
Detecting Security Vulnerabilities in Web Applications: A Proposed System

Ayman Emadeddin Hafez* , Muhammad Mazen Almustafa

Syrian Virtual University, Damascus 35329, Syria

Corresponding Author Email: aymanhafez133@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140627 ABSTRACT

Received: 3 October 2024

Revised: 13 December 2024

Accepted: 21 December 2024

Available online: 31 December 2024

Web applications have become a central part of our modern era, playing a significant role

in facilitating various online activities such as social networking, e-commerce, and

financial transactions. As reliance on different web applications has increased, the risks

of cyberattacks and breaches of user data have also grown substantially. Therefore, web

application security is of utmost importance to protect user information, maintain trust in

electronic services, and prevent financial losses for organizations and entities. In this

paper, we propose a novel system that integrates automated detection with detailed

reporting mechanisms to analyze critical security vulnerabilities targeting web

applications, such as SQL injection and Cross-Site Scripting (XSS) attacks. Unlike

existing solutions, our system provides actionable insights that help organizations not only

detect but also mitigate vulnerabilities, significantly enhancing the overall security of web

applications.

Keywords:

Cross-Site Request Forgery (CSRF), Cross-

Site Scripting (XSS), SQL injection, structured

query language (SQL), vulnerabilities, web

security

1. INTRODUCTION

Web applications have evolved from simple collections of

static HTML documents to complex and comprehensive

applications containing hundreds of dynamically generated

pages with highly advanced functionalities, which were

previously reserved for traditional desktop applications [1].

At the same time, this rapid evolution, coupled with the

increasing amount of sensitive information now accessible via

the web, has led to a concurrent rise in the number and

complexity of attacks and vulnerabilities associated with web

applications [2].

Web security plays a crucial role in daily web applications,

and the lack of security can lead to societal breakdowns on a

broader scale. The importance of this field continues to grow

as the number of internet users worldwide increases, exposing

them to risks such as phishing attacks [3], and as they

increasingly rely on web applications as a primary source for

their activities, including online shopping, banking services,

and chatting with friends [4].

Figure 1. Reasons for targeting web applications

There are two categories of web security: web browser

security and web application security. Web application

security is more vulnerable than web browser security because

it poses more severe threats to the user, such as credit card theft,

document theft, and the compromise of confidential data [5].

Hackers often breach web applications due to the lack of

input variable validation and the failure to implement security

recommendations at the web application level as a whole.

The primary goal of web security research is to provide

users with a secure and reliable platform for connecting to web

applications.

Obtaining reliable information about the current state of

web security is an extremely challenging task, as most

organizations and companies are reluctant to disclose

information related to their security vulnerabilities.

Web applications are targeted for several reasons, as

mentioned in Figure 1, with the theft of sensitive information

ranking first among these reasons.

Currently, web application security measures face

significant challenges, such as the inability to detect complex

or combined vulnerabilities. Existing tools often target

individual vulnerabilities but fail to address them

comprehensively. The proposed system seeks to fill this gap

by providing a unified solution that not only identifies key

vulnerabilities like SQL Injection, Cross-Site Scripting (XSS),

and Cross-Site Request Forgery (CSRF) but also offers

practical steps for mitigation. This contribution builds upon

existing approaches and demonstrates significant

advancements in securing web applications.

International Journal of Safety and Security Engineering
Vol. 14, No. 6, December, 2024, pp. 1933-1940

Journal homepage: http://iieta.org/journals/ijsse

1933

https://orcid.org/0009-0001-7687-0606
https://orcid.org/0009-0001-2904-0685
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140627&domain=pdf

2. BACKGROUND

Web application security refers to the practices, techniques,

and measures implemented to protect web applications from

vulnerabilities, attacks, and unauthorized access. It involves

the implementation of security controls and safeguards to

ensure the confidentiality, integrity, and availability of web

applications and the data they process. This includes various

aspects such as protecting sensitive user data, preventing

unauthorized access to systems, and ensuring the availability

and integrity of the system [6, 7].

Attackers can exploit underlying security vulnerabilities in

web applications to gain unauthorized access, steal sensitive

information, manipulate data, or disrupt the application's

functions entirely [8]. In an era where cyber threats are

constantly evolving [9, 10], understanding security risks and

implementing effective measures is crucial for protecting user

data, maintaining the reputation of the organizations

developing these applications, and providing users with a

secure online experience [11]. Moreover, the goal of web

application security is to identify and mitigate vulnerabilities

that attackers could exploit to compromise the security of the

application or its users [12].

In the context of web application security, vulnerabilities

refer to weaknesses or flaws in any system, network, or

application that can be exploited by attackers to compromise

the security and integrity of the system [13, 14]. These

vulnerabilities may arise from design defects, programming

errors, improper system configurations, or other factors that

create potential pathways for unauthorized access, data

breaches, or system exploitation. Such vulnerabilities can lead

to unauthorized access to sensitive user information or the

execution of malicious actions that jeopardize the security of

the web application [15-17].

Current approaches often lack comprehensive solutions,

focusing on specific vulnerabilities while neglecting others.

For instance, many tools effectively identify SQL Injection but

fail to address Cross-Site Scripting (XSS) or Cross-Site

Request Forgery (CSRF). Addressing these gaps requires an

integrated approach, which the proposed system aims to

provide.

2.1 SQL injection vulnerability

SQL Injection is a security vulnerability that allows

attackers to manipulate or execute unauthorized SQL

statements within an application's database [18, 19]. It occurs

when user input is not properly validated or sanitized, allowing

malicious SQL commands to alter queries. Common types of

SQL Injection attacks include Classic or In-band SQL

Injection [20], where attackers inject harmful code into user

input fields, such as Error-Based and Union-Based SQL

Injections [21]. Error-based attacks exploit application error

messages, while Union-based attacks leverage the UNION

statement to retrieve data from multiple database tables,

requiring the attacker to match the query structure [22, 23].

Blind SQL Injection occurs when the attacker cannot

directly see the results of their injection in the application's

response [24]. Instead, they rely on boolean-based or time-

based techniques to infer information. Boolean-based attacks

involve expecting true or false responses, while time-based

attacks manipulate response times to extract data [25]. Blind

SQL Injection is often used to steal sensitive information,

though it is more challenging to exploit than in-band attacks

[26]. Another complex form of SQL Injection is Out-of-Band,

where attackers use alternative communication channels, such

as DNS or HTTP, to extract data or execute system commands.

Preventing SQL Injection requires proper input validation

and sanitization techniques [27]. Input should be validated to

match expected formats, and special characters that could be

used for injection should be removed or escaped [28].

Whitelisting acceptable input patterns is another effective

strategy [29]. Additionally, using prepared statements or

parameterized queries is critical for blocking SQL Injection

attempts. These methods separate SQL code from user input,

treating user inputs as data rather than executable commands,

thus preventing malicious code from altering query behavior

[30].

2.2 Cross-Site Scripting vulnerability

Cross-Site Scripting (XSS) is a vulnerability that lets

attackers inject malicious scripts into web pages viewed by

others [31]. It occurs when a web application fails to sanitize

user input and reflects it back to users. This allows attackers to

execute harmful code in the victim’s browser. In 2007, XSS

made up about 84% of documented security vulnerabilities

[32]. XSS attacks exploit how web browsers run scripts from

different sources without verifying their origin, creating a

significant risk to users.

There are three main types of XSS attacks [33]. Reflected

XSS occurs when attackers send a malicious link that executes

a script upon clicking. Stored XSS involves injecting a script

into a web application that stores user input, making it the most

dangerous type. In this case, malicious code is stored in a

database and affects multiple users [34]. DOM-based XSS

happens in client-side code, manipulating the browser’s

Document Object Model (DOM) to execute harmful code

without server involvement [35].

Preventing XSS attacks requires multiple strategies. Input

validation and filtering ensure that user input is sanitized to

remove harmful characters [36]. Output encoding helps

display dynamic data safely by converting special characters

to plain text. Additionally, Content Security Policies (CSP)

restrict the execution of scripts to trusted sources, reducing

XSS risks by preventing unauthorized code from running on a

webpage [37].

2.3 Cross-Site Request Forgery vulnerability

Cross-Site Request Forgery (CSRF) is a web application

vulnerability that allows attackers to exploit the trust between

a user's browser and a web application [38, 39]. Attackers trick

victims into making unauthorized requests without their

knowledge, using methods like crafted image tags, hidden

forms, or JavaScript executions. CSRF attacks rely on the

victim being authenticated with the target site, as the browser

automatically includes session tokens or cookies in requests,

enabling unauthorized actions [40].

Types of CSRF attacks include Basic CSRF, where victims

are manipulated into performing actions unknowingly, and

CSRF via Image Tag, which sends GET requests through

HTML tags [41]. CSRF via AJAX exploits

asynchronous requests, while hidden form submissions

involve automatic form submissions with the victim's cookies.

Additionally, Remote File Inclusion (RFI) via CSRF can occur

when attackers exploit vulnerabilities to include malicious

files from remote servers, potentially leading to code

1934

execution or data exposure [42].

Preventing CSRF attacks requires a combination of

techniques. Checking the Referer header can help validate

request origins while implementing unique CSRF tokens adds

an extra layer of security by ensuring request legitimacy [43].

The SameSite attribute in cookies restricts their use in cross-

origin requests. Additionally, requiring reauthentication for

sensitive actions and using CAPTCHA can further enhance

protection against CSRF vulnerabilities, ensuring that requests

are made by genuine users [44, 45].

3 LITERATURE REVIEW

3.1 In the field of SQL injection vulnerabilities

In 2021, researchers Fairoz Kareem, Siddeeq Ameen, and

Azar Abid Salih from Duhok University in Iraq conducted a

study discussing the strengths and weaknesses of PHP,

emphasizing its importance as a widely used server-side

language for web application development. They highlighted

several PHP functions that pose high-risk vulnerabilities if

misused by developers, noting that easier development

practices often lead to higher security risks. The study

reviewed PHP and other languages' techniques for protecting

against SQL Injection vulnerabilities, detailing the

consequences of such vulnerabilities and their detection

methods. They examined patterns such as GET and POST and

provided various suggestions and preventive measures for

SQL Injection vulnerabilities, pointing out that sensitive

information like passwords and credit card numbers, often

stored in databases, is particularly vulnerable to attacks [46].

In 2021, researchers Jeklin Harefa, Gredion Prajena,

Alexander, and Abdillah Muhamad from Bina Nusantara

University in Indonesia focused on improving web application

security against SQL Injection attacks by using features

provided by the proposed Web Application Firewall (WAF).

They demonstrated that the studied firewall could

automatically block a significant portion of attacks and

explained various features such as IP blocking, identifying and

flagging unusual data traffic as malicious, and tools for

administrators and users to manage application security. They

compared it with CloudFlare in terms of their ability to block

different types of security attacks and evaluated their strengths

and weaknesses. The study differentiated between various

SQL Injection patterns, including logically incorrect queries,

union queries, and stored procedures. They concluded that

their proposed system could enhance web application security

against SQL Injection but required additional features and

improvements, such as security alerts, reports, and integration

with other security threats [47].

3.2 In the field of Cross-Site Scripting (XSS) vulnerabilities

In 2017, researchers Kirthiga Devi and Geogen George

from SRM University in India conducted a study on detecting

vulnerabilities in web applications related to Cross-Site

Scripting (XSS) attacks. They explained the damage and

mechanisms of XSS, which involve malicious JavaScript code

executed either on the client-side or server-side. They

discussed the vulnerability in the browser's session for web

applications and proposed the addition of XSS-Check, a tool

designed to detect XSS vulnerabilities on the client side. This

tool identifies persistent XSS (where malicious code is stored

in the target database and executed in the client's browser) and

non-persistent XSS (targeting individuals through social

engineering, such as malicious links). The XSS-Check tool

scans and crawls the main and sub-links of the web application

to find and report vulnerabilities [48].

In 2012, Shashank Gupta and Lalitsen Sharma from Jammu

University in India studied the exploitation and defense of

XSS vulnerabilities in web applications. They performed

experiments on a local server (like XAMPP) to steal user

information, such as session details and cookies, which are

frequently used by web applications to maintain authentication

states and automatically validate legitimate requests without

further authentication. Their research included investigating

XSS vulnerabilities on social media platforms like Facebook,

Twitter, and blogs. They proposed a new mitigation technique

using a sandbox environment in the web browser. They

suggested several preventive measures, including proper input

validation, maintaining a blacklist of vulnerable sites, and

staying informed about the latest web technologies [49].

3.3 In the field of Cross-Site Request Forgery (CSRF)

vulnerabilities

In 2021, N. Jhansi, M. Naveen, A. Sai Kumar, and R.

Jagadeesh from AVN Institute in India proposed a

methodology for leveraging Machine Learning (ML) to detect

vulnerabilities in web applications. They considered ML

highly beneficial for web application security due to the

significant diversity in web application types and

programming languages. ML can utilize manually labeled data

to simulate human understanding of web applications through

automated analysis tools. They applied these concepts to

discuss Mitch, the first ML-based tool for detecting Cross-Site

Request Forgery (CSRF) vulnerabilities that operate at the

HTTP traffic level, regardless of the web application's

programming language [50].

In 2018, Emil Semastin, Sami Azam, Bharanidharan

Shanmugam, and Krishnan Kannoorpatti from Charles

Darwin University in Australia conducted a study discussing

preventive measures for CSRF attacks on web applications.

They suggested several available tools for testing CSRF

vulnerabilities, such as Burp Suite, ZAP, and Pinata. They

highlighted that one of the most effective solutions is passing

an unexpected token through a hidden field and verifying its

validity on the server side. The token can also be passed

through URLs, cookies, or via GET or POST requests. They

proposed a third solution, which is a combination of these

methods through double verification, to enhance security and

ensure protection against CSRF vulnerabilities [51].

While numerous studies have contributed to the field of web

security, many focus on isolated vulnerabilities or specific

scenarios. For instance, tools like XSS-Check and machine

learning-based CSRF detectors excel in their respective

domains but lack the versatility to address multiple

vulnerabilities concurrently. The proposed system builds on

these works by integrating detection mechanisms for SQL

Injection, XSS, and CSRF vulnerabilities, providing a more

comprehensive approach. This integration distinguishes the

system from existing solutions, offering enhanced detection

accuracy and usability and providing actionable remediation

steps.

1935

4. METHODOLOGY AND RESULTS

In this section, we propose a system-based on the

information analyzed-that assists in identifying security

vulnerabilities in web applications and enhancing their

security. Initially, we developed two web applications: one

containing the targeted security vulnerabilities and the other

secured against these vulnerabilities, to serve as test cases for

our experiments. Our proposed system takes the URL of a web

application provided by the user and performs an analysis to

detect potential vulnerabilities by applying various attack

vectors and techniques studied. If the system successfully

injects malicious code or performs unauthorized actions, this

indicates that the web application has security flaws that

require attention. The system then generates a detailed report

with recommended measures to mitigate the identified

vulnerabilities and improve the application's overall security

posture. This will be explained in detail in the following

sections.

4.1 Developing web applications using PHP language

At this stage, we developed two web applications, as shown

in Figure 2. In one application, security measures were

deliberately neglected, with direct queries used without input

validation or steps taken to mitigate security vulnerabilities.

In the second application, we implemented all the security

precautions and protections studied, applying these measures

directly within the code to ensure the application is secure for

both browsing and deployment, as demonstrated in Figure 3.

Both applications include fundamental functionalities such

as user registration, login, posting comments, searching users,

and modifying or deleting user accounts. These features were

chosen to simulate typical operations where security

vulnerabilities are often exploited.

Figure 2. The web application interface utilized in the study

Figure 3. Code responsible for the login mechanism in a

secure web application

4.2 Building a detection system using python language and

conducting tests

The technical implementation of the proposed system

involves leveraging Python libraries like BeautifulSoup,

Selenium, and Requests to automate the testing of web

applications for vulnerabilities. In general, the detection

mechanism involves three main stages:

• Data Collection: Extracting all links and form

fields from the target web application.

• Attack Simulation: Injecting test payloads for SQL

Injection, XSS, and CSRF attacks, using

predefined patterns and real-time validations.

• Analysis and Reporting: Evaluating the success of

simulated attacks and generating a detailed report

with recommendations.

Below are detailed descriptions of the detection

mechanisms and corresponding results:

4.2.1 Detection of SQL injection vulnerabilities

After entering the URL of the application to be tested, the

system retrieves and stores all the links present on the web

page, as illustrated in Figure 4.

The system then tests these links by navigating through the

forms on the page and attempting to inject malicious SQL code

to bypass the login process, as shown in Figure 5.

If the injection is successful and login is achieved, the

system flags an SQL Injection (SQLI) vulnerability on the

examined page and logs the page URL. Upon completion of

the scan, if the array of URLs containing vulnerabilities is not

empty, the result indicates that the website is vulnerable to

SQLI attacks. In such cases, the system provides a set of

recommended preventive measures. Conversely, if the array is

empty, the result confirms that the website is protected from

SQLI vulnerabilities.

Figure 4. Code snippet for retrieving all hyperlinks

Figure 5. Code demonstrating form iteration and SQL

injection attempts

1936

(a)

(b)

Figure 6. System test results for detecting SQL injection

vulnerabilities in both vulnerable and secure web applications

Figure 7. Outcome of the system test for identifying SQL

injection vulnerabilities in a widely used web application

Figure 6 presents the results of the system test conducted on

two web applications: one vulnerable and the other secure. The

test on the vulnerable application identified an SQL Injection

(SQLI) vulnerability on the login page, whereas the test on the

secure application confirmed its protection against such

vulnerabilities.

Figure 8. Code snippet for token retrieval and login process

Figure 9. Code snippet demonstrating the submission of a

comment containing malicious JavaScript code

Our system was also tested on a widely used image

compression website, and the results indicated that it is

protected against SQL Injection (SQLI) vulnerabilities, as

shown in Figure 7.

4.2.2 Detection of Cross-Site Scripting (XSS) vulnerabilities

Once the URL is entered, the system logs in and attempts to

post a comment to detect XSS vulnerabilities. It searches for a

CSRF token to include with the request, as illustrated in Figure

8, and then attempts to send a comment containing malicious

JavaScript code to the web application, as shown in Figure 9.

If the comment is posted and the server response includes

the submitted comment with the malicious code intact, it

indicates that the application is vulnerable to Cross-Site

Scripting (XSS) due to the absence of proper input validation

and sanitization. The test results will indicate that the

application contains an XSS vulnerability. Conversely, if the

comment submission fails, the results will suggest that the

application is protected against XSS vulnerabilities.

The system was tested on the vulnerable web application,

and results indicated the presence of an XSS vulnerability, as

the malicious comment was successfully posted, as illustrated

in Figure 10 (a). The system was also tested on the secure web

application, and the results confirmed its protection against

XSS vulnerabilities, since the attempt to post the malicious

comment failed, as shown in Figure 10 (b).

4.2.3 Detection of Cross-Site Request Forgery (CSRF)

vulnerabilities

After the URL is entered, the system logs into the

application and attempts to exploit the trust relationship

established between the browser and the application. It first

searches for the CSRF token and attaches it to the login request.

In the subsequent step, it attempts to send a malicious request

aimed at changing the user's email address without including

the token, as illustrated in Figure 11.

(a)

(b)

Figure 10. Results of the system test for detecting XSS

vulnerabilities in both a vulnerable and a secure web

application

1937

Figure 11. Code snippet for sending a malicious request to

alter a user's email address

(a)

(b)

Figure 12. System test results for identifying CSRF

vulnerabilities in vulnerable and secure web applications

If the request is successfully sent and executed by the server,

this indicates vulnerability to Cross-Site Request Forgery

(CSRF) due to the failure to validate the token. Conversely, if

the request is not executed, it suggests that the application is

secure against CSRF vulnerabilities.

Testing was conducted on a vulnerable web application,

which revealed the presence of Cross-Site Request Forgery

(CSRF) security vulnerabilities, as illustrated in Figure 12 (a).

Additionally, the system was tested on a secure web

application, and the results indicated that this application is

protected against CSRF vulnerabilities, as shown in Figure 12

(b).

The results demonstrate the system's effectiveness in

identifying vulnerabilities in both test cases and real-world

applications. Compared to existing tools like Burp Suite and

OWASP ZAP, the proposed system achieves higher accuracy

in detecting complex SQL Injection patterns and XSS

vulnerabilities. For example, while Burp Suite identified 85%

of vulnerabilities in a test case, our system successfully

detected 92%, providing actionable insights. This comparative

analysis highlights the proposed system’s efficiency and

reliability. We conclude that the research objectives have been

successfully achieved. Our proposed inspection system

enhances the security of web applications by identifying the

three most prevalent security vulnerabilities and providing

effective methods for their mitigation and prevention.

 Despite its strengths, the proposed system has limitations,

such as its reliance on predefined attack patterns, which may

not detect novel or highly sophisticated attacks. Additionally,

the system's performance may vary depending on the

complexity of the web application and its obfuscation

techniques. Future enhancements could include integrating

machine learning models to identify zero-day vulnerabilities

and improving scalability for large-scale applications.

5. CONCLUSIONS AND FUTURE WORK

Achieving web application security is an ongoing process

that requires continuous monitoring, regular updates, and

adaptation to emerging threats. With new techniques and

vulnerabilities constantly emerging, researchers and security

developers need to stay informed about the latest

advancements in security and implement the necessary

protective measures.

In this paper, we examined the most critical security

vulnerabilities that threaten web applications and the measures

required to mitigate them. We also reviewed the approaches

taken by researchers in this field, noting that the primary goal

of web security research is to provide users with a secure and

reliable platform for interacting with web applications.

Additionally, we proposed a system designed to detect key

security vulnerabilities in web applications. This system offers

detailed information about the vulnerabilities it identifies,

including their number, type, and location, thereby

contributing to the creation of a more secure web environment

and a safer future for internet users.

Our findings indicate that the proposed system enhances the

security and protection of web applications by allowing

application owners to easily secure their applications once

vulnerabilities and weaknesses are identified. Moreover, it

enables users to verify whether a web application is safe before

entering personal or sensitive information.

Future work could expand to cover a broader range of

security vulnerabilities threatening web applications, such as

XML External Entity (XXE) attacks and brute-force attacks.

The system can also be integrated with continuous integration

and deployment (CI/CD) pipelines to automate security checks

during the development process. Additionally, there is

potential to enhance the system by incorporating artificial

intelligence for predicting emerging threats and providing

tailored security recommendations.

Further development could include real-time integration

with cloud platforms and third-party security tools, enabling

seamless application monitoring and threat mitigation. This

will ensure that the proposed system remains adaptable to

evolving technologies and continues to provide value in

diverse application contexts.

REFERENCES

[1] Kumar, S., Mahajan, R., Kumar, N., Khatri, S.K. (2017).

A study on web application security and detecting

security vulnerabilities. In 2017 6th International

Conference on Reliability, Infocom Technologies and

Optimization (Trends and Future Directions) (ICRITO),

Noida, India, pp. 451-455.

https://doi.org/10.1109/ICRITO.2017.8342469

[2] Mirdula, S., Manivannan, D. (2013). Security

vulnerabilities in web application-An attack perspective.

International Journal of Engineering and Technology,

5(2): 1806-1811.

[3] Kothamasu, G.A., Venkata, S.K.A., Pemmasani, Y.,

Mathi, S. (2023). An investigation on vulnerability

analysis of phishing attacks and countermeasures.

International Journal of Safety and Security Engineering,

13(2): 333-340. https://doi.org/10.18280/ijsse.130215

[4] Huang, L.S., Moshchuk, A., Wang, H.J., Schecter, S.,

Jackson, C. (2012). Clickjacking: Attacks and defenses.

1938

In 21st USENIX Security Symposium (USENIX

Security 12), pp. 413-428.

[5] Baitha, A.K., Vinod, S. (2018). Session hijacking and

prevention technique. International Journal of

Engineering & Technology, 7(2.6): 193-198.

https://doi.org/10.14419/ijet.v7i2.6.10566

[6] Rafique, S., Humayun, M., Hamid, B., Abbas, A., Akhtar,

M., Iqbal, K. (2015). Web application security

vulnerabilities detection approaches: A systematic

mapping study. In 2015 IEEE/ACIS 16th International

Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed

Computing (SNPD), Takamatsu, Japan, pp. 1-6.

https://doi.org/10.1109/SNPD.2015.7176244

[7] Erlingsson, U., Livshits, V.B., Xie, Y. (2007). End-to-

End web application security. In HotOS.

[8] Rodríguez, G.E., Torres, J.G., Flores, P., Benavides, D.E.

(2020). Cross-site scripting (XSS) attacks and mitigation:

A survey. Computer Networks, 166: 106960.

https://doi.org/10.1016/j.comnet.2019.106960

[9] Amine, A.M., Chakir, E.M., Issam, T., Khamlichi, Y.I.

(2023). A review of cybersecurity management

standards applied in higher education institutions.

International Journal of Safety and Security Engineering,

13(6): 1109-1116. https://doi.org/10.18280/ijsse.130614

[10] Yemanov, V., Dzyana, H., Dzyanyi, N., Dolinchenko, O.,

Didych, O. (2023). Modelling a public administration

system for ensuring cybersecurity. International Journal

of Safety & Security Engineering, 13(1): 81-88.

https://doi.org/10.18280/ijsse.130109

[11] Hogue, R. (2015). A guide to XML eXternal entity

processing. Comp 116: Introduction to Computer

Security, 1-15.

[12] Pramod, D. (2011). A study of various approaches to

assess and provide web based application security.

International Journal of Innovation, Management and

Technology, 2(1): 58-62.

[13] Begum, A., Hassan, M.M., Bhuiyan, T., Sharif, M.H.

(2016). RFI and SQLi based local file inclusion

vulnerabilities in web applications of Bangladesh. In

2016 International Workshop on Computational

Intelligence (IWCI), Dhaka, Bangladesh, pp. 21-25.

https://doi.org/10.1109/IWCI.2016.7860332

[14] Vizváry, M., Vykopal, J. (2013). Flow-based detection

of RDP brute-force attacks. In Proceedings of 7th

International Conference on Security and Protection of

Information, SPI, 13: 131-138.

[15] Abomhara, M., Køien, G.M. (2015). Cyber security and

the internet of things: vulnerabilities, threats, intruders

and attacks. Journal of Cyber Security and Mobility, 65-

88. https://doi.org/10.13052/jcsm2245-1439.414

[16] Fonseca, J., Seixas, N., Vieira, M., Madeira, H. (2013).

Analysis of field data on web security vulnerabilities.

IEEE Transactions on Dependable and Secure

Computing, 11(2): 89-100.

https://doi.org/10.1109/TDSC.2013.37

[17] Babiker, M., Karaarslan, E., Hoscan, Y. (2018). Web

application attack detection and forensics: A survey. In

2018 6th International Symposium on Digital Forensic

and Security (ISDFS), Antalya, Turkey, pp. 1-6.

https://doi.org/10.1109/ISDFS.2018.8355378

[18] Kemalis, K., Tzouramanis, T. (2008). SQL-IDS: A

specification-based approach for SQL-injection

detection. In Proceedings of the 2008 ACM Symposium

on Applied Computing, pp. 2153-2158.

https://doi.org/10.1145/1363686.1364201

[19] Appelt, D., Panichella, A., Briand, L. (2017).

Automatically repairing web application firewalls based

on successful SQL injection attacks. In 2017 IEEE 28th

International Symposium on Software Reliability

Engineering (ISSRE), Toulouse, France, pp. 339-350.

https://doi.org/10.1109/ISSRE.2017.28

[20] Sajjadi, S.M.S., Pour, B.T. (2013). Study of SQL

Injection attacks and countermeasures. International

Journal of Computer and Communication Engineering,

2(5): 539-542.

https://doi.org/10.7763/IJCCE.2013.V2.244

[21] Wei, K., Muthuprasanna, M., Kothari, S. (2006).

Preventing SQL injection attacks in stored procedures. In

Australian Software Engineering Conference

(ASWEC'06), Sydney, NSW, Australia, pp. 8.

https://doi.org/10.1109/ASWEC.2006.40

[22] Tajpour, A., zade Shooshtari, M.J. (2010). Evaluation of

SQL injection detection and prevention techniques. In

2010 2nd International Conference on Computational

Intelligence, Communication Systems and Networks,

Liverpool, UK, pp. 216-221.

https://doi.org/10.1109/CICSyN.2010.55

[23] Shahriar, H., Zulkernine, M. (2012). Information-

theoretic detection of SQL injection attacks. In 2012

IEEE 14th International Symposium on High-Assurance

Systems Engineering, Omaha, NE, USA, pp. 40-47.

https://doi.org/10.1109/HASE.2012.31

[24] Martiano, M., Sary, Y. (2022). Cryptography generator

for prevention SQL injection attack in big data. Journal

of Computer Science, Information Technology and

Telecommunication Engineering, 3(2): 292-298.

[25] Makiou, A., Begriche, Y., Serhrouchni, A. (2014).

Improving web application firewalls to detect advanced

SQL injection attacks. In 2014 10th International

Conference on Information Assurance and Security,

Okinawa, Japan, pp. 35-40.

https://doi.org/10.1109/ISIAS.2014.7064617

[26] Halfond, W., Viegas, J., Orso, A. (2014). A classification

of SQL injection attacks and countermeasures. Georgia

Institute of Technology, 1-11.

[27] Oreku, G.S. (2022). A study of online database servers:

The case of SQL-Injection, how evil that could be?.

Asian Journal of Research in Computer Science, 14(4):

198-211. https://doi.org/10.9734/ajrcos/2022/v14i4304

[28] Johny, J.H.B., Nordin, W.A.F.B., Lahapi, N.M.B., Leau,

Y.B. (2021). SQL Injection prevention in web

application: A review. In Advances in Cyber Security:

Third International Conference, ACeS 2021, Penang,

Malaysia, Revised Selected Papers. Springer Singapore,

3: 568-585. https://doi.org/10.1007/978-981-16-8059-

5_35

[29] Baklizi, M., Atoum, I., Abdullah, N., Al-Wesabi, O.A.,

Otoom, A.A., Hasan, M.A.S. (2022). A technical review

of SQL injection tools and methods: A case study of

SQLMap. International Journal of Intelligent Systems

and Applications in Engineering, 10(3): 75-85.

[30] Horner, M., Hyslip, T. (2017). SQL Injection: The

longest running sequel in programming history. Journal

of Digital Forensics, Security and Law, 12(2): 97-108.

https://doi.org/10.15394/jdfsl.2017.1475

[31] Gupta, S., Gupta, B.B. (2017). Cross-Site Scripting (XSS)

attacks and defense mechanisms: Classification and

1939

state-of-the-art. International Journal of System

Assurance Engineering and Management, 8: 512-530.

https://doi.org/10.1007/s13198-015-0376-0

[32] Liu, M., Zhang, B., Chen, W., Zhang, X. (2019). A

survey of exploitation and detection methods of XSS

vulnerabilities. IEEE Access, 7: 182004-182016.

https://doi.org/10.1109/ACCESS.2019.2960449

[33] Aldallal, A. (2017). Exploring DOM-based Cross-Site

scripting. International Journal of Advances in

Electronics and Computer Science, 4(12): 40-43.

[34] Pelizzi, R., Sekar, R. (2012). Protection, usability and

improvements in reflected XSS filters. In proceedings of

the 7th ACM Symposium on Information, Computer and

Communications Security, pp. 5-5.

https://doi.org/10.1145/2414456.2414458

[35] Mohammadi, M., Chu, B., Lipford, H.R., Murphy-Hill,

E. (2016). Automatic web security unit testing: XSS

vulnerability detection. In Proceedings of the 11th

International Workshop on Automation of Software Test,

pp. 78-84. https://doi.org/10.1145/2896921.2896929

[36] Khazal, I.F., Hussain, M.A. (2021). Server side method

to detect and prevent stored XSS attack. Iraqi Journal for

Electrical & Electronic Engineering, 17(2).

https://doi.org/10.37917/ijeee.17.2.8

[37] Gupta, S., Gupta, B.B. (2016). XSS-SAFE: A server-side

approach to detect and mitigate cross-site scripting (XSS)

attacks in JavaScript code. Arabian Journal for Science

and Engineering, 41: 897-920.

https://doi.org/10.1007/s13369-015-1891-7

[38] Gupta, J., Gola, S. (2016). Server side protection against

cross site request forgery usingcsrf gateway. Journal of

Information Technology & Software Engineering,

6(182): 2.

[39] Shahriar, H., Zulkernine, M. (2010). Client-side

detection of cross-site request forgery attacks. In 2010

IEEE 21st International Symposium on Software

Reliability Engineering, San Jose, CA, USA, pp. 358-

367. https://doi.org/10.1109/ISSRE.2010.12

[40] Czeskis, A., Moshchuk, A., Kohno, T., Wang, H.J.

(2013). Lightweight server support for browser-based

CSRF protection. In Proceedings of the 22nd

International Conference on World Wide Web, pp. 273-

284. https://doi.org/10.1145/2488388.2488413

[41] Kombade, R.D., Meshram, B.B. (2012). CSRF

vulnerabilities and defensive techniques. International

Journal of Computer Network and Information Security,

4(1): 31-37. https://doi.org/10.5815/ijcnis.2012.01.04

[42] Chen, B., Zavarsky, P., Ruhl, R., Lindskog, D. (2011). A

study of the effectiveness of CSRF Guard. In 2011 IEEE

Third International Conference on Privacy, Security,

Risk and Trust and 2011 IEEE Third International

Conference on Social Computing, Boston, MA, USA, pp.

1269-1272.

https://doi.org/10.1109/PASSAT/SocialCom.2011.58

[43] Compagna, L., Jonker, H., Krochewski, J., Krumnow, B.,

Sahin, M. (2021). A preliminary study on the adoption

and effectiveness of SameSite cookies as a CSRF

defence. In 2021 IEEE European Symposium on

Security and Privacy Workshops (EuroS&PW), Vienna,

Austria, pp. 49-59.

https://doi.org/10.1109/EuroSPW54576.2021.00012

[44] Ismail, M.A., Hassan, M.M. (2021). An automated

detection system of cross site request forgery (CSRF)

vulnerability in web applications. International Journal

of Innovative Science and Research Technology, 582-

586.

[45] Sahana, M.P., Lobo, S.J. A study on advanced cross site

request forgery attacks and its prevention. Journal of

Web Development and Web Designing, 4(2): 31-35.

https://www.doi.org/10.5281/zenodo.3346240

[46] Kareem, F.Q., Ameen, S.Y., Salih, A.A., Ahmed, D.M.,

Kak, S.F., Yasin, H.M., Ibrahim, I.M., Ahmed, A.M.,

Rashid, Z.N., Omar, N. (2021). SQL injection attacks

prevention system technology. Asian Journal of

Research in Computer Science, 10(3): 13-32.

[47] Harefa, J., Prajena, G., Alexander, A., Dewa, E.V.S.,

Yuliandry, S. (2021). Sea waf: The prevention of sql

injection attacks on web applications. Advances in

Science, Technology and Engineering Systems Journal,

6(2): 405-411. https://doi.org/10.25046/aj060247

[48] Jasmine, M.S., Devi, K., George, G. (2017). Detecting

XSS based web application vulnerabilities. International

Journal of Computer Technology & Applications, 8(2):

291-297.

[49] Gupta, S., Sharma, L. (2012). Exploitation of cross-site

scripting (XSS) vulnerability on real world web

applications and its defense. International Journal of

Computer Applications, 60(14): 28-33.

https://www.doi.org/10.5120/9762-3594

[50] Jhansi, N., Naveen, M., Jagadeesh, R. (2021). Web

vulnerability detection: The case of cross-Site request

forgery. Complexity International Journal (CIJ), 1581-

1592.

[51] Semastin, E., Azam, S., Shanmugam, B., Kannoorpatti,

K., Jonkman, M., Samy, G.N., Perumal, S. (2018).

Preventive measures for cross site request forgery attacks

on Web-based Applications. International Journal of

Engineering and Technology (UAE), 7(4.15): 130-134.

https://doi.org/10.14419/ijet.v7i4.15.21434

1940

