for features, classifiers, and and 

SOCOFing_Hard altered images 
 

Classifier 

Accuracy (%) Error (%) 

HOG 

Feature 

GABOR 

Feature 

HOG 

Feature 

GABOR 

Feature 

RF 69 71 31 29 

NAÏVE 80 96 20 4 

 

4.4 Effectiveness of NAÏVE classifier 
 

Based on the results presented in Figure 8 and Figure 10, 

the NAÏVE classifier demonstrates accuracy rates of 98% and 

96% for the Gabor filter. Consequently, it can be concluded 

that the NAÏVE classifier demonstrates superior performance 

compared to the RF classifier. The classification error rates for 

the HOG feature when using the NAÏVE classifier are 

recorded at 17% and 20% as shown in Figure 9 and Figure 11. 

These error rates indicate that the NAÏVE classifier achieves a 

high level of accuracy in classifying data based on the HOG 

feature. Similarly, the classification error rates for the Gabor 

are significantly lower at 2% and 4% as shown in Figure 9 and 

Figure 11, further confirming the effectiveness of the NAÏVE 

classifier in accurately classifying data using the Gabor. 
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Figure 8. The classification accuracy (NAÏVE and RF) 

utilizing distinct features in the database of Easy altered 

images to SOCOFing 

 

 
 

Figure 9. The classification error to both (NAÏVE and RF) 

utilizing distinct features in the database of easy altered 

images SOCOFing 

 

 
 

Figure 10. The classification accuracy to both (NAÏVE, RF) 

utilizing distinct features in the database hard altered images 

of SOCOFing 

 

 
 

Figure 11. The classification error of (NAÏVE, RF) utilizing 

distinct features in the database of hard altered images 

SOCOFing 

 

4.5 Effectiveness of RF classifier 

 

According to the results shown in Figure 8 and Figure 10, 

the RF classifier demonstrates an accuracy of 74% for the 

HOG feature and 78% for the Gabor. Based on these findings, 

it can be concluded that the RF classifier performs second best 

after the NAÏVE classifier in terms of classification accuracy. 

Moreover, when utilizing the RF classifier, the classification 

error rates for the HOG feature are 26% and 24%, while for 

the Gabor filter, the error rates are 31% and 29% as shown in 

Figure 9 and Figure 11. This additional information highlights 

the comparative performance of the RF classifier, 

demonstrating its accuracy rates as well as the corresponding 

error rates for both the HOG and the Gabor feature. However, 

when considering the error rates, it is evident that the RF 

classifier has higher error rates compared to the NAÏVE 

classifier. The results unequivocally demonstrate that the 

Gabor feature surpasses the HOG feature in performance 

across both classifiers, rendering it the most fitting feature for 

the classification of fingerprints. Furthermore, the second-

highest performance is consistently achieved by the feature of 

HOG in both classifiers. As a result, a significant enhancement 

in classification accuracy will be achieved by the adoption of 

the proposed Gabor-based method. These findings provide 

strong evidence to support the assertion that the NAÏVE 

classifier is more effective in accurately classifying the data. 

The lower error rates achieved by the NAÏVE classifier 

suggest that it is a reliable and robust classifier for the dataset 

under consideration. 

 

4.6 Comparison with existing approaches  

 

To assess the performance of the proposed approach, state-

of-the-art techniques are used as benchmarks [19, 20]. Table 3 

displays the classification results of the proposed method 

alongside comparisons with other fingerprint classification 

techniques. A detailed analysis will be carried out to examine 

the classification accuracy of these approaches [21]. The 

proposed method surpasses existing fingerprint classification 

techniques with a detection accuracy of 98% and a small 

feature vector dimension of 1 × 12, as demonstrated in Table 

3. The proposed feature extraction method is computationally 

faster than most current methods since it uses fewer feature 

vector dimensions, as seen in Figure 12. The proposed 

method's accuracy of 99% directly supports the study's 

objectives of improving classification accuracy and reducing 

computational complexity. By integrating effective image 

enhancement and low-dimensional features, the method 

addresses gaps in noise handling and efficiency identified in 

prior studies [7, 8]. 

While the accuracy results of the methods in the previous 

study [13] may exceed the highest accuracy achieved by the 

proposed method, it is important to note that these techniques 

depend on CNN features. Although CNN features are effective, 

they require large feature vectors, leading to significant 

computational resource demands. Our method, on the other 

hand, only required a 1 × 12 feature vector. While the accuracy 

results of the approach in the previous study [9] may surpass 

the best accuracy of the proposed method, it is important to 

note that these techniques rely on manually crafted features, 

leading to large feature vector sizes. The fingerprint 

classification methods in the previous studies [8-10, 15, 19] 

are primarily based on the spatial domain. The feature 

extraction techniques employ J-divergence entropy, Gabor 

1780



 

filter, filter features, HOG and SFTA, and SFTA, respectively. 

The fingerprint classification approach in the previous study 

[17] utilizes the transform domain, with Gabor wavelets 

forming the basis of the method. 

 

Table 3. Comparative results in fingerprint classification between the suggestion method and established algorithms 

 
Ref. Feature Extraction Classifier Feature Dataset Accuracy (%) 

[2] J-divergence entropy SVM 20 NIST-4 91 

[3] Gabor filter Matching algorithm 320 
FVC2000 

and DBIT 
89 

[4] 
Filters features 

 
SVM and NAÏVE 135 CASIA 5.0 87 

[5] HOG 
- 

 
80 SOCOFing 92 

[6] CNN CNN 36 
SOCOFing 

ATVS-FFp 

81 

99 

[7] Gabor wavelets CNN 28 FVC2006 91 

[8] HOG and SFTA DCA and GDA 102 SOCOFing 99 

[9] EfficientNetB0 RF 26 SOCOFing 99 

Proposed Gabor filter NAÏVE 12 SOCOFing 98 

 

 

However, as shown in Table 3, it is clear that the drawback 

of these approaches is the excessive time required for 

execution. The primary justification is the use of the transform 

domain. Other approaches in the previous studies [15, 19] 

perform poorly when compared to our proposed strategy. 

Through the incorporation of Gabor and NAÏVE, the proposed 

fingerprint classification accuracy increased to 98 percent, 

outperforming traditional hand-crafted feature approaches, as 

illustrated in Figure 12. 

 

 
 

Figure 12. Comparison of performance evaluation 

techniques for various handcrafted features 

 

 

5. CONCLUSIONS 

 

This research paper proposed a fingerprint classification 

approach incorporating Gabor filters, HOG features, and 

machine learning classifiers (Naïve Bayes and Random 

Forest). The method demonstrated a classification accuracy of 

99%, which is superior to the current methods in terms of both 

accuracy and computational efficiency. The results confirm 

the existence of better image quality and utilizing them with 

low-dimensional features, as a solution to a noise-sensitive and 

computational-intensive problem. The implications are far-

reaching for biometric security and crime scene investigation. 

Future investigations should include testing the proposed 

methodology on diverse fingerprint databases to assess its 

generalizability. Additionally, we will explore the utilization 

of different classifiers and feature extraction techniques. 
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