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The impact of flood disasters in various regions in the world, especially in tropical 

countries, has now expanded and increased significantly. Climate change due to global 

warming is often considered a trigger for increasing rainfall intensity and duration 

which has a direct impact on the expansion of flood exposure. Mitigation to reduce the 

risk of flood impacts has been implemented using both structural and non-structural 

approaches. This paper aimed to develop and assess a flood mitigation model in one of 

the flood-prone areas in Central Sulawesi, Indonesia. The model was compiled and 

developed by selecting a number of determining factors using a structural equation 

modelling approach based on public participation by accommodating local wisdom. 

Public participation and local wisdom are very important aspects in flood mitigation 

because local communities with their traditions are the main subjects who understand 

the characteristics of local floods. The structural model consisted of 7 latent variables 

with 28 indicators as the outer model: (1) Community knowledge, (2) Community 

participation, (3) Green infrastructure (non-engineered infrastructure), (4) Gray 

infrastructure (engineered infrastructure), (5) Infrastructure maintenance, (6) The role 

of management institutions and government, and (7) Flood mitigation performance. A 

questionnaire survey was performed to assess public perception by submitting 28 

statements representing indicator variables. Public perception was assessed based on a 

Likert scale. The questionnaire was distributed to 250 respondents representing various 

public components, such as: farmers/fishermen/ traders/labourers, students, 

practitioners (consultants and contractors), environmental NGOs, experts/academics 

and government elements. The results of the study revealed that 6 selected exogenous 

variables had a significant effect on endogenous variables. The significance of the 

influence was assessed by p-value (<0.05) and t-statistics (>1.96) of each variable. In 

addition, all indicator variables showed good validity and reliability against latent 

variables with loading factors more than 0.7 and Cronbach's Alpha higher than 0.7. 

Based on the results of the analysis, the flood mitigation model at the study site can be 

applied effectively by following the priorities: (1) Community knowledge, (2) Green 

infrastructure (non-engineered infrastructure), (3) Community participation, (4) The 

role of management institutions and government, (5) Gray infrastructure (engineered 

infrastructure), (6) Infrastructure maintenance. The increasing of community 

knowledge and application of green infrastructure and the inclusion of community 

participation are the main priorities in implementing flood mitigation in the study area. 
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1. INTRODUCTION

Floods with their various characteristics have become an 

important issue worldwide due to the expansion of the exposed 

areas and the increasing impact of the disasters caused [1]. 

Two factors, global warming and deforestation are considered 

the main triggers for the increasing impact of floods, not only 

in tropical climates such as Indonesia but also in other climates 

such as dry, temperate, continental and polar [2]. The first 

factor, global warming, one of which is also triggered by forest 

conversion, has caused climate change in various parts of the 

world which is characterized by deviations in climate 

parameter trends, especially rainfall [3]. Rainfall patterns no 

longer follow seasonal periods and are relatively difficult to 

predict, especially the time and magnitude of the rainfall event. 

The impact of this climate change is that the duration of 

rainfall can become longer and the rainfall depth can become 

higher, and even climate change often triggers extreme 

rainfall, especially in tropical climates [4]. The second factor 

that influences the widespread impact of floods is often 

associated with global warming, namely deforestation. A 

number of countries including Indonesia have lost forest areas 

due to deforestation of more than thousands of hectares per 

year [3]. This deforestation is not only caused by climate 
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change that triggers an increase in global temperatures as a 

trigger for forest fires, but also caused by forest conversion 

deliberately carried out by humans for various purposes such 

as urban and residential development, mining exploitation, 

agricultural and plantation land development, and various 

other purposes. The loss of natural land cover factors causes 

an increase in surface runoff and a decrease in infiltration of 

flow into the soil, where both of these components will 

accumulate in rivers as flood flows [5]. The simultaneity 

between climate change and deforestation often causes major 

floods with very massive losses [6]. 

Mitigation as one of the efforts to reduce the risk and impact 

of flooding has also been carried out by both the government 

and community groups. The approach taken focuses on two 

things: increasing the capacity of the public who are 

potentially affected and reducing disaster vulnerability. 

Increasing public capacity can be done through socialization, 

discussion, training and workshops to transfer disaster 

knowledge and mitigation methods to the general community 

to form disaster preparedness and resilience community 

groups. Reducing disaster vulnerability can generally be 

performed through structural and non-structural approaches, 

such as: constructing flood control structures to protect 

affected areas and installing early warning system instruments 

to increase awareness of flood events [7]. However, these 

approaches are often ineffective and inefficient when floods 

hit an area suddenly. This is related to the attitude, culture, and 

readiness of the local community in dealing with disasters, 

especially floods.  

One approach to assess the effectiveness of disaster 

mitigation programs in this case of flooding is the 

development of mitigation modelling. This modelling is 

intended to predict the impact of flooding and compile various 

scenarios by accommodating all factors that affect the 

effectiveness and efficiency of mitigation [8]. The most 

important thing in this modeming is the identification of all 

factors, both the potential and magnitude of the impact, 

especially rainfall as a trigger and the catchment area as a 

medium of transformation. The estimated impact through this 

modelling can be validated with field data related to the flood 

event and then a flood mitigation concept can be compiled by 

involving all stakeholders. Decision-making in the 

implementation of flood mitigation is highly dependent on the 

significance of the factors selected through public perception 

affirmation [9]. In addition, local community mitigation 

knowledge including the application of local wisdom in 

mitigation greatly influences the mitigation scenario and has a 

direct impact on the effectiveness and efficiency of the 

selected mitigation. 

The study of flood mitigation modelling is a very long and 

time-consuming process. This stage is initiated from the 

preparation and application of the rainfall-runoff 

transformation model in a studied area, followed by flood 

modelling, inundation mapping and prediction of flood 

impacts and risks, variable selection and mitigation scenario 

preparation, and early warning of flood disasters. In this 

regard, many papers related to rainfall-runoff transformation 

have been published by a number of researchers. Tunas et al. 

[10] formulated a rainfall-runoff transformation model based 

on synthetic unit hydrograph using a number of measured 

catchments in Central Sulawesi, Indonesia. This model was 

further tested by Tunas [11] and applied by Tunas [12] in a 

number of catchments with various characteristics which 

showed that the model's performance was relatively very good 

in determining the flood peak. Ramly et al. [13] and Lin et al. 

[14] conducted the same study using the semi-distributed 

HEC-HMS Model to estimate the flood peak. This study used 

radar rainfall data as model input and integrated it with a web-

based prototype system. The output of this study indicated that 

the performance of the transformation model can be improved 

by optimizing several parameters. 

Flood modelling and flood mapping as a continuation of the 

rainfall-runoff transformation have been carried out by many 

researchers, both with a hydrodynamic modelling approach 

and an artificial intelligence approach. Nastiti et al. [15] 

applied the rainfall-runoff-inundation (RRI) model to map 

flood inundation in the Upper Citarum Watershed. Zhang et al. 

[16] conducted the similar study using a distributed 

hydrodynamic model to predict inundation characteristics. 

Both researchers used rainfall data as model input but applied 

different approaches in the analysis methodology. Utilizing 

rainfall as simulation input data indicates that the results of the 

prediction of the height and area of inundation are relatively 

very accurate [15, 16]. The results of this study have also been 

verified by Keum et al. [17] by evaluating the inundation 

probability and inundation depth using the same input data. In 

general, all models performed to predict and map flood 

inundation showed good performance with the condition of 

parameter optimization. Other intelligence-based approaches 

in flood modelling and mapping have also been implemented 

[18-20]. The applied artificial intelligence methods include: 

ANN, machine learning and hybrid with other approaches. 

The accuracy of the modelling results is highly dependent on 

the quality, quantity and variety of data to train and validate 

the model.  

Applications of hydrodynamic models in specific river 

segments for inundation mapping to support flood mitigation 

have also been published. The difference between the 

publications in the previous section and this study is that the 

application is more detailed on river segments and not on the 

catchment area scale. The input of the hydrodynamic model at 

the catchment area scale is rainfall intensity, while the 

application at the river cement scale uses hydrographs as 

model input. Afshari et al. [21], Darabi et al. [22], Tansar et al. 

[23], and Beden and Keskin [24] performed 2D modelling to 

predict inundation using a number of 2D hydrodynamic 

models, such as: AutoRoute, HAND, HEC-RAS2D, GARP, 

QUEST, and MIKE. Each model showed different 

performance with a good level of accuracy. The numerical 

method chosen to solve partial differential equations greatly 

determines the accuracy of the model. 

The series of publications are preliminary studies to support 

the preparation of flood mitigation models using structural 

equation modelling (SEM). The use of SEM for applied 

research can be seen in many publications, especially for 

decision making in various applied fields such as assessing 

public perception on public rooftop gardens interconnection 

routes [25], investigating new research possibilities in several 

sectors: phone, M-commerce, industry, manufacture, service, 

education, finance, healthcare, construction and SME [26], 

and predicting the impact of drought on urban water 

affordability [27]. Furthermore, Jia et al. [28] also used SEM 

to assess the ecological integrity of the woods. Two types of 

variables were applied in the study, which were assigned as 

latent variables and manifest variables. The number of 

variables was determined based on public opinion and 

literature review and selected based on correlation analysis.  

SEM applications in the field of water resources, especially 

3210



 

flood mitigation, have not been widely published. There are at 

least two recent publications that discuss the use of SEM to 

assess the relationship between flood mitigation strategy 

variables. Faruk and Maharjan [29] studied the strategies of 

359 farmers for flood adaptation using SEM based on 

Protection Motivation Theory (PMT). Based on the findings, 

farmers are more likely to adopt flood adaptation strategies if 

they believe that their area is at higher danger of flooding and 

if they are more afraid of flooding. Nugraheni et al. [30] 

performed modelling community participation in flood 

disaster mitigation based on land conversion and disaster 

resilience using three models (CLEAR model, CLUE-S 

model, and DROP model). This study specifically examined 

the correlation between non-structural flood mitigation models 

in order to lessen the effects of floods on 1398 households.  

More detailed studies relating to the application of SEM on 

flood mitigation have also been carried out by a number of 

researchers. Ejeta et al. [31] examined the cognitive and 

emotional elements that determine a community's readiness 

for flood hazards. The people previously been impacted by a 

hazard occurrence are more anxious and inclined to engage in 

community preparation exercises. Furthermore, Fatemi et al. 

[32] assessed the effects of floods in Dhaka using structural 

equation modelling which confirmed that flood affects are 

influenced by socioeconomic factors. Then, Kurata et al. [33] 

investigated the variables influencing flood disaster 

preparedness and mitigation which revealed that adapted 

behaviour on flood disaster preparedness was strongly 

influenced by perceived behavioural control, social norms, and 

attitude towards the behaviour. After that, Santoro et al. [34] 

evaluated how citizens perceive flood risk by performing a 

structural equation model to identify valuable factors for 

supporting flood management in new vulnerable regions. It is 

indicated that the perception of risk is significantly impacted 

by knowledge of flood causes. 

This study aimed to develop flood mitigation scenarios 

using SEM based on public participation and local wisdom. 

The variables that were be applied in this study included many 

variables and sub-variables, not only limited to non-structural 

flood mitigation scenarios as applied by Nugraheni et al. [30], 

but also accommodate various structural mitigation factors. 

This research is very important in relation to the involvement 

of public participation in the formulation and selection of 

variables and the exploration of local wisdom in flood 

management and mitigation. Previous published studies have 

not shown the use of complex variables in SEM to formulate 

flood mitigation models. Therefore, this study not only 

contributes to the development of science, but can also be a 

reference in flood management and mitigation in a disaster-

prone area. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Research site 

 

This flood mitigation model research was conducted in Palu 

Watershed, Central Sulawesi Indonesia (Figure 1). This 

catchment is a flood-prone area primarily during the rainy 

season which is spread across several locations, especially in 

the middle and downstream sections of the watershed. Floods 

due to overflowing Palu River and its tributaries often inundate 

agricultural, plantation and residential areas in the middle 

segment which includes several villages in Palolo District 

(Rejeki, Berdikari, and Kapiroe), Gumbasa District (Tuva, 

North Pakuli), Sigi Biromaru District (Sidondo I, II and III), 

and in the downstream segment, it inundates urban areas in 

four sub-districts: Ujuna, Lere, North Lolu, and West Besusu. 

 

 
 

Figure 1. Study area at Palu Watershed, Central Sulawesi 

Indonesia 

 

Floods that inundate these areas are generally destructive to 

all objects around them such as plants, settlements, public 

facilities and infrastructure and other facilities. During the 

flood season, affected communities must be evacuated to areas 

that are safe from the threat of flooding for some time. The 

duration of inundation generally varies depending on the 

duration of rainfall and the topographic characteristics of the 

area. Referring to several flood cases, the duration of 

inundation can reach more than three days with a depth of 

more than 1 m. Crop failure and damage to residential facilities 

are the worst impacts caused by flooding in the past. However, 

flooding in this area can also have an impact on death, 

especially due to flash floods in several tributaries such as: 

Bangga, Sambo, Rogo and Poi rivers. Floods with a very short 

peak time carry sediment material with high concentrations 

and damage all objects that pass through it. Sediment material 

comes from surface erosion in the upstream catchment and 

vertical erosion on both river banks due to rainwater splashes 

and surface runoff. The frequency and intensity of flooding 

currently tend to increase since the 7.4 magnitude earthquake 

shocked the Palu area and its surroundings on September 28, 

2018. This is predicted to be related to the decrease in soil 

density and slope stability due to the earthquake. The soil 

surface becomes more easily eroded due to the weak bonds of 

soil particles along with the decrease in soil surface density. 

Other factors that are no less important as contributors to 

the increasing frequency of flooding in the Palu catchment are 

land use and land cover (LULC). The need for residential areas 

due to population growth has caused an increase in land 

conversion from non-residential land to residential land. The 

expansion of agricultural and plantation areas to meet living 

needs has also caused the conversion of forest land. Intensive 

land cover changes can reduce the area of water infiltration. 

Surface runoff increases with the expansion of open land. 

Figure 2 shows the land cover of the Palu catchment when this 

study was conducted. Land cover changes are generally seen 

around the river channels and banks where this location is 

close to water sources and has a relatively flat topography. The 

development of this area is intended for the expansion of 

agricultural and plantation land in the upstream and middle 

areas, and the development of settlements and cities in the 

downstream areas. 
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Figure 2. LULC of Palu watershed: (a) Google image; (b) 

Land use 

 

Until now, land conversion in the study site can reach more 

than 30%, which can trigger an increase in surface runoff in 

residential areas and in agricultural and plantation areas. This 

land conversion is highly correlated with increased inundation 

due to flooding. The major flood event after the 2018 Palu 

Earthquake has caused an increase in the characteristics of 

inundation not only in area and volume but also in duration. 

However, mitigation efforts to reduce the risk of impacts are 

still being carried out and even the coverage area is being 

expanded throughout the catchment. Law enforcement against 

violations in the Lore Lindu National Park (TNLL) 

conservation zone is being increased to suppress illegal land 

encroachment by local communities both for the use of forest 

products and for the expansion of plantation and agricultural 

areas. This conservation area of approximately 2,180 km2 is 

one of the natural mitigation facilities by maximizing 

infiltration and minimizing runoff in two large watersheds: 

Palu and Lariang. Almost half of the upstream Palu Watershed 

is a TNLL conservation area, especially the Gumbasa sub-

watershed which covers the entire Lake Lindu area. The 

position of this conservation area is very strategic because it is 

surrounded by five valleys: Palu, Palolo, Napu, Besoa and 

Kulawi, where the fulfilment of water resource needs is 

obtained from river flows that originate from this conservation 

area. 

As seen in Figure 2(a) and Figure 2(b), land conversion in 

the TNLL area has increased to date. Land conversion is 

marked with light green, especially in the southern part of 

Lake Lindu due to the expansion of plantation land by the local 

community. If land conversion in this area is not controlled, 

the possibility of shallowing at the bottom of the lake will 

increase. The main impact is that the natural reservoir capacity 

of Lake Lindu will decrease in proportion to the sedimentation 

rate which is correlated with the rate of land conservation. 

Reduction in reservoir capacity can trigger greater runoff 

downstream towards the Gumbasa River and then integrate 

into the Palu River. The accumulation of flow in this main 

river causes an increase in flood intensity, especially in the 

middle and downstream segments of the Palu River. 
 

2.2 Flood inundation modelling 
 

Flood inundation modelling is an important step in flood 

mitigation that aims to predict inundation characteristics, 

especially the height and area of inundation. These parameters 

can be used as a reference for selecting the determining 

variables of the mitigation model to be applied. Basically, 

flood event data at the study site is accurate information to 

describe the level of flood vulnerability. However, this 

information is only limited to a certain rainfall depth, which 

may be higher and the area of inundation can be greater in 

other rainfall events. Therefore, inundation modelling is one 

method to predict the potential for inundation based on several 

rainfall depth scenarios according to the probability of 

occurrence. 

One method that can be applied to inundation modelling at 

the catchment scale is HEC-RAS2D. This two-dimensional 

model is a development of a one-dimensional model which 

was initially used to predict water surface profiles in channels 

or rivers for both steady and unsteady flows [35]. In this 2D 

model, the model geometry is formed from digital elevation 

model (DEM) data which is converted into a mesh at both the 

river and catchment scales [36]. This domain discretization is 

related to the finite volume numerical scheme approach 

implemented to solve the Diffusion Wave equations (DWE) 

and the Shallow Water Equations (SWE) following Eq. (1) and 

Eq. (2). The modelling results can be presented in a map of 

inundation distribution throughout the studied area. 

 
𝜕ℎ

𝜕𝑡
+
𝜕(ℎ𝑢)

𝜕𝑥
+
𝜕(ℎ𝑣)

𝜕𝑦
− 𝑞 = 0 (1) 

 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −𝑔

𝜕ℎ

𝜕𝑥
+ 𝑣𝑡 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) 

−𝑐𝑓𝑢 + 𝑓𝑣 

(2) 

 

where, ℎ : water depth (m), 𝑡 : time (m), 𝑢 : velocity in x-

direction (m/sec), 𝑣: velocity in y-direction (m/sec), 𝑞: lateral 

inflow, 𝑔 : gravity acceleration (m/sec2), 𝑣𝑡 : viscosity of 

turbulent eddy, and 𝑐𝑓: coefficient of non-linear friction. 

 

2.3 Structural equation modelling 
 

Flood mitigation scenario modelling based on public 

perception can be executed using the structural equation 

modelling (SEM) approach as a multivariate analysis 

technique to test the relationship between complex variables 

simultaneously [37]. Variables in SEM are expressed by latent 

variables and indicator variables (manifest), where latent 

variables represent variables that are not observed and 

measured directly consisting of exogenous variables 

(independent construct, ) and endogenous variables 

(dependent construct, ), while indicator variables are 

variables that are observed and used to measure latent 

variables. Latent variables are also known as part of the inner 

model (structural model) while indicator variables are part of 

the outer model (measurement model). The outer model 

addresses the connections between latent variables and their 

corresponding observable indicators, whereas the inner model 

focuses on the relationships among the latent variables 

themselves. In SEM, mediation variables (intermediary 

variables or intervening variables) are often used to connect 

two exogenous variables or exogenous variables with 

endogenous variables [38]. The use of this mediation variable 

shows the level of complexity of the SEM model. The 

structural relationship between latent variables is considered 

linear which is expressed by a regression relationship, both the 
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relationship between exogenous variables and endogenous 

variables () and the relationship between two endogenous 

variables (). The correlation relationship between these latent 

variables produces an error (, ). A typical SEM diagram in 

detail can be seen in Figure 3, with measurement and structural 

equations as follows: 

 


𝑖
= 𝜆𝑋𝑖 + 𝜆𝑋𝑖+1 +⋯𝜆𝑋𝑛 + 𝛿𝑖 (3) 

 

𝜂𝑖 = 𝛾𝑖𝑖 + 𝛾𝑖+1𝑖+1 +⋯𝛾𝑛𝑛 + 
𝑖
 (4) 

 

where, : error of manifest variables and : error of latent 

variables. 

 

 
 

Figure 3. Typical variables and path diagram in SEM 

 

The most important part in SEM analysis is testing the 

research instrument which includes: (1) validity test 

(convergent and discriminant validity) and reliability test 

(composite reliability) on the measurement model (outer 

model), (2) test of coefficient of determination (R-square) and 

estimate for path coefficients, (3) hypothesis test, and (4) path 

analysis [39]. The research instrument is considered valid if 

the outer loadings (loading factors) value is >0.7, Average 

Variance Extracted (AVE) is >0.5 (convergent validity), and 

the loading factor value of each indicator is higher than cross 

loading of each indicator and AVE of each latent variable is 

larger than the highest r2 of other latent variables (discriminant 

validity). The reliability of the instrument can be measured by 

Cronbach's Alpha and Composite Reliability where both 

parameters must be greater than 0.7. The determination 

coefficient test is intended to assess the strength of the 

relationship of the structural model (inner model) which is 

expressed in 3 categories: strong (>0.75), moderate (0.25 - 

0.75) and weak (<0.25). At the same time, the path coefficient 

can also be estimated based on the SEM scheme according to 

the number and structure of latent variables (exogenous 

variables and endogenous variables). The significance of the 

relationship between the two types of variables can be 

evaluated by hypothesis testing which is measured by the p-

value at a significance of 5%. Exogenous variables have a 

significant effect on endogenous variables if the p-value is 

lower than 0.05. The final stage and instrument testing is path 

analysis in relation to the use of mediating variables. This 

analysis aims to test the direct or indirect relationship between 

variables in the model [40]. 

There are two basic approaches that can be used for SEM-

based multivariate analysis, namely variance-based structural 

equation modelling (VB-SEM) and covariance-based 

structural equation modelling (CB-SEM). The first approach 

is often referred to as Partial Least Square Path Modelling 

(PLS-SEM). The selection of the two models is based on the 

objectives, number of samples and characteristics of the data 

distribution. If the purpose of the analysis is to test the 

predictive relationship and determine the significance of the 

influence between construct variables, then PLS-SEM can be 

selected for application. However, if the purpose of the 

analysis is to confirm the theoretical model with an empirical 

model, then CB-SEM is the alternative choice. In this study, 

the SEM approach chosen was PLS-SEM in relation to the 

objectives of the analysis to be achieved, namely to see the 

significance of the influence of exogenous variables on 

endogenous variables. Exogenous variables were presented by 

factors that influence flood mitigation performance 

(endogenous variables) which were be the priority for 

implementing flood mitigation at the study site. 

 

2.4 Research design 

 

This study is a quantitative study to collect public 

perceptions through a questionnaire on the Google Form 

platform distributed via the WhatsApp application. The 

statements in the questionnaire consisted of 28 statements 

representing 7 (seven) flood mitigation variables (Table 1). 

Respondents' opinions (perceptions) were measured using a 

Likert scale that included 5 points: Strongly Disagree (1), 

Disagree (2), Neutral (3), Agree (4) and Strongly Agree (5). 

The questionnaire was distributed to a number of respondents 

with various professions (farmers, traders, consultants, 

contractors, students, academics, NGOs, and government) and 

education levels (elementary, junior high, high school and 

college) with a minimum target of 200 respondents, as 

suggested in various literatures that the sample size should be 

between 100 and 400 [41]. Respondents were distributed 

randomly at the study location by taking into account the 

representation of various elements in filling out the 

questionnaire. The questionnaire formulation was based on the 

proposed SEM diagram as in Figure 4. 

 

 
 

Figure 4. SEM diagram of flood mitigation model 

 

The selection of research variables (X1, X2, X3, X4, X5, 

X6 and Y1) was based on a review of literature related to flood 

mitigation. In addition, the opinions of experts and 

practitioners in the field of disaster management, especially 

floods, were also used as references in determining variables. 

These experts came from academics while practitioners are 

generally personnel of contractors, consultants and disaster 
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agencies (BPBD). All of these variables were tested for their 

significant influence on endogenous variables following the 

path diagram as in Figure 4 to assess whether all of these 

variables could be determined as final model variables. The 

significance of the variables was seen from the p-value and t-

statistics of the path that describe the relationship between two 

variables where the p-value must be lower than 0.05 and the t-

statistic must be greater than 1.96. However, preliminary 

studies related to the selection of variables, especially 

exogenous variables, had generally provided adequate 

information on the significance of the variables. Therefore, in 

the early stages of modelling, all factors that have the potential 

to become variables should be accommodated in the model. 

As shown in Table 1 and Figure 4, the total indicators 

representing the seven latent variables are 28 indicators, 3 

indicators for X1, 5 indicators for X2, 4 indicators for X3, 3 

indicators for each of X4 and X5, 6 indicators for X5, and 4 

indicators for Y1. The selection and determination of 

indicators are also relatively similar to the determination of 

latent variables, where the review of related literature is the 

dominant reference. Basically, each latent variable can be 

represented by many indicators that describe the quantitative 

magnitude of the variable. The goodness of measurement of 

latent variables will be higher in proportion to the number of 

indicators that represent them. However, in the analysis, a 

number of indicators often show similar measurements, 

resulting in low factor loading coefficients. The validity of the 

research instrument requires that the factor loading coefficient 

of each indicator must be greater than 0.7. Limiting the 

number of indicators as outer model variables is an effort to 

fulfil the validity of the instrument, especially convergent 

validity. 

 

Table 1. Variables and indicators of flood mitigation model 

 
No. Variable/Indicator Symbol 

1 

Community Knowledge X1 

1.1 
Local wisdom in flood mitigation (Ombo: customary prohibition against cutting down trees in the forest in the 

traditions of the Kaili tribe) 
X11 

1.2 Flood impact on the environment X12 

1.3 Flood mitigation procedures X13 

2 

Community Participation X2 

2.1 Forest preservation and policy in converting land X21 

2.2 Preservation of the river without dumping waste and garbage in the river X22 

2.3 Maintenance of flood control structures in the river X23 

2.4 Involvement in disaster alert communities and environmental NGOs X24 

2.5 Flood-friendly residential development (flood proofing) X25 

3 

Green Infrastructure (Non-engineered Infrastructure) X3 

3.1 Reforestation and arrangement of watershed slopes X31 

3.2 Development of natural retention ponds and biopore absorption wells X32 

3.3 Revitalization of natural drainage channels X33 

3.4 Development of flood disaster early warning system X34 

4 

Gray Infrastructure (Engineered Infrastructure) X4 

4.1 Construction of levee/dike and channel normalization X41 

4.2 Construction of flood storage (reservoirs, retention ponds, flood polders) X42 

4.3 Construction of flood way and short-cut X43 

5 

Infrastructure Maintenance X5 

5.1 Routine maintenance (every day) X51 

5.2 Periodic maintenance (every 3 months) X52 

5.3 Emergency maintenance (if required) X53 

6 

The Role of Management Institutions and Government X6 

6.1 Availability of mitigation agencies: regional mitigation board, province/regency/district/city/district government X61 

6.2 Disaster-based spatial planning, delineation of flood plain) and mapping of flood hazard areas (zoning) X62 

6.3 Development of evacuation routes and places X63 

6.4 Education, training and awareness of disaster mitigation to the community X64 

6.5 Relocation of flood-affected communities X65 

6.6 Issuance and application of regional regulations on river management X66 

7 

Flood Mitigation Performance Y1 

7.1 Inundation characteristics Y11 

7.2 Impact on infrastructures Y12 

7.3 Impact on properties Y13 

7.4 Impact on fatalities Y14 

 

 

3. RESULT AND DISCUSSION 

 

3.1 Inundation characteristics of flood 

 

The results of 2D flood inundation simulation using HEC – 

RAS2D at the study location showed that flood inundation was 

distributed almost throughout the catchment area including the 

upstream, middle and downstream parts as shown in Figure 5. 

The area and height of inundation depended on the 

topographic characteristics of the area, especially those 

associated with the basin area. Inundation characteristics 

varied greatly according to the topographic position of the area 

from the surface of the river flow. The height and area of 

inundation are indicated by the blue – light blue colour 

gradation (Figure 5(a)) while the inundation elevation is 

represented by the green – yellow – red colour gradation 

(Figure 5(b)). The middle and downstream segments were 

areas exposed and affected by flooding with the highest risk of 

3214



 

losses, especially in the Palolo Valley (middle segment) and 

Palu City and its surroundings (downstream segment) with an 

inundation area reaching more than 6,000 hectares in the 

middle segment and including the upstream segment which is 

agricultural and plantation land and more than 500 hectares in 

the downstream area which includes residential and urban 

areas. The duration of flooding also varied greatly depending 

on the availability of drainage channels, both artificial and 

natural, around the flooded area. 

Floods in 2024 also hit several areas in the study location 

including the upstream, middle and downstream areas as 

documented in Figure 6 and Table 2. The water depth varied 

between 0.5 m and 2 m with a maximum duration of 6 hours. 

The characteristics of the flood this year are relatively different 

from the previous event which was characterized by relatively 

high sediment concentrations. The flood inundated 

agricultural/plantation areas in the upstream and middle parts, 

while in the downstream part it inundated more residential 

areas. The intensity of flooding this year tends to increase with 

a wider exposed area and higher flow depth. This is related to 

the reduction in infiltration areas due to land conversion and 

the lack of optimal implementation of flood mitigation 

programs both by the government and local community which 

includes structural and non-structural mitigation. 

 

 
 

Figure 5. Inundation characteristics: (a) Depth and (b) Water 

surface elevation 

 

 
 

Figure 6. Flood documentation at study location in 2024 

 

Table 2. Flood event in 2024 at study area 

 
Day/Date Time Location Water Level (m) Exposed Area 

Thursday, August 29, 

2024 

11.30 local 

time 

Uenuni Village, Palolo District, Sigi 

Regency 
1 – 2 32 houses and 61.75 ha farmland 

Wednesday, July 3, 

2024 

21.30 local 

time 

Bobo Village, West Dolo District, Sigi 

Regency 
0.5 – 1 

71 houses, 73 families with 286 

people 

Friday, August 23, 

2024 

16.15 local 

time 

Baru, Ujuna, West Besusu, and North 

Lolu Sub-districts 
0.5 – 1.5 

101 houses, 736 people, 3 ha 

settlement area 

 

 
 

Figure 7. Respondent characteristics 
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3.2 Structural equation modelling of flood mitigation 

 

3.2.1 Respondent 

The number of respondents who filled out the questionnaire 

via google form was 211 people, but six respondents' answers 

were considered invalid because they were indicated to choose 

the same answer for all statements. Respondent characteristics 

could be presented in three categories: age, gender and 

education which could describe the role in the implementation 

of flood mitigation programs (Figure 7). Respondents were 

dominated by those aged 35-40< years as much as 29.75%, 

male gender as much as 119 people and bachelor's degree 

education as much as 45%. The characteristics of the 

respondents were considered quite representative in 

responding to statements related to perceptions of flood 

mitigation. 

Respondents’ answers were highly dependent on their 

knowledge and understanding of flood mitigation. This 

knowledge and understanding were mainly influenced by the 

level of education and occupation in addition to age and 

gender. The respondents’ backgrounds were very closely 

related to the consistency of the answers given when the same 

statement was asked again to them. The consistency of the 

respondents’ answers is closely related to the validity and 

reliability of the instrument. Therefore, the statements in the 

questionnaire were made as concise as possible with sentence 

constructions that were easy for respondents to understand 

because respondents were randomly assigned with diverse 

backgrounds. 

Respondents' answers fulfilled all five scales of instrument 

measurement with scores of 1, 2, 3, 4, and 5 spread across 28 

statements representing six exogenous variables and one 

endogenous variable. Respondents predominantly answered 

agree, strongly agree, and neutral as shown in Table 3 with a 

minimum average score of 3.5 and a maximum average score 

of 3.83 for each variable. These respondents' answers can 

actually provide an initial picture of the relationship between 

each indicator variable and the latent variable and the 

individual relationship of each exogenous variable with the 

endogenous variable. However, this score cannot yet describe 

the simultaneous relationship of exogenous variables with 

endogenous variables. 

 

Table 3. Average score of indicator variables 

 

Indicator Variables 
Respondent Number 

Average Score 
Strongly Disagree (1) Disagree (2) Neutral (3) Agree (4) Strongly Agree (5) 

X11 6 22 30 96 51 3.78 

X12 14 16 23 98 54 3.79 

X13 6 22 35 107 35 3.70 

X21 6 26 32 110 31 3.65 

X22 14 18 21 106 46 3.74 

X23 6 22 24 101 52 3.83 

X24 8 34 23 93 47 3.67 

X25 4 34 28 103 36 3.65 

X31 7 16 26 124 32 3.62 

X32 10 26 27 120 22 3.58 

X33 6 28 35 101 35 3.64 

X34 14 20 33 94 44 3.65 

X41 7 38 39 88 33 3.50 

X42 10 14 40 98 43 3.73 

X43 14 27 39 75 50 3.59 

X51 8 20 32 99 46 3.76 

X52 12 18 27 96 52 3.74 

X53 3 35 29 100 38 3.65 

X61 6 24 28 102 45 3.76 

X62 8 28 26 94 49 3.72 

X63 10 24 33 104 34 3.62 

X64 8 32 23 113 29 3.60 

X65 10 29 22 100 44 3.68 

X66 6 22 24 103 50 3.82 

Y11 8 34 25 92 46 3.65 

Y12 4 34 32 100 35 3.61 

Y13 6 20 33 115 31 3.71 

Y14 10 26 28 119 22 3.57 

 

Table 4. Construct reliability and validity 

 

Latent 

Variables 

Construct Reliability and Validity 

Cronbach's Alpha Reliability Coefficient (rho_A) Composite Reliability Average Variance Extracted (AVE) 

>0.7 >0.7 >0.7 >0.5 

X1 0.701 0.706 0.834 0.626 

X2 0.876 0.879 0.910 0.669 

X3 0.804 0.807 0.872 0.629 

X4 0.727 0.728 0.846 0.647 

X5 0.759 0.791 0.859 0.671 

X6 0.870 0.873 0.902 0.606 

Y1 0.804 0.805 0.872 0.630 
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Figure 8. Model algorithm: loading factors and path 

coefficients 

 

 
 

Figure 9. t-statistics of loading factors and path coefficients 

 

Table 5. Significance of the influence of exogenous variables 

on endogenous variables 

 

Influence of 

Variables 

Statistical Parameters 

Path 

Coefficient 

t-

statistics 

p-

value 

>1.96 <0.05 

X1 → X2 0.780 23.184 0.000 

X2 → Y1 0.482 9.093 0.000 

X3 → Y1 0.520 9.094 0.000 

X4 → Y1 0.100 1.696 0.091 

X5 → Y1 0.094 2.338 0.020 

X6 → Y1 0.191 3.774 0.000 

 

3.2.2 Instrument validity and reliability 

The validity and reliability of the instrument in structural 

equation modelling using SmartPLS can be measured by 

several criteria: outer loading coefficient, AVE, Cronbach's 

Alpha, reliability coefficient, and composite reliability whose 

values can be seen in the algorithm model (Figure 8) and the 

construct reliability and validity of each latent variable (Table 

4). The test results showed that all variables meet the validity 

requirements, both convergent validity and discriminant 

validity, which were stated by the outer loading coefficient 

higher than 0.7 and AVE greater than 0.5. Furthermore, all 

variables were indicated to meet the reliability requirements as 

measured by Cronbach's Alpha and composite reliability as 

written in Table 4 with values above 0.7. As an initial step in 

SEM modelling, all selected variables can be used further in 

the analysis by considering the results of the validity and 

reliability test of the instrument. The significance of the 

relationship between exogenous and endogenous variables can 

be seen from the path coefficient in the algorithm model 

(Figure 8) and the t-statistics of loading factors and path 

coefficients through the bootstrapping procedure (Figure 9). 

The path coefficient actually emphasizes more on the strength 

and direction of the relationship (positive or negative) between 

variables with a value range between -1 to +1. The significance 

of the influence between variables in the early stages can be 

identified based on the path coefficient, which describes the 

extent to which the independent variable influences the 

dependent variable in a causal relationship. The path 

coefficient in this study showed a positive relationship with a 

range between 0.094 to 0.780 (Table 5). For example, the 

relationship between X1 and X2 with a path coefficient of 

0.780 can be interpreted as a 78.0% increase in variable X2 

due to a 1 unit increase in variable X1. Based on the path 

coefficient value (Table 5), some variables showed a medium 

to high influence (X1, X2 and X3) and others showed a weak 

influence (X4, X5 and X6). However, the path coefficient is 

only an initial indicator of the significance of the variable's 

influence, therefore this significance must be tested with other 

statistical parameters. The results of the path coefficient 

analysis of the Algorithm model indicate the findings of this 

research where local community knowledge and participation 

play an important role in flood mitigation, especially in the 

research area, in addition to the application of green 

infrastructure. This is relatively different from flood 

mitigation efforts in various regions of Indonesia in general 

which prioritize structural implementation in both the short 

and long term. Therefore, it is very important to accommodate 

community participation by accommodating local wisdom to 

support the success of flood mitigation. 

Important statistical parameters that function to assess the 

significance of the influence of variables are t-statistics and p-

values with the condition that t-statistics > 1.96 and p-value 

<5%. As shown in Table 5, almost all variables meet the 

requirements for t-statistics and p-values except for variable 

X4. However, X4 which represents gray infrastructure does 

not show a large difference in terms of t-statistics and p-values. 

This means that the accommodation and neglect of these 

variables can be determined by decision makers based on the 

real impact in the field. Several researchers recommend the 

same thing, such as Albahri et al. [26] and Rachunok and 

Fletcher [27] that if the difference between the p-statistic and 

the p-value calculated with the p-statistic and p-value standard 

is relatively very small, the initial hypothesis can be ignored 

depending on the objectives of the modelling and analysis by 

considering the facts in the field. However, several other 

researchers suggest remaining consistent with the results of 

statistical tests where the variable is considered to have no role 

and influence in decision making [25, 28]. Based on these 

considerations, the final decision taken in this study is to 

continue to take the variable into account in determining the 

flood mitigation model even though the statistical test is not 

significant. 

Ideally, it is very hard to obtain all statistical parameters of 

the model that can meet both validity and reliability 

requirements. This is related to the randomness of respondents' 

perceptions which are very hard to control [42]. Respondents' 

perceptions are closely related to their background and their 

X11

X12

X13

X21 X22 X23 X24 X25

X31

X32

X33

X34

X41

X42

X43

X51

X52

X53 X61 X62 X63 X64 X65 X66

Y11

Y12

Y13

Y14

X1

X3

X2

X5

X6

Y1

X4

0.825 0.828 0.796 0.801 0.839

0.760

0.832

0.779

0.785

0.812

0.778

0.797

0.783

0.812

0.816

0.771

0.816

0.868

0.780

0.520

0.100

0.094

0.482

0.191

0.780

0.829

0.786

0.780

0.787 0.735 0.798 0.792 0.753 0.804

X11

X12

X13

X21 X22 X23 X24 X25

X31

X32

X33

X34

X41

X42

X43

X51

X52

X53 X61 X62 X63 X64 X65 X66

Y11

Y12

Y13

Y14

X1

X3

X2

X5

X6

Y1

X4

27.304 35.090 121.677 24.133 35.739

15.876

22.766

19.196

22.018

25.361

20.863

21.727

25.663

28.874

30.145

17.791

19.645

54.378

23.184

9.094

1.696

2.338

9.093

3.774

24.626

34.117

19.673

20.707

24.723 16.561 22.371 26.313 18.452 27.680
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understanding of flood mitigation. All possible answers will 

be given by respondents related to the statements submitted. 

Keum et al. [17] provide the same opinion regarding the 

fulfilments of variability and validity tests, including the 

significance test of the influence of variables (path 

coefficient), the significance test of the average calculation 

results (t-test) and the hypothesis test (p-value). Strong 

relationships between variables can trigger statistical test 

deviations, although the multicollinearity aspect has been 

anticipated at the beginning of the analysis. Variable 

elimination can be done if the number of variables tends to be 

very large by screening them using several statistical 

instruments [43]. However, if the number of variables 

implemented is limited, the researcher's considerations in 

decision making can be carried out. 

 

3.3 Flood mitigation scenario 

 

Flood mitigation scenarios are determined based on the 

model algorithm that has been prepared with a set of tests that 

have been executed. Considering the test results as in Table 4 

and Table 5 with reference to Figure 8, the flood mitigation 

scenario is determined according to the priority assessed from 

the significance of the variables. In addition to the significance 

of the referred variables, the determination coefficient 

describes the causal relationship between variables. The 

determination coefficient of the model construct is classified 

as moderate at 0.608 (X1 → X2) and 0.482 (X2, X3, X4, X5, 

and X6 → Y1). Based on these considerations, the flood 

mitigation scenarios that can be implemented at the study site 

according to their priorities are: (1) Community knowledge, 

(2) Green infrastructure, (3) Community participation, (4) The 

role of management institutions and government, (5) Gray 

infrastructure, and (6) Infrastructure maintenance.  

However, in a broader study, it is necessary to consider the 

limitations of this study in order to be able to apply it 

sustainably, such as the number of samples that can be further 

increased with a more diverse background. The limitations of 

variables in this study can affect the decision-making of flood 

mitigation priorities. Therefore, other factors that have the 

potential to become research variables can be accommodated 

in further SEM modelling. In addition, the assumption of 

linear relationships between exogenous and endogenous 

variables is another limitation in SEM modelling that can 

affect the path coefficient, where in fact the relationship 

between these variables may not be linear as assumed. 

This flood mitigation scenario is expected to have direct 

implications for the performance of flood management and 

mitigation, especially in the Palu watershed, which can be 

measured by reducing the volume, area and duration of 

inundation and reducing material losses and fatalities. Local 

communities must be involved in flood management and 

mitigation so that mitigation performance can be more 

optimal. Details of the role of local communities can be an 

interesting topic in future sustainable mitigation research. 

 

 

4. CONCLUSION 

 

Flood mitigation studies have been conducted at the study 

site initiated by identifying and modelling flood-prone areas 

and verified with the results of field investigations. Flood 

inundation was spread from the upstream, middle and 

downstream segments of the study area. Flood mitigation 

scenarios that can be applied depend on the distribution of 

inundation and local community perceptions of the impacts 

caused by flooding. These perceptions have been collected 

from 205 respondents using a questionnaire by implementing 

an online survey platform. Respondents showed high 

background variability including age, gender, occupation and 

education. 

Structural equation modelling (SEM) has been applied 

using 7 latent variables and 28 indicators. All indicator 

variables and latent variables involved in the model meet all 

tests for both validity and reliability. Based on the test results, 

the flood mitigation scenarios that can be applied by 

considering the implementation priorities are: Community 

knowledge, (2) Green infrastructure, (3) Community 

participation, (4) The role of management institutions and 

government, (5) Gray infrastructure, and (6) Infrastructure 

maintenance. However, in its application, it is also necessary 

to consider the limitations of this study, such as limited sample 

size, limited number of variables, especially exogenous 

variables, and the assumption of a linear relationship between 

exogenous and endogenous variables. These limitations 

provide opportunities for further research in the future by 

emphasizing the details of the role of local communities in 

flood mitigation. 
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NOMENCLATURE 

 

DEM digital elevation model 

SEM structural equation modelling 

PLS partial least square 

X, Y exogenous and endogenous variables 

 

Greek symbols 

 

 error of manifest variables 

 error of latent variables 

,  independent and dependent constructs 

 

Subscripts 

 

i 1, 2, 3, ..., n 

n number of variables 
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