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Phishing attacks are becoming more complex and harder to differentiate from legitimate 

websites. This poses serious risks to users and organizations. This study introduces a 

phishing detection framework that combines LASSO-based feature selection and a Random 

Forest classifier enhanced by Weighted Bootstrap Sampling (WBS). The framework 

addresses two key challenges: optimizing feature selection for high-dimensional data and 

managing datasets with over 70% outliers. LASSO+ extends the traditional LASSO (Least 

Absolute Shrinkage and Selection Operator) by integrating Pearson Correlation and Grid 

Search. This combination improves feature selection by identifying the most relevant 

features, reducing redundancy, and ensuring efficient processing without compromising 

accuracy. WBS further enhances Random Forest by prioritizing uncertain samples during 

training, enabling the model to effectively handle outlier-heavy datasets and improve recall. 

The proposed framework was evaluated on four diverse datasets with distinct challenges. 

Results demonstrated high recall rates of 99.59% for Dataset A, 98.76% for Dataset B, 

100.00% for Dataset C, and 98.99% for Dataset D. The method also achieved competitive 

execution times. Compared to existing approaches, the framework delivered better 

predictive accuracy, robustness, and efficiency. This study highlights the advantages of 

combining LASSO+ and WBS to improve feature selection and manage outliers in phishing 

detection. The proposed method provides a reliable solution for addressing cybersecurity 

challenges in practical applications. 
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1. INTRODUCTION

Phishing attacks have evolved significantly, making it 

increasingly difficult for users to differentiate between 

legitimate and malicious websites. According to the Anti-

Phishing Working Group (APWG), the number of phishing 

incidents has increased by 15.87%, from 832,000 in 2022 to 

964,000 in 2024 [1-3]. These attacks endanger sensitive data 

and erode users' trust in online platforms and services [4]. 

Phishing websites use a technique of URL concealment to 

trick users and bypass traditional security measures [5-7]. The 

changing nature of phishing URLs adds another complexity to 

their detection. Feature selection techniques can address this 

issue by reducing complexity and enhancing the model's 

capacity to accurately differentiate between various categories 

of websites [8]. For instance, Hannousse and Yahiouche [8] 

demonstrated that implementing feature selection strategies 

improved accuracy to 96.86%. Therefore, there is a need for 

more effective detection and protection systems. 

Traditional feature selection methods often involve trade-

offs between predictive performance and execution time. 

Achieving high accuracy frequently requires more features, 

which increases computational cost and training time [9]. 

Reducing features may improve computational efficiency, but 

it risks eliminating key characteristics and potentially lowering 

accuracy [8]. These limitations make traditional approaches 

inadequate for handling complex datasets where both high 

accuracy and computational efficiency are essential. To 

overcome these limitations, we introduce LASSO⁺, a feature 

selection method designed to optimize performance and 

efficiency simultaneously. In contrast to previous studies [10] 

emphasizing feature count, we focus on balancing 

performance and efficiency. This method ensures that 

computational resources are not overburdened while 

maintaining high accuracy, aligning with Pudjihartono et al., 

who emphasized balancing feature selection to optimize both 

performance and computational resources [11]. 

LASSO+ is an advanced feature selection method 

combining LASSO (Least Absolute Shrinkage and Selection 

Operator) with correlation thresholding and Grid Search to 

enhance feature selection efficiency. Details of its 

implementation are provided in Section 3.2. Correlation 

thresholding helps to eliminate highly correlated features, 

while Grid Search fine-tunes the regularization parameter (λ) 

to optimize feature selection. Balancing these trade-offs 

between recall, performance, and computational efficiency is 

critical, as highlighted by recent studies [11, 12]. This method 

balances performance and computational efficiency by 

automatically selecting the most important features during 

learning, reducing the impact of less important ones, and 
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simplifying the model without losing effectiveness [11, 13-

17]. 

In phishing detection, recall—also known as the True-

Positive Rate (TPR)—is essential because it ensures that all 

potential threats are detected by minimizing the risk of missing 

any phishing attempts. The primary objective is to identify 

every possible threat [15]. Even though emphasizing recall 

might increase computational demands, it remains a critical 

priority. Missing a single phishing attempt may result in 

significant security threats. 

Another issue in phishing detection is managing the high 

proportion of outliers in the datasets. More than 70% of the 

data points were identified as outliers using the Interquartile 

Range (IQR) method. This proportion of outliers can impact 

the performance of traditional machine learning models and 

often leads to inaccurate predictions [16, 17]. 

To solve these problems, the LASSO+ model integrates with 

Random Forest (RF) enhanced by Weighted Bootstrap 

Sampling (WBS) [18]. This integrated method improves 

predictive performance and effectively handles imbalanced 

and outlier-prone phishing datasets. WBS addresses the 

problem of outliers by ensuring a balanced sample 

representation during model training, which enhances recall 

and overall accuracy. Moreover, RF is well-known for its 

accuracy in multi-class datasets, user-friendliness with 

different dataset sizes, and stability. Conventional feature 

selection methods often necessitate a trade-off between 

maximizing predictive performance and minimizing execution 

time, which this study aims to address [10, 14, 19, 20]. 

The primary contributions of this study are threefold. First, 

we introduce and carefully evaluate the LASSO+ feature 

selection method for phishing detection. This method 

strategically combines LASSO with correlation thresholding 

and Grid Search to optimize feature selection. Second, we 

investigate the impact of integrating Weighted Bootstrap 

Sampling with Random Forest. We assess its effectiveness in 

improving model predictive performance, especially in 

handling outliers phishing datasets. Third, we provide a 

detailed analysis of the trade-offs between predictive 

performance and execution time. This analysis offers insights 

into how these factors can be effectively balanced to achieve 

superior performance in phishing detection systems. 
 

 

2. PRELIMINARY STUDY 
 

2.1  LASSO feature selection 
 

LASSO is increasingly used in phishing detection because 

it is efficient in handling high-dimensional data. It reduces 

overfitting and enhances interpretability by shrinking less 

important feature coefficients to zero [17]. It has been 

effectively combined with mRMR and machine learning 

techniques to improve feature selection and accuracy [21]. In 

malicious URL detection, integrating LASSO with models 

like RF creates robust systems [19]. This study chose LASSO 

as a key technique because it can balance accuracy and 

computational efficiency. 

LASSO+ improves traditional LASSO by incorporating 

correlation thresholding and Grid Search. Correlation 

thresholding removes redundant and highly correlated 

features, reducing noise and multicollinearity, as demonstrated 

in tensor factor models [22, 23]. This process enhances 

phishing detection by retaining only the most informative and 

independent features, which is critical for improving both 

model accuracy and interpretability. 

Grid Search fine-tunes the λ parameter in LASSO+, 

ensuring an optimal balance between feature reduction and 

performance [24, 25]. This adaptive approach is essential as 

phishing attacks grow more sophisticated, including 

techniques like Generative Adversarial Networks (GAN) [26]. 

Thus, LASSO+ helps address the challenge of building 

scalable detection systems that adapt to evolving phishing 

threats. 
 

2.2 Random Forest  
 

RF is a widely used ML algorithm known for its robustness 

in handling large and complex datasets. It was developed as an 

ensemble method that combines multiple decision trees to 

improve predictive performance and reduce overfitting. This 

approach makes RF stable and effective in many applications, 

particularly useful in classification tasks with high data 

variability [27, 28]. 

Several studies have demonstrated RF’s effectiveness in 

phishing detection. For instance, Almseidin et al. [29] found 

that integrating RF with optimized feature selection 

extensively improves phishing detection systems' accuracy. 

Al-Sarem et al. [30] improved this approach by combining RF 

into an optimized stacking ensemble model, which achieved 

high accuracy and reduced overfitting. Othman and Hassan 

[31] conducted an empirical study that further reinforced RF’s 

dominance in phishing detection. Studies conducted by 

Kandula et al. have identified RF as one of the most effective 

algorithms for phishing detection, attributed to its robustness 

and capability in managing high-dimensional data [6]. Their 

findings implied that RF consistently outperformed other 

models despite high data variability.  

In the current study, RF is integrated with the LASSO+ 

feature selection framework to optimize both predictive 

performance and computational efficiency. Recognizing the 

unique challenge posed by outlier datasets, we introduce the 

use of WBS within the RF model. WBS focuses on resampling 

data based on uncertainty in model predictions, enhancing the 

model’s ability to correctly classify difficult samples, 

including those not explicitly labeled as outliers. This 

combination of techniques positions the study to contribute 

significantly to phishing detection. The model can also handle 

data that is challenging to detect, even if they are not classified 

as outliers. This is achieved using uncertainty-based 

resampling techniques, as previously demonstrated in studies 

[18, 32]. 
 

 

3. METHODOLOGY 
 

The proposed method, as illustrated in Figure 1, is 

employed to enhance the performance of phishing website 

detection. This process includes data preparation, advanced 

feature selection, and robust classification techniques. It 

begins with data preparation, where duplicate entries and null 

values of the dataset are removed. During this stage, outliers 

are identified and permitted to be accounted for in subsequent 

analysis. Afterward, the data is normalized using a Min-Max 

Scaler. This scaler adjusts all features to the same scale 

between 0 and 1. It provides a simple feature range without 

introducing negative values or producing large ranges. Thus, 

the model is easier to interpret and reduces computational 

complexity. 
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Once the data is prepared, the study moves on to LASSO+ 

feature selection. The process starts with Pearson Correlation 

to identify and measure the linear relationship between 

features. Features with high correlations are subsequently 

subjected to Correlation Thresholding. In Correlation 

Thresholding, redundant features are removed to reduce 

multicollinearity and simplify the model. Grid Search is 

employed to optimize the parameters for LASSO and refine 

the feature selection further. This ensures that only the most 

relevant features are selected efficiently. Then, LASSO is 

employed to select the final set of features. 

 

 
 

Figure 1. Proposed method for phishing detection using Random Forest based on LASSO+ feature selection 

 

The selected features are then fed into the RF model, which 

is enhanced by WBS based on Uncertainty. This technique 

prioritizes samples that are difficult to classify, with one 

significant factor being outliers identified through the data 

preparation stage. Within the RF model, subset feature 

selection is applied at each node of the decision trees. Rather 

than using all available features, the model randomly selects a 

subset of features at each node to reduce overfitting and 

increase model diversity. 

WBS normalization adjusts each sample's weights based on 

uncertainty to ensure their sum equals one. Then, the decision 

trees were built using these weighted samples and the selected 

subset of features. Each tree is constructed by splitting nodes 

based on a subset of features with higher uncertainty values. 

The final prediction is determined by aggregating the 

predictions from all decision trees in the forest using majority 

voting, where the class predicted by most trees is selected as 

the outcome. 

Finally, the model's performance is evaluated using a 

comprehensive set of metrics, including accuracy, precision, 

recall, F1-score, Area Under the Curve (AUC), and execution 

time. These metrics provide a holistic view of the model’s 

effectiveness. An ablation study is 

 also conducted to compare the traditional LASSO method 

with the proposed LASSO+ method. This highlights the 

improvements in recall and computational efficiency. The 

methodology concludes with a Comparison of Performance 

across four datasets (A, B, C, and D). 

 

3.1 Data collection 

 

This study utilized several public datasets to evaluate the 

performance of different feature selection methods for 

phishing website detection. The datasets used are from 

Vrbančič (Dataset A) [33], Hannousse and Yahiouche 

(Dataset B) [8], Prasad and Chandra (Dataset C) [34], and 

Mohammad et al. (Dataset D) [35]. These datasets are widely 

used in phishing detection research. For example, Dataset A 

has been utilized in various studies as a benchmark for 

evaluating feature selection methods in phishing detection [31, 

36, 37]. Dataset B is often referenced in studies analyzing 

phishing characteristics [10, 38-40]. Due to its large size and 

inclusion of modern attributes such as obfuscation and media 

elements, Dataset C has been used to test advanced machine-

learning algorithms for phishing detection [41]. Finally, 

Dataset D represents a smaller but balanced dataset [3, 42]. 

The details of these datasets are summarized in Table 1.
 

Table 1. Dataset information 
 

Dataset 

Characteristic 
Dataset A Dataset B Dataset C Dataset D 

Total Data 88,647 11,430 235,795 11,055 

Features 96 87 53 30 

Phishing 30,647 5,715 100,945 4,898 

Non-Phishing 58,000 5,715 134,850 6,157  

Description of 

Features 

URL structure, Special 

characters count, Response 

times, Google index status 

URL structure, Character 

counts, HTTP headers, 

WHOIS data 

URL structure, Obfuscation, 

HTTPS usage, Form 

submissions, Media elements 

URL Structure, Special 

Characters count, HTTPS Usage, 

Media elements, WHOIS Data 
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The datasets vary in feature count, class distribution, and 

overall size, reflecting diverse characteristics essential for 

evaluating feature selection methods. Dataset A has the 

highest feature count and a noticeable imbalance, with 

legitimate samples dominating. In contrast, Dataset B provides 

a balanced class distribution. Dataset C is the largest in size, 

exhibits moderate imbalance, and incorporates modern 

phishing characteristics. Dataset D, with the smallest feature 

count and near-balanced classes, offers efficiency for 

lightweight evaluations. These differences highlight the 

complementary nature of the datasets, ensuring robust and 

comprehensive testing under varied conditions. 

 

3.2 Data preparation 

 

This study focused on handling outliers in the datasets. 

Outliers may impact the performance of ML models. More 

than 70% of the data were identified as outliers using the IQR 

method. Figure 2 presents the outlier sensitivity graph for each 

dataset, illustrating the distribution of inliers and outliers. In 

the graph, inliers are represented by yellow bars, while outliers 

are shown in orange bars. It underscores the critical issue of 

outliers and their substantial impact on model performance, 

which this study aims to address. Therefore, this study strongly 

aims to address outliers and their impact on model 

performance. 

 

 
 

Figure 2. Outlier sensitivity for across the dataset 

 

Data preparation in this study involves several steps. First, 

duplicate entries are removed to prevent distortion caused by 

overrepresented data points. Next, missing values are 

addressed to minimize bias and maintain the model's accuracy. 

Once the data is cleaned, feature normalization is applied 

using the Min-Max Scaler to rescale all feature values into a 

consistent range, typically between 0 and 1 [43]. The formula 

for Min-Max normalization is as follows: Eq. (1). 

 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  (1) 

 

where, 𝑋 is the original feature value, and 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥  are 

the minimum and maximum values of the feature, 

respectively. This formula ensures that all feature values are 

scaled proportionally within the defined range and prevents 

features with larger numeric ranges from dominating the 

learning process. For example, if the URL length has a 

minimum value of 11 a maximum of 57, and an observed value 

of 48, the normalized value would be: 

 

𝑋𝑛𝑜𝑟𝑚 =
48−11

57−11
≈ 0.804  (2) 

 

Normalization scales all feature values to a non-negative 

range and standardizes their scale without removing outliers. 

This ensures equal contribution from small-range features like 

URL length and large-range features like timestamps to the 

learning process [43]. This process enhances the model's 

stability and ensures fairness in feature contribution during 

learning. 

 

3.3 Feature selection and optimization process 

 

The feature selection and optimization process begin with 

Correlation Thresholding to identify and remove redundant 

features. This step reduces multicollinearity by analyzing the 

linear relationships between features and eliminating those 

with high correlation. Next, Grid Search optimizes the 

regularization parameter λ in the LASSO model. LASSO 

applies this optimal λ to shrink less important feature 

coefficients to zero, retaining only the most relevant features. 

This process improves both model performance and 

computational efficiency. 

 

3.3.1 Pearson correlation 

The feature selection process begins with Pearson 

correlation, which quantifies the linear relationship between 

pairs of features in the dataset. The Pearson correlation 

coefficient 𝑟𝑖𝑗  ranges from -1 to 1, where 𝑟𝑖𝑗 = 1 indicates a 

perfect positive relationship, 𝑟𝑖𝑗 =  −1  indicates a perfect 

negative relationship, and 𝑟𝑖𝑗 = 0  indicates no relationship. 

The coefficient is calculated using the Eq. (3) [44]. 

 

𝑟𝑖𝑗 =  
∑ (𝑋𝑖𝑘−�̅�𝑖)𝑛

𝑘=1 (𝑋𝑗𝑘−�̅�𝑗)

√∑ (𝑋𝑖𝑘−�̅�𝑖)2𝑛
𝑘=1

√∑ (𝑋𝑗𝑘−�̅�𝑗)
2𝑛

𝑘=1

  (3) 

 

where, 𝑋𝑖𝑘 and 𝑋𝑗𝑘 are the values of features 𝑋𝑖 and 𝑋𝑗 for the 

𝑘-th observation, �̅�𝑖 and �̅�𝑗 are their mean values, and 𝑛 is the 

number of observations. 

A correlation matrix is computed for all feature pairs to 

identify and remove redundant features. Threshold values (𝜏) 

are tested to find the optimal value that maximizes model 

performance. Table 2 outlines detailed steps for this process. 
 

3.3.2 Correlation thresholding 

Correlation Thresholding is applied after calculating the 

correlation matrix to identify and remove highly correlated 

features. Instead of using a fixed threshold, such as 0.9, this 

study optimizes the 𝜏 based on model performance. Threshold 

values ranging from 0.5 to 1.0 are tested to find the optimal 𝜏. 

For feature pairs with a correlation (|𝑟𝑖𝑗| > 𝜏), one feature is 

removed. 

The decision on which feature to remove is based on three 

factors [45]. First, domain knowledge ensures the retention of 

features relevant to phishing detection. Second, feature 

importance scores, derived from preliminary analyses, 

prioritize features with higher contributions to model 

performance. Third, multicollinearity is reduced by carefully 

selecting and removing highly correlated features. Detailed 

steps for this process are outlined in Table 2. 
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Table 2. Pseudocode for correlation thresholding 

 

Step Description 

Input 
Dataset D with N samples and M features, target 

variable Y 

Output 
Reduced set of features F after correlation 

thresholding 

Calculate 

Correlation 

Matrix 

Compute the correlation matrix R for all features 

in the dataset D 

Set Threshold τ Define an initial range of thresholds τ to evaluate. 

Optimize 

Threshold 

For each threshold τ in the defined range, assess 

the impact on model performance and choose the 

τ that maximizes the model's accuracy. 

Identify Highly 

Correlated Pairs 

Identify pairs of features (𝑋𝑖 , 𝑋𝑗) with correlation 

coefficient |𝑟𝑖𝑗| greater than the optimized 

threshold 𝜏. 

Remove 

Redundant 

Features 

Remove one feature from each highly correlated 

pair based on domain knowledge, feature 

importance scores, or reduce multicollinearity. 

Return Reduced 

Feature Set 

After removing redundant features, return the 

reduced set of features F. 

 

3.3.3 Grid search for lasso optimization 

Grid Search is used to optimize the 𝜆 in the LASSO model. 

The parameter 𝜆 determines the strength of the penalty applied 

to feature coefficients, where larger values shrink more 

coefficients to zero. This simplifies the model by removing 

less important features while retaining the most relevant ones 

[46]. 

 

Table 3. Pseudocode for grid search 

 
Step Description 

Input 
Dataset 𝐷 with 𝑁 samples and 𝑀 features, 

target variable 𝑌 

Output Optimal 𝜆 for LASSO 

Define and 

evaluate 𝜆 

Set up a range of 𝜆 values, evaluate them based 

on model performance. 

Perform Cross-

Validation 

For each 𝜆 value, evaluate model performance 

using cross-validation to ensure robustness. 

Select Optimal 𝜆 

Choose the 𝜆 that results in the best cross-

validation score, balancing model simplicity 

and accuracy. 

Return Optimal 𝜆 After evaluation, return the optimal 𝜆 value. 

 

To find the optimal 𝜆, Grid Search tests a predefined range 

of values. Each 𝜆  is evaluated using cross-validation to 

measure its impact on model performance. The value that 

achieves the best balance between accuracy and simplicity is 

selected as the optimal 𝜆. The detailed steps of this process are 

outlined in Table 3. 

 

3.3.4 LASSO feature selection 

After determining the optimal 𝜆  through Grid Search, 

LASSO applies this parameter to penalize less important 

features in the model. The LASSO objective function is 

defined in Eq. (4) [46], 

 

�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 {
1

2𝑁
∑ (𝑌𝑖 − 𝛽0 − ∑ 𝑟𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )

2
+ 𝜆 ∑ |𝛽𝑗|

𝑝
𝑗=1

𝑁
𝑖=1 }  (4) 

 

This objective function minimizes the sum of squared errors 

and applies an 𝐿1 penalty proportional to the absolute values 

of the coefficients (𝛽𝑗). The penalty term, controlled by 𝜆, 

ensures that coefficients for less important features are shrunk 

to zero, effectively removing them from the model. The terms 

are defined as follows: 

The first term represents the least squares error. This term 

calculates the sum of squared differences between observed 

and predicted outcomes, see Eq. (5). 

 
1

2𝑁
∑ (𝑌𝑖 − 𝛽0 − ∑ 𝑟𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )

2𝑁
𝑖=1   (5) 

 

where, 𝑁 is the number of observations, 𝑋𝑖𝑗 is the value of the 

𝑗 -th feature for the 𝑖 -th observation, 𝛽𝑗  is the coefficient 

associated with the 𝑗-th feature, and 𝛽0 is the intercept term. 

The second term is the 𝐿1  regularization term. This term 

adds a penalty proportional to the sum of the absolute values 

of the coefficients 𝛽𝑗, see Eq. (6). 

 

𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1   (6) 

 

The regularization parameter 𝜆 controls the strength of this 

penalty. A larger 𝜆  increases the penalty, shrinking more 

coefficients to zero and removing the corresponding features 

from the model. Conversely, a smaller 𝜆 retains more features 

with non-zero coefficients. 

The steps for applying for LASSO in feature selection are 

outlined in Table 4. 

 

Table 4. Pseudocode for LASSO feature selection 

 
Step Description 

Input 
Dataset 𝐷 with 𝑁 samples and 𝑀 features, 

target variable 𝑌 

Output Selected features from the LASSO model 

Initialize LASSO 

Model 

Define the LASSO model with the 

regularization parameter 𝜆. 

Fit Model 
Fit the LASSO model to the dataset 𝐷 by 

minimizing the objective function. 

Extract Coefficients 
Extract the coefficients 𝛽𝑗  for each feature 

𝑗 after fitting the model. 

Feature Selection 
Identify features where 𝛽𝑗 ≠ 0 as these 

are the features selected by the model. 

Return Selected 

Features 

Return the set of selected features with 

non-zero coefficients. 

 

Optimizing LASSO can be computationally expensive due 

to iterative Grid Search. This study simplifies the process to 

reduce execution time while maintaining model accuracy. The 

optimization ensures efficient and effective feature selection 

without sacrificing performance. 
 

3.4 Random Forest 
 

This study uses RF combined with WBS based on 

uncertainty to improve the performance and efficiency of 

phishing detection in complex datasets. It starts with LASSO+ 

feature selection, which identifies the most relevant features 

for classification. Then, these selected features are used in the 

RF model. These features are further evaluated and chosen 

during the building of decision trees. 

 

1787



 

3.5 Random Forest construction using Weighted Bootstrap 

Sampling with uncertainty 

 

During the construction of each decision tree 𝑇𝑏  in the forest, 

the dataset is resampled using WBS based on uncertainty 

sampling approach discussed by Liu and Li [18]. Instead of 

standard Bootstrap Sampling, WBS assigns a weight 𝑊𝑖  to 

each sample based on the uncertainty of its predicted outcome. 

Those with higher uncertainty receive greater weights, so that 

these samples could be selected during the resampling process.  

The weight 𝑊𝑖  for each sample is calculated using the 

following formula: 

 

𝑊𝑖 =
1

|𝑃(�̂�𝑖=1|𝑋𝑖)−0.5|+ 𝜖
  (7) 

 

where, 𝑃(�̂�𝑖 = 1|𝑋𝑖)  is the predicted probability that the 

sample 𝑋𝑖 belongs to the positive class, such as predicting that 

a website is phishing. The expression |𝑃(�̂�𝑖 = 1|𝑋𝑖) − 0.5| 

calculates the absolute difference between the predicted 

probability and 0.5. This difference shows how unsure the 

model is about the prediction. If the value is close to 0.5, it 

means the model is very uncertain. The small constant 𝜖  is 

added to avoid dividing by zero.  

Once the weights are calculated for all samples, these 

weights are normalized so that the sum of all weights equals 

one. This normalization step ensures that the weights can be 

interpreted as probabilities when selecting samples. The 

probability of selecting a sample 𝑋𝑖 to be included in the new 

Bootstrap sample 𝐷𝑏  is proportional to its weight 𝑊𝑖 . This 

probability is given by: 

 

𝑃(𝑋𝑖 ∈  𝐷𝑏) = 𝑊𝑖  (8) 

 

Using these weights, the new Bootstrap sample 𝐷𝑏  is 

created by randomly selecting 𝑁  observations from the 

dataset. The probability of each observation being selected 

depends on its weight 𝑊𝑖 . Hence, samples with higher 

uncertainty are more likely to be included in the training set. 

This approach helps the model to focus on more challenging 

cases, ultimately improving its overall performance. 

In RF model, each decision tree is constructed by selecting 

a random subset of features at each node. Instead of using all 

available features in the dataset, the model selects a smaller 

random subset of features to consider when splitting at each 

node. The number of features selected at each node is denoted 

by 𝑚 , while 𝑀  represents the total number of features 

available in the dataset. The model then examines the selected 

features 𝑚 to find the one that best divides the data at that 

node. To determine how many features 𝑚 should be selected 

at each node, the commonly used formula: 

 

𝑚 = √𝑀  (9) 

 

The final prediction is determined by combining all these 

predictions after each decision tree in the forest makes its 

prediction for a sample 𝑋. The following explanation shows 

how the sample 𝑋 is being predicted. The prediction made by 

the 𝑏-th tree is denoted as 𝑇𝑏(𝑋). The final predicted class for 

the sample is represented by �̂�. 

In a classification model, these predictions are combined 

using majority voting. This means the class often predicted by 

the trees becomes the final prediction. The equation is: 

 

�̂� = 𝑚𝑜𝑑𝑒{𝑇𝑏(𝑋)}𝑏=1
𝐵  (10) 

 

In Eq. (10), 𝐵 stands for the total number of trees in the 

forest. The mode function selects the class that appears most 

frequently among the predictions from all 𝐵  trees. The RF 

formula is widely recognized and applied in [47]. 

 

3.6 Model training and evaluation 

 

After resampling the data using WBS, the RF model is 

trained on the newly constructed dataset to enhance its ability 

to detect phishing websites in imbalanced datasets. The 

model's performance is evaluated using accuracy, precision, 

recall, f1 score, AUC, and execution time. 

 

 

4. RESULT AND DISCUSSION 

 

This section presents the experimental results and discusses 

the findings of this study. The analysis demonstrates the 

impact of the LASSO+ feature selection method compared to 

the traditional LASSO approach in phishing detection. 

Performance metrics for the proposed method are evaluated 

across multiple public datasets and compared to state-of-the-

art techniques. The section is organized into several 

subsections, starting with the parameter tuning of LASSO+ to 

determine the optimal values for key hyperparameters. This is 

followed by an ablation study to assess the individual 

contributions of each component of the proposed model. 

Finally, a comparative analysis is conducted to evaluate the 

performance of the proposed method concerning existing 

approaches in the literature. 

 

4.1 Parameter tunning of LASSO+ 

 

The optimal lambda values are determined through Grid 

Search. For Dataset A, the optimal lambda value of 0.0010 

indicates a higher regularization level, suggesting the dataset 

may contain more noise or irrelevant features. In contrast, the 

lower lambda values of 0.0001 for Datasets B, C, and D imply 

less regularization is needed, indicating that these datasets 

have more informative features and require minimal 

shrinkage. This adjustment ensures that the most pertinent 

features are retained, enhancing model accuracy and 

performance. 

 

4.2 Ablation study 

 

The ablation study evaluates the performance of traditional 

LASSO and LASSO+ across four datasets. Table 5 shows that 

LASSO+ consistently achieves better accuracy, precision, and 

F1-score results with comparable AUC. In Dataset A, 

LASSO+ improves accuracy from 89.12% to 90.58% and F1-

score from 86.06% to 87.68%, though execution time 

increases from 0.48s to 31.72s. In Dataset B, accuracy 

increases from 92.65% to 96.93%, and precision improves 

from 91.96% to 97.48%, with recall adjusted from 93.26% to 

96.27% and execution time reaching 21.47s. Dataset C 

maintains perfect recall, with LASSO+ improving accuracy 

from 99.85% to 99.88% and execution time rising from 0.44s 

to 63.95s. Dataset D demonstrates the improvements in 

accuracy (84.89% to 92.17%) and recall (84.89% to 94.98%), 

with execution time increasing from 0.04s to 2.29s. 
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Table 5. Comparison performance LASSO and LASSO+ 

 

Dataset Feature Selection Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) Execution Time (s) 

A 
LASSO 89.12 77.12 97.33 86.06 96.96 0.48 

LASSO+ 90.58 80.53 96.21 87.68 97.62 31.72 

B 
LASSO 92.65 91.96 93.26 92.61 97.78 0.08 

LASSO+ 96.93 97.48 96.27 92.61 97.78 21.47 

C 
LASSO 99.85 99.74 100.00 99.87 99.99 0.44 

LASSO+ 99.88 99.80 100.00 99.90 99.99 63.95 

D 
LASSO 84.89 87.95 84.89 84.89 97.37 0.04 

LASSO+ 92.17 91.55 94.98 93.23 97.39 2.29 

 

Table 6. Comparison of phishing detection performance in Dataset A 

 
Publications Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) Execution Time (s) 

Wei and Sekiya 96.94 95.55 95.55 - 99.50 15.43 

Othman and Hassan 98.69 98.58 98.80 98.69 - - 

Kalabarige et al. 98.43 97.93 98.96 98.44 - - 

Proposed Method 99.20 99.53 99.59 99.56 99.92 6.80 

 

Table 7. Comparison of phishing detection performance in Dataset B 

 
Publications Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) Execution Time (s) 

Moedjahedy et al. 97.96 - - - - - 

Kumar et al. 99.70 95.70 98.10 - - - 

Adane et al. 97.90 97.63 98.14 97.88 - 10.00 

Trad and Chehab 97.30 97.78 96.80 97.29 99.56 - 

Proposed Method 98.85 98.97 98.76 98.81 99.90 2.11 

 

Table 8. Comparison of phishing detection performance in Dataset C 

 
Publications Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) Execution Time (s) 

Vajrobol et al. 99.97 99.97 99.97 99.97 - - 

Proposed Method 100.00 100.00 100.00 100.00 100.00 18.22 

 

Table 9. Comparison of phishing detection performance in Dataset D 

 
Publications Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) Execution Time (s) 

Adane et al. 97.37 96.65 98.18 97.40 - 12 

Shabudin et al. 
FSOR 97.08 - - - - 10 

FSFM 95.19 - - - - 6 

Taha et al. 97.00 98.00 97.00 97.00 - - 

Toğaçar 97.26 96.35 97.28 96.91 - - 

Ubing et al. 95.40 93.50 95.90 - - - 

Proposed Method 98.69 98.69 98.99 98.84 99.90 1.09 

 

Table 10. Comparison of baseline methods and proposed method across all datasets 

 

Dataset Baseline Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) Execution Time (s) 

A 

Random Forest 97.02 95.21 96.22 95.71 99.49 15.87 

Random Forest + WBS 95.74 92.88 94.94 93.90 99.15 23.14 

LASSO+ + Random Forest 97.15 95.34 96.45 95.89 99.48 16.43 

Proposed Method 99.20 99.53 99.59 99.56 99.92 6.80 

B 

Random Forest 96.85 97.39 96.19 96.79 99.43 1.09 

Random Forest + WBS 97.37 97.59 97.07 97.33 99.52 2.15 

LASSO+ + Random Forest 96.06 96.17 95.83 96.00 99.15 0.84 

Proposed Method 98.85 98.97 98.76 98.81 99.90 2.11 

C 

Random Forest 100.00 100.00 100.00 100.00 100.00 33.69 

Random Forest + WBS 100.00 100.00 100.00 100.00 100.00 67.84 

LASSO+ + Random Forest 99.99 99.98 100.00 99.99 100.00 12.94 

Proposed Method 100.00 100.00 100.00 100.00 100.00 18.22 

D 

Random Forest 96.78 96.17 98.24 97.20 99.41 1.18 

Random Forest + WBS 96.06 96.06 96.06 96.06 99.25 2.57 

LASSO+ + Random Forest 96.38 96.38 96.38 96.37 99.41 1.2732 

Proposed Method 98.69 98.69 98.99 98.84 99.90 1.09 
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Table 11. Statistical comparison of accuracy across datasets 
 

Dataset Baseline Methods Mean Difference t-Statistic p-Value 

A 

Random Forest 2.18 92.00 1.50×10−64 

Random Forest + WBS 6.65 286.28 4.78×10−89 

LASSO+ + Random Forest 3.14 107.33 4.89×10−67 

B 

Random Forest 2.00 83.24 6.14×10−62 

Random Forest + WBS 1.38 55.26 1.40×10−51 

LASSO+ + Random Forest 2.93 121.68 1.63×10−71 

C 

Random Forest 0.00 -0.33 7.42×10−1 

Random Forest + WBS 0.00 2.56 1.33×10−2 

LASSO+ + Random Forest 0.00 0.80 4.30×10−1 

D 

Random Forest 1.91 63.40 8.51×10−55 

Random Forest + WBS 2.63 110.82 6.47×10−69 

LASSO+ + Random Forest 2.61 110.42 1.96×10−66 

LASSO+ demonstrates consistent advantages in predictive 

performance, particularly in accuracy and recall, while 

maintaining competitive overall metrics. Despite higher 

computational costs in some cases, its reliability and 

effectiveness make it a strong candidate for feature selection 

in phishing detection. 
 

4.3 Comparison analysis 
 

This section compares the proposed model with previous 

studies across multiple datasets, as shown in Tables 6 to 9. The 

results demonstrate that the proposed model consistently 

achieves higher recall while maintaining strong performance 

in accuracy, recall, F1-score, and AUC. Additionally, the 

model significantly reduces execution time compared to other 

approaches. 

For Dataset A, the proposed model achieves the highest 

recall, outperforming studies by Wei and Sekiya [36], Othman 

and Hassan [31], and Kalabarige et al. [37], while also 

demonstrating the shortest execution time. In Dataset B, the 

model demonstrates superior recall compared to methods by 

Moedjahedy et al. [10], Pandey et al. [40], Adane et al. [38], 

and Trad and Chehab [39]. While Pandey et al. [40] achieved 

slightly higher accuracy, the proposed model demonstrates 

superior precision and recall. 

In Dataset C, the proposed model matches the precision of 

Vajrobol et al. [41] while providing competitive execution 

time. For Dataset D, the model surpasses Adane et al. [38], 

Shabudin et al. [42], Taha et al. [48], Toğaçar [21], and Ubing 

et al. [49] in all aspects while achieving the fastest execution 

time. These findings highlight the proposed model’s ability to 

focus on accurate detection, ensuring minimal false positives, 

which is crucial for phishing prevention systems. 
 

4.4 Baseline comparison 
 

The proposed method demonstrates superior performance 

compared to baseline approaches across key metrics, as 

summarized in Table 10. It achieves higher precision and 

recall, essential for phishing detection while maintaining faster 

execution times, particularly for smaller datasets. The 

proposed method effectively handles scalability on larger 

datasets, delivering consistent and robust performance. 

Among the baseline methods, RF with WBS shows 

competitive results but suffers from longer execution times 

due to increased computational complexity. In contrast, the 

proposed method strikes an optimal balance between 

performance and efficiency. 

The statistical analysis in Table 11 further emphasizes the 

superiority of the proposed method. The method achieves 

significant accuracy improvements for Datasets A and B, with 

t-statistics exceeding 80 and p-values nearing zero. These 

results reflect their robust feature selection and classification 

capabilities. In Dataset C, the simplicity and homogeneity of 

the dataset result in minimal differences between methods, as 

indicated by near-zero mean differences and high p-values. 

However, the slight negative t-statistic further underscores the 

stability of all approaches under uniform conditions. Dataset 

D, representing a moderately complex scenario, highlights the 

proposed method's adaptability, with t-statistics above 60 and 

notable p-values demonstrating its scalability. 

Across all datasets, the proposed method consistently 

outperforms baseline approaches in precision, recall, and 

execution time. These results underline its effectiveness in 

balancing accuracy and efficiency. 
 

4.5 Performance summary across datasets 
 

Table 12 demonstrates that the characteristics of the datasets 

and the number of outliers impact the proposed method's 

performance. Dataset A has the highest number of outliers and 

substantial variability. It achieves consistent performance and 

highlights the method’s effectiveness in managing complex 

datasets. Dataset C contains a moderate number of outliers. It 

performs perfectly and illustrates the model’s robustness in 

scenarios with balanced data. 

Dataset D is characterized by a moderate to high number of 

outliers and a smaller size. It achieves good performance but 

is slightly outperformed by Dataset C. This indicates that 

dataset size also contributes to performance variations. Dataset 

B has the lowest number of outliers and a compact structure. 

It records the fastest execution time while maintaining high 

performance. These findings indicate that although the number 

of outliers influences performance, the proposed method is 

highly adaptable. It consistently delivers optimal results across 

diverse dataset conditions.

 

Table 12. Overall performance metrics of the proposed method across all datasets 
 

Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) Execution Time (s) 
A 99.20 99.53 99.59 99.56 99.92 6.80 

B 98.85 98.97 98.76 98.81 99.90 2.11 

C 100.00 100.00 100.00 100.00 100.00 18.22 

D 98.69 98.69 98.99 98.84 99.90 1.09 
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Figure 3. ROC curves for all datasets 

 

  

  
 

Figure 4. Confusion matrices for all datasets 

 

The ROC curve illustrates the relationship between True 

Positive Rate (TPR) and False Positive Rate (FPR). TPR 

reflects the model's ability to correctly identify phishing 

instances, while FPR indicates the rate of legitimate cases 

misclassified as phishing. High TPR and low FPR demonstrate 

the model's effectiveness in distinguishing phishing from 

legitimate cases. 

For Dataset A, as shown in Figure 3, the ROC curve 

indicates a high TPR with a low FPR. This is supported by the 

confusion matrix, which reveals strong performance despite 

the highest number of outliers, as illustrated in Figure 4. For 

Dataset B, the ROC curve and confusion matrix collectively 

demonstrate the model's ability to maintain balanced 

performance in smaller datasets with fewer outliers. 

Dataset C, the ROC curve, and the confusion matrix 

highlight perfect performance, achieving a TPR of 1 across all 
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FPR values. Finally, Dataset D shows a similar trend to 

Dataset B, achieving high TPR and low FPR despite moderate 

outliers, as reflected in the confusion matrix. 

 

 

5. CONCLUSIONS 

 

This study addresses critical challenges in phishing 

detection, particularly the trade-off between model 

performance and execution time when handling datasets with 

a high proportion of outliers. By integrating the LASSO+ 

feature selection method with Random Forest and WBS based 

on uncertainty, the proposed approach balances high recall and 

reduced execution time. The LASSO+ method improves 

feature selection by incorporating correlation thresholding and 

optimizing parameters through Grid Search. WBS enhances 

the model’s ability to handle datasets with a high presence of 

outliers and ensures consistent performance across different 

evaluation metrics. 

The findings reveal minimal variability in some datasets and 

result in uniformly high performance. While this consistency 

highlights the proposed method's robustness, it may limit 

further exploration of statistical variability in specific 

scenarios. Despite this, the proposed method demonstrates 

robust results across all tested scenarios and highlights its 

practical applicability for phishing detection. 

The primary limitation of this study lies in its focus on 

phishing detection using URL features characterized by 

outliers. While the proposed method effectively handles such 

datasets, its applicability to other types of cyberattacks 

remains uncertain. Cybersecurity threats such as malware 

distribution, typosquatting, and malicious redirects may 

exhibit different patterns of outliers or lack significant 

anomalies. This poses challenges for the current approach. 

Furthermore, the model has not been tested on datasets with 

normal distributions or minimal outlier presence, which limits 

its generalizability across diverse contexts. 

Future research should explore the application of the 

proposed method to other cyberattacks with unique outlier 

patterns and assess its adaptability to datasets with normal 

distributions. These directions aim to enhance the method's 

robustness and broaden its applicability beyond phishing 

detection. 

 

 

REFERENCES 

 

[1] APWG. (2023). Phishing Activity Trends Report. 

[2] Setiadi, D.R.I.M., Widiono, S., Safriandono, A.N., Budi, 

S. (2024). Phishing website detection using bidirectional 

gated recurrent unit model and feature selection. Journal 

of Future Artificial Intelligence Technology, 2(1): 75-83. 

https://doi.org/10.62411/faith.2024-15 

[3] Waseso, B.M.P., Setiyanto, N.A. (2023). Web phishing 

classification using combined machine learning 

methods. Journal of Computer Theory and Applications, 

1(1): 11-18. https://doi.org/10.33633/jcta.v1i1.8898 

[4] Dhahir, Z.S. (2024). A hybrid approach for efficient 

DDoS detection in network traffic using CBLOF-based 

feature engineering and XGBoost. Journal of Future 

Artificial Intelligence Technology, 1(2): 174-190. 

https://doi.org/10.62411/faith.2024-33 

[5] Tharani, J.S., Arachchilage, N.A.G. (2020). 

Understanding phishers' strategies of mimicking uniform 

resource locators to leverage phishing attacks: A 

machine learning approach. Security and Privacy. 3(5): 

e120. https://doi.org/10.1002/spy2.120 

[6] Kandula, L.R.R., Lakshmi, T.J., Alla, K., Chivukula, R. 

(2022). An intelligent prediction of phishing URLs using 

ML algorithms. International Journal of Safety and 

Security Engineering, 12(3): 381-386. 

https://doi.org/10.18280/ijsse.120312 

[7] Kothamasu, G.A., Venkata, S.K.A., Pemmasani, Y., 

Mathi, S. (2023). An investigation on vulnerability 

analysis of phishing attacks and countermeasures. 

International Journal of Safety and Security Engineering, 

13(2): 333-340. https://doi.org/10.18280/ijsse.130215 

[8] Hannousse, A., Yahiouche, S. (2021). Towards 

benchmark datasets for machine learning based website 

phishing detection: An experimental study. Engineering 

Applications of Artificial Intelligence, 104: 104347. 

https://doi.org/10.1016/j.engappai.2021.104347 

[9] Guptta, S.D., Shahriar, K.T., Alqahtani, H., Alsalman, 

D., Sarker, I.H. (2024). Modeling hybrid feature-based 

phishing websites detection using machine learning 

techniques. Annals of Data Science, 11(1): 217-242. 

https://doi.org/10.1007/s40745-022-00379-8 

[10] Moedjahedy, J., Setyanto, A., Alarfaj, F.K., Alreshoodi, 

M. (2022). CCrFS: Combine correlation features 

selection for detecting phishing websites using machine 

learning. Future Internet, 14(8): 229. 

https://doi.org/10.3390/fi14080229 

[11] Pudjihartono, N., Fadason, T., Kempa-Liehr, A.W., 

O'Sullivan, J.M. (2022). A review of feature selection 

methods for machine learning-based disease risk 

prediction. Frontiers in Bioinformatics, 2: 1-17. 

https://doi.org/10.3389/fbinf.2022.927312 

[12] Emmert-Streib, F., Dehmer, M. (2019). High-

dimensional LASSO-Based computational regression 

models: regularization, shrinkage, and selection. 

Machine Learning and Knowledge Extraction, 1(1): 359-

383. https://doi.org/10.3390/make1010021 

[13] Htwe, C.S., Myint, Z.T.T., Thant, Y.M. (2024). IoT 

security using machine learning methods with features 

correlation. Journal of Computer Theories and 

Applications, 2(2): 151-163. 

https://doi.org/10.62411/jcta.11179 

[14] Butnaru, A., Mylonas, A., Pitropakis, N. (2021). 

Towards lightweight URL-based phishing detection. 

Future Internet, 13(6): 154. 

https://doi.org/10.3390/fi13060154 

[15] Divakaran, D.M., Oest, A. (2022). Phishing detection 

leveraging machine learning and deep learning: A 

review. IEEE Security & Privacy, 20(5): 86-95. 

https://doi.org/10.1109/MSEC.2022.3175225 

[16] Uzun Ozsahin, D., Mustapha, M.T., Mubarak, A.S., 

Ameen, Z.S., Uzun, B. (2022). Impact of outliers and 

dimensionality reduction on the performance of 

predictive models for medical disease diagnosis. 

International Conference on Artificial Intelligence in 

Everything (AIE), pp. 79-86. 

https://doi.org/10.1109/AIE57029.2022.00023 

[17] Demir, S., Sahin, E.K. (2023). Application of state-of-

the-art machine learning algorithms for slope stability 

prediction by handling outliers of the dataset. Earth 

Science Informatics, 16(3): 2497-2509. 

https://doi.org/10.1007/s12145-023-01059-8 

1792



 

[18] Liu, S., Li, X. (2023). Understanding Uncertainty 

Sampling. arXiv:2307.02719. 

https://doi.org/10.48550/arXiv.2307.02719 

[19] Sarasjati, W., Rustad, S., Santoso, H.A., Syukur, A., 

Rafrastara, F.A. (2022, September). Comparative study 

of classification algorithms for website phishing 

detection on multiple datasets. In 2022 International 

Seminar on Application for Technology of Information 

and Communication (iSemantic), Semarang, Indonesia, 

pp. 448-452. 

https://doi.org/10.1109/iSemantic55962.2022.9920475 

[20] Le, H.L., Le, T.T., Vu, T.T.H., Tran, D.H., Chau, D.V., 

Ngo, T.T.T. (2023). A survey on the impact of 

hyperparameters on random forest performance using 

multiple accelerometer datasets. International Journal of 

Computers and their Applications, 30(4): 351-361. 

[21] Toğaçar, M. (2021). Detection of phishing attacks on 

websites with lasso regression, minimum redundancy 

maximum relevance method, machine learning methods, 

and deep learning model. Turkish Journal of Science and 

Technology, 16(2): 231-243. 

[22] Kim, D.S. (2020). A correlation thresholding algorithm 

for learning factor analysis models. Ph.D. dissertation. 

University of California. 

[23] Lam, C. (2021). Rank determination for time series 

tensor factor model using correlation thresholding. LSE, 

London, UK, Working Paper. 

[24] Klosa, J., Simon, N., Westermark, P.O., Liebscher, V., 

Wittenburg, D. (2020). Seagull: Lasso, group lasso and 

sparse-group lasso regularization for linear regression 

models via proximal gradient descent. BMC 

Bioinformatics, 21(1): 407. 

https://doi.org/10.1186/s12859-020-03725-w 

[25] Bertrand, Q., Klopfenstein, Q., Blondel, M., Vaiter, S., 

Gramfort, A., Salmon, J. (2020). Implicit differentiation 

of lasso-type models for hyperparameter optimization. 

37th International Conference on Machine Learning, 

PartF16814: 787-798. 

[26] Al-Qurashi, R., AlEroud, A., Saifan, A.A., Alsmadi, M., 

Alsmadi, I. (2021). Generating optimal attack paths in 

generative adversarial phishing. IEEE International 

Conference on Intelligence and Security Informatics 

(ISI), pp. 1-6. 

https://doi.org/10.1109/ISI53945.2021.9624751 

[27] Akazue, M.I., Debekeme, I.A., Edje, A.E., Asuai, C., 

Osame, U.J. (2023). Unmasking fraudsters: Ensemble 

features selection to enhance random forest fraud 

detection. Journal of Computer Theory and Applications, 

1(2): 201-211. https://doi.org/10.33633/jcta.v1i2.9462 

[28] Okpor, M.D., et al. (2024). Pilot study on enhanced 

detection of cues over malicious sites using data 

balancing on the random forest ensemble. Journal of 

Future Artificial Intelligence Technology, 1(2): 109-123. 

https://doi.org/10.62411/faith.2024-14 

[29] Almseidin, M., Abu Zuraiq, A., Al-kasassbeh, M., 

Alnidami, N. (2019). Phishing detection based on 

machine learning and feature selection methods. 

International Journal of Interactive Mobile Technologies, 

13(12): 171. https://doi.org/10.3991/ijim.v13i12.11411 

[30] Al-Sarem, M., Saeed, F., Al-Mekhlafi, Z.G., 

Mohammed, B.A., Al-Hadhrami, T., Alshammari, M.T., 

Alshammari, T.S. (2021). An optimized stacking 

ensemble model for phishing websites detection. 

Electronics, 10(11): 1285. 

https://doi.org/10.3390/electronics10111285 

[31] Othman, M., Hassan, H. (2022). An empirical study 

towards an automatic phishing attack detection using 

ensemble stacking model. Future Computing and 

Informatics Journal, 7(1): 1-12. 

https://doi.org/10.54623/fue.fcij.7.1.1 

[32] Yang, H., Lim, H., Moon, H., Li, Q., Nam, S., Kim, J., 

Choi, H.T. (2022). Simple optimal sampling algorithm to 

strengthen digital soil mapping using the spatial 

distribution of machine learning predictive uncertainty: 

A case study for field capacity prediction. Land, 11(11): 

2098. https://doi.org/10.3390/land11112098 

[33] Vrbančič, G. (2020). Datasets for phishing websites 

detection. Data in Brief, 33. 

https://doi.org/10.1016/j.dib.2020.106438 

[34] Prasad, A., Chandra, S. (2024). PhiUSIIL: A diverse 

security profile empowered phishing URL detection 

framework based on similarity index and incremental 

learning. Computers & Security, 136: 103545. 

https://doi.org/10.1016/j.cose.2023.103545 

[35] Mohammad, R.M., Thabtah, F., Mccluskey, L. (2013). 

Phishing Websites Features. IEEE, pp. 1-7. 

[36] Wei, Y., Sekiya, Y. (2022). Sufficiency of ensemble 

machine learning methods for phishing websites 

detection. IEEE Access, 10: 124103-124113. 

https://doi.org/10.1109/ACCESS.2022.3224781 

[37] Kalabarige, L.R., Rao, R.S., Abraham, A., Gabralla, L.A. 

(2022). Multilayer stacked ensemble learning model to 

detect phishing websites. IEEE Access, 10: 79543-

79552. https://doi.org/10.1109/ACCESS.2022.3194672 

[38] Adane, K., Beyene, B., Abebe, M. (2023). Single and 

hybrid-ensemble learning-based phishing website 

detection: examining impacts of varied nature datasets 

and informative feature selection technique. Digital 

Threats: Research and Practice, 4(3): 1-27. 

https://doi.org/10.1145/3611392 

[39] Trad, F., Chehab, A. (2024). Prompt engineering or fine-

tuning? a case study on phishing detection with large 

language models. Machine Learning and Knowledge 

Extraction, 6(1): 367-384. 

https://doi.org/10.3390/make6010018 

[40] Pandey, M.K., Singh, M.K., Pal, S., Tiwari, B.B. (2022). 

Prediction of phishing websites using stacked ensemble 

method and hybrid features selection method. SN 

Computer Science, 3(6): 488. 

https://doi.org/10.1007/s42979-022-01387-4 

[41] Vajrobol, V., Gupta, B.B., Gaurav, A. (2024). Mutual 

information based logistic regression for phishing URL 

detection. Cyber Security and Applications, 2: 100044. 

https://doi.org/10.1016/j.csa.2024.100044 

[42] Shabudin, S., Sani, N.S., Ariffin, K.A.Z., Aliff, M. 

(2020). Feature selection for phishing website 

classification. International Journal of Advanced 

Computer Science and Applications, 11(4): 587-595. 

https://doi.org/10.14569/IJACSA.2020.0110477 

[43] Coste, C.I. (2023). Malicious web links detection - a 

comparative analysis of machine learning algorithms. 

Studia Universitatis Babeș-Bolyai Informatica, 68(1): 

21-36. https://doi.org/10.24193/subbi.2023.1.02 

[44] Jebarathinam, C., Home, D., Sinha, U. (2020). Pearson 

correlation coefficient as a measure for certifying and 

quantifying high-dimensional entanglement. Physical 

1793



 

Review A, 101(2): 022112. 

https://doi.org/10.1103/PhysRevA.101.022112 

[45] Grady, S.K., Dojcsak, L., Harville, E.W., Wallace, M.E., 

Vilda, D., Donneyong, M.M., Langston, M.A. (2023). 

Seminar: Scalable preprocessing tools for exposomic 

data analysis. Environmental Health Perspectives, 

131(12): 1-7. https://doi.org/10.1289/EHP12901 

[46] Hastie, T., Tibshirani, R., Friedman, J. (2017). The 

Elements of Statistical Learning: Data Mining, Inference, 

and Prediction, Second Edition. Springer. 

[47] Breiman, L. (2001). Random forests. Machine Learning, 

45: 5-32. https://doi.org/10.1023/A:1010933404324 

[48] Taha, M.A., Jabar, H.D.A., Mohammed, W.K. (2024). A 

machine learning algorithms for detecting phishing 

websites: A comparative study. Iraqi Journal for 

Computer Science and Mathematics, 5(3): 275-286. 

https://doi.org/10.52866/ijcsm.2024.05.03.015 

[49] Ubing, A.A., Jasmi, S.K.B., Abdullah, A., Jhanjhi, N.Z., 

Supramaniam, M. (2019). Phishing website detection: 

An improved accuracy through feature selection and 

ensemble learning. International Journal of Advanced 

Computer Science and Applications, 10(1): 252-257. 

https://doi.org/10.14569/IJACSA.2019.0100133

 

1794




