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The demand for renewable energy in power systems is rapidly increasing, and various 

algorithms can efficiently and accurately track the maximum power point (MPP). This 

paper compares and analyses multiple control techniques for maximum power point 

tracking (MPPT) in photovoltaic systems under changing irradiance, temperature, and 

load characteristics, utilizing three algorithms: incremental conductance (INC), 

artificial neural network (ANN), and Hybrid INC-ANN. Three MPPT algorithms were 

developed for a standalone photovoltaic system with a high-gain cubic boost converter 

(HG-CBC) to optimize the solar panel's MPP. The performance of these controllers is 

evaluated using MATLAB/SIMULINK under varying irradiance and temperature 

conditions. The statement indicates that at 1000 W/m², the power output efficiency of 

INC is lowest at 83.79%. In comparison, the hybrid ANN-INC efficiency and ANN 

algorithms registered at 97.48% and 88.94%, respectively. The simulation shows that 

the INC algorithm has the lowest performance regarding time response, while the 

Hybrid INC-ANN and ANN algorithms perform better than the INC. 
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1. INTRODUCTION

The rapid increase in the global population leads to a higher 

demand for energy. Traditional power generation methods, 

due to their emission of greenhouse gases, not only harm the 

environment but also contribute to energy shortages as they 

strive to meet this growing demand [1]. Recent research 

identifies advances and challenges in renewable energy across 

diverse regions. In USA, a 35-year study [2] investigated 

public attitudes on renewable power growth, revealing the rise 

of community acceptability. 

Photovoltaic energy conversion systems have emerged as a 

key area in renewable energy, driven by significant 

advancements in photovoltaic (PV) cell technology, energy 

conversion efficiency, array size, power electronics, and 

control methods for optimal power point tracking [3]. Despite 

its growing popularity and environmental benefits, 

photovoltaic energy faces many challenges due to its 

dependence on environmental factors. Research opportunities 

in photovoltaic generating systems can help expand the reach 

of solar power globally. The MPPT function optimizes the 

electricity generated by solar panels by managing their optimal 

operating voltage and current [4]. This is achieved by 

continuously monitoring the solar panel array's voltage (Vpv) 

and current (Ipv) to adjust electricity extraction accordingly. 

MPPT is essential for optimizing energy use in PV systems. 

This power extraction control is crucial due to solar panels' 

non-linear Voltage/Current (V/I) curve, which changes with 

solar energy and panel temperature [5]. A PV module's output 

depends on its environment, with a single MPP corresponding 

to specific solar irradiation and cell temperature. Therefore, 

operating a PV module at MPP is essential for maximizing 

energy production. Maximum power point tracking (MPPT) 

technologies have been developed to achieve this [6]. 

Numerous MPPT algorithms have been developed, varying in 

applicability, complexity, accuracy, sensor requirements, cost, 

popularity, and other factors [7]. The traditional methods 

include short-circuit current [8], open-circuit voltage [9], 

perturb and observe (P&O) [10], INC [11], and hill-climbing 

[12]. At the same time, soft computing-based techniques 

consist of fuzzy logic controllers [13], bat algorithms (BA) 

[14], particle swarm optimization [15], genetic algorithms 

(GA) [16], and more. The simplicity of the INC approach has 

intrigued scholars. However, it inevitably deviates from the 

MPP during rapid changes in solar irradiation, leading to 

steady-state oscillation issues [17]. ANN effectively handle 

non-linear PV module characteristics and environmental 

variability, making them quick at tracking the MPP [18]. An 

effective DC-DC converter with high voltage gain is necessary 

to run a solar photovoltaic system at the MPPT under rapidly 

changing air conditions [19]. The cubic boost converter (CBC) 

delivers high voltage gain, particularly at low duty ratios, 

making it suitable for solar photovoltaic applications. Besides 

its high voltage gain, the CBC topology also reduces voltage 

stress on switches, diodes, and capacitors, offering an 

additional advantage [20].  

Environmental factors, like dust accumulation, irradiance, 

and temperature, have a realistic influence on the performance 
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of a PV module [21]. While these factors are important to 

consider in providing reliable data entry, this paper focuses on 

modeling the parameters of the PV module and provide a 

reliable control technique to extract maximum power from the 

module. It proposes a hybrid MPPT that integrates ANN with 

the INC technique, capitalizing on its dynamic response to 

sudden atmospheric changes. The ANN-based MPPT 

demonstrates robust tracking control and stability against 

internal system parameters and load uncertainties, as verified 

using MATLAB/Simulink. 
 

 

2. COMPLETE SYSTEM ARCHITECTURE 

 

The system's layout configuration, as illustrated in Figure 1, 

consists of a PV panel, DC-DC converter CBC, INC MPPT 

algorithm, ANN algorithm, Hybrid INC-ANN MPPT 

algorithm, Pulse-Width Modulation (PWM) control, and load. 
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Figure 1. Solar PV system coupled to a load by MPPT 
 

 

3. MODELING FIVE PARAMETERS MODEL 

 

The concept of the PV model is to construct the PV module's 

current-voltage (I-V) curve. The classical photovoltaic model 

computes the complete photocurrent 𝐼𝐶 , which is determined 

by Eq. (1) as illustrated in Figure 2 [22], incorporates a solitary 

diode linked in parallel with a light-generated current source 

𝐼𝑝ℎ , is determined by Eq. (2) accompanied by a series 

resistance is indicated as in ohms  𝑅𝑠𝑒  and a parallel 

admittance, 𝐺𝑝𝑎 (where 𝐺𝑝𝑎 = 1/𝑅𝑝𝑎). This particular model, 

referred to as the five-parameter model [23], encompasses 𝐼𝑝ℎ, 

𝐼𝑠, 𝐴, 𝑅𝑠𝑒, and 𝑅𝑝𝑎. Despite its benefits, its precision decreases 

under lower irradiance conditions, through the application of 

Kirchhoff's Current Law (KCL) [24]. 

 

𝐼𝑐 = 𝑛𝑝𝐼𝑝ℎ − 𝑛𝑝𝐼𝑠 [𝑒𝑥𝑝 (
𝑉𝑜 + 𝐼𝐶𝑅𝑠𝑒

𝑛𝑠𝐾𝑉𝑇

) − 1] − 𝐺𝑝𝑎(𝑉𝑜 + 𝐼𝐶𝑅𝑠𝑒) (1) 

 

Photovoltaic arrays are constructed by combining solar cells 

in series 𝑛𝑠  and panels in parallel 𝑛𝑝 . The idealist factor is 

represented by 𝐴. Boltzmann's constant, 𝐾𝐵 , has a value of 

1.38×10-²³ J/K. 𝑇 signifies the temperature of the p-n junction 

in Kelvin (K). The electron charge is represented as 𝑞  and 

holds a value of 1.6×10-¹⁹ in coulomb [C] [25]. Where 𝑆𝑇𝐶 

stands for standard test conditions (1000 W/m² and 25℃), and 

𝐺𝑖𝑟  denotes the irradiance in watts per square meter (W/m²). 

The temperature corresponding to ref, is designated as 𝑇𝑟𝑒𝑓 

and is set at 25℃. Figure 3 illustrates the internal photocurrent 

model block diagram. 

 

 
 

Figure 2. Complete diagram of the five parameters model 

 

𝐼𝑝ℎ =
𝐺𝑖𝑟

𝐺𝑆𝑇𝐶

[𝐼𝑠𝑐_𝑆𝑇𝐶 + 𝐾𝑠𝑐(𝑇 − 𝑇𝑟𝑒𝑓)] (2) 
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Figure 3. Equivalent circuit diagram of photocurrent model 

 

 
 

Figure 4. Equivalent circuit diagram of reverse saturation current model 

 

 
 

Figure 5. Equivalent circuit diagram of saturation current model
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Table 1. Solar-powered CBC parameters 

 
Parameters Value 

Parallel strings 1 

Series-connected modules per string 1 

Maximum power (PMP) 250.2 W 

Open circuit voltage (Voc) 37.3 V 

Short current (Isc) 8.66 A 

Voltage maximum power (VMP) 30.7 W 

Current maximum power (IMP) 8.15 A 

Photovoltaic current (Iph) 8.706 A 

Saturation current of the panel 4.1579e-10 A 

Diode ideality factor 1.0189 

Solar cells in series 𝑛𝑠 60 

Solar cells in parallel 𝑛𝑝 1 

Series resistance 𝑅𝑠𝑒 0.2373 Ω 

Parallel resistance 𝑅𝑝𝑎 240.60 Ω 

Switching frequency 10 K 

Inductor 

L1=0.2e-3 H 

L2=0.3e-3 H 

L3=0.1e-3 H 

Capacitors 

C1= 6e-3 F 

C2= 3e-3 F 

C3= 2e-3 F 

 

Diode reverse saturation current ( 𝐼𝑟𝑠 ) depends on the 

temperature coefficient, which includes (𝐾𝑆𝐶 ) short is the 

cell’s short-circuit current temperature coefficient (A/K), and 

(𝐾𝑂𝑉), the cell’s open-circuit voltage temperature coefficient 

(V/K) [26]. 𝐾𝑉𝑇  thermal voltage coefficient = 26 mV at 300 K, 

which is determined using Eq. (3). Figure 4 represents the 

internal block diagram of diode reverse saturation current. 

 

𝐼𝑟𝑠 =
𝐼𝑠𝑐_𝑆𝑇𝐶 + 𝐾𝑠𝑐(𝑇 − 𝑇𝑟𝑒𝑓)

𝑒𝑥𝑝 ( 𝑉𝑜𝑐_𝑆𝑇𝐶
+ 𝐾𝑜𝑣(𝑇 − 𝑇𝑟𝑒𝑓) /𝐴𝐾𝑉𝑇) − 1

 (3) 

 

The diode saturation current (Is) is influenced by 

temperature and the semiconductor material's band-gap energy 

(Eg), as described in Eq. (4). Figure 5 illustrates the internal 

diagram of the diode saturation current model. The parameters 

for this solar PV module simulation are listed in Table 1. The 

simulated PV module is the 1Soltech 1STH-250-WH.  

 

𝐼𝑠 = 𝐼𝑟𝑠 ∙ (
𝑇

𝑇𝑟𝑒𝑓

)

3

∙ 𝑒𝑥𝑝 [
𝑞𝐸𝑔

𝐴𝐾𝐵

(
1

𝑇𝑟𝑒𝑓

−
1

𝑇𝑜𝑝
)] (4) 

 

 

4. CUBIC BOOST CONVERTER 

 

A fundamental CBC [27], with high gain, as illustrated in 

Figure 6, is composed of a solitary semiconducting switch (S), 

a trio of inductors (L₁, L₂, and L₃), three capacitors (C₁, C₂, and 

C₃), five diodes (D₁, D₂, D₃, D₄, and D₅), and a resistive load 

(RO). This high-gain cubic boost converter utilizes a single 

switch (S) to regulate the Vout and encompasses two distinct 

operational modes [27]. 

The operational configuration denoted as the first mode of 

the high-gain CBC is visually illustrated in Figure 7. In this 

scenario, the semiconducting switch (S) is activated. 

Simultaneously, two diodes (D1 and D3) are conducting, 

whereas the remaining three (D2, D4, and D5) remain open-

circuited. The input source initiates the charging of the 

inductor (L1), while the inductor (L2) becomes energized 

through the voltage across the capacitor (C1). Lastly, the 

inductor (L3) is stimulated by the voltage across the capacitor 

(C2). The current for the resistive load (R) is supplied through 

the voltage of the capacitor (C3). 

The second operational mode of the high-gain cubic boost 

converter. is depicted in the circuit diagram shown in Figure 

8. In this configuration, the switch (S) is turned off. While 

diodes D₁ and D₃ function as open circuits, diodes D₂, D₄, and 

D₅ are conducting. The inductors (L₁, L₂, and L₃) will be 

disengaged, capacitors (C₁, C₂, and C₃) are in a certain state. 

 

 
 

Figure 6. Cubic boost converter 

 

 
 

Figure 7. Cubic boost converter on state 
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Figure 8. Cubic boost converter off state 

 

Applying KVL determines the voltage across inductors (L1, 

L2, and L3), as shown in Eq. (5) and Eq. (6). 

 

𝑉𝐿1 = 𝑉𝑃𝑉; 𝑉𝐿2 = 𝑉𝐶1; 𝑉𝐿3 = 𝑉𝐶2 (5) 

 

𝑉𝐿1 = 𝑉𝑃𝑉 − 𝑉𝐶1; 𝑉𝐿2 = 𝑉𝐶1 − 𝑉𝐶2; 𝑉𝐿3 = 𝑉𝐶2 − 𝑉𝑂 (6) 

 

The voltage across the capacitor 𝑉𝐶1 is expressed as Eq. (7), 

where duty cycle, (d): 

 

𝑉𝐶1 =
𝑉𝑃𝑉

1 − 𝐷
 (7) 

 

The voltage across the capacitor 𝑉𝐶2 is expressed as Eq. (8): 

 

𝑉𝐶2 =
𝑉𝑃𝑉

1 − 𝐷
 (8) 

 

By substituting the value of 𝑉𝐶1  in terms of the input 

voltage 𝑉𝑃𝑉, we can express 𝑉𝐶2 as shown in Eq. (9): 

 

𝑉𝐶2 =
𝑉𝑃𝑉

(1 − 𝐷)2
 (9) 

 

The voltage across the resistance 𝑉𝑂  is expressed as Eq. 

(10): 

 

𝑉𝑂 =
𝑉𝐶2

1 − 𝐷
 (10) 

 

The average current passing through the output diode 

corresponds to the output current 𝐼𝑂; hence Eq. (11): 

 

𝐼𝑂 = 𝐼𝐷5 =
𝑉𝑂

𝑅𝑂

 (11) 

 

By substituting the value of 𝑉𝐶2  in terms of the input 

voltage 𝑉𝑃𝑉, the gain of the voltage ratio is calculated as Eq. 

(12): 

 
𝑉𝑂

𝑉𝑃𝑉

=
1

(1 − 𝐷)3
 (12) 

 

 

5. MPPT 

 

Efficient implementation of MPPT is crucial, given the 

formidable challenge of achieving maximum power extraction 

from solar photovoltaic systems [28]. The utilization of MPPT 

facilitates the alignment of solar PV and load impedances. 

There are diverse approaches to modulating the duty cycle of 

the DC-DC converter to extract the Pmax. Ideally, 

photovoltaic systems should continuously operate at their 

MPP under all operating conditions, which include all possible 

combinations of ambient temperature and solar irradiance 

levels. A solar photovoltaic system's voltage, current, and 

power output characteristics vary depending on solar 

irradiance levels and temperature conditions for a particular 

load. An MPPT system does just that: it constantly observes 

the MPP. By utilizing an algorithm, the converter is fine-tuned 

whenever its conditions change, thus maintaining a panel's 

output power at its maximum for a given period. Essentially, 

the tracking system usually measures the current and voltage 

to determine how much power the PV panel can provide. The 

algorithm then uses that information to calculate how much 

the circuit needs to be adjusted to produce more power from 

the panel. These changes to the converter come in the form of 

adjustments in something called the duty cycle, which controls 

the converter. Consequently, this leads to an alteration in the 

Vout, with the Vin remaining consistent. Within a converter 

linked to a PV panel, this increase in output voltage originates 

from the converter, allowing a higher input current to pass 

through it. Elevating the converter's duty cycle simultaneously 

amplifies the current streaming from the PV panel to the 

converter. As a result, the PV panel transitions from its current 

operating point on the I-V curve to a subsequent point 

characterized by an increased current output, which is a 

leftward shift. This transition results in a decrease in the 

voltage output of the PV panel. Once the panel's operating 

point becomes adjustable, an algorithm can be employed to 

control this shift, thereby forming an MPPT system. While 

various algorithms may manifest distinct behaviors, this 

fundamental concept serves as the basis for most MPPT 

systems [29]. Given the unique attributes and constraints of 

different algorithms, this study utilizes the hybrid maximum 

power point tracking, which contains two methods: INC and 

ANN. 

 

 
 

Figure 9. INC method schematic diagram 
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Figure 10. INC flow diagram [30] 

 

5.1 INC 

 

INC is used as the MPPT algorithm. The INC method aims 

to identify the direction of change in the terminal voltage of 

PV modules by measuring and comparing their INC with their 

instantaneous conductance. It solves the perturb and observes 

method limitations in tracking peak power in rapidly changing 

atmospheric circumstances. The basic theory is illustrated in 

Figure 9, and the operating flow diagram of the INC is shown 

in Figure 10. 

When the operating point of PV modules is precisely at the 

MPP, the slope of the power curve is zero (dP/dV=0), which 

can be further expressed using the relationship dP/dV=0. This 

means that incremental conductance (dI/dV) equals 

instantaneous conductance (−I/V), as shown in Eq. (13), which 

indicates that the maximum power and voltage points have 

been achieved. 

 
𝑑𝑝

𝑑𝑉
=

𝑑(𝑉𝐼)

𝑑𝑉
= 𝐼 + 𝑉

𝑑𝐼

𝑑𝑉
= 0 =

𝑑𝐼

𝑑𝑉
= −

𝐼

𝑉
 (13) 

 

The PV module's output power (Pout) is proportional to the 

terminal voltage if it operates in the constant current region. 

This means that the output power rises linearly with the PV 

module's rising terminal voltage, producing a positive slope on 

the power curve (dP/dV>0). This indicates that the PV 

module's increased terminal voltage is the reason why the INC 

(dI/dV) is greater than the instantaneous conductance (−I/V), 

as Eq. (14) illustrates. The PV module's operating voltage on 

the PV diagram will be located to the left of the MPP, meaning 

that it must be increased to follow the MPP [30]. 

 
𝑑𝑝

𝑑𝑉
>= 0 =

𝑑𝐼

𝑑𝑉
> −

𝐼

𝑉
 (14) 

 

If the Pout decreases linearly with the falling terminal 

voltage of the PV module, resulting in a negative slope on the 

power curve (dP/dV<0). It signifies that the INC (dI/dV) is 

reduced than the instantaneous conductance (−I/V), as shown 

in Eq. (15), indicating the decreased terminal voltage of the 

PV module. The operating voltage of the PV module will be 

positioned to the right of the MPP on the PV diagram, 

indicating that it should be reduced to track the MPP. 

𝑑𝑝

𝑑𝑉
< 0 =

𝑑𝐼

𝑑𝑉
< −

𝐼

𝑉
 (15) 

 

5.2 ANN 

 

ANN plays a significant part in enhancing the performance 

of MPPT for PV systems. This role becomes outstanding in 

complex and dynamic environments where traditional 

methods may fail to perform well. On the other hand, ANNs 

function primarily to learn and adapt to the nonlinear 

characteristics of PV systems so that the MPP can be 

efficiently tracked [31]. 

However, INC's efficiency can be reduced by fast-changing 

irradiance and partial shading conditions. ANNs make a 

considerable improvement in this area. An ANN can learn 

complicated nonlinear relationships between these input 

parameters, irradiance, temperature, and the MPP to make an 

ANN-based MPP predictor. 

The typical ANN model will have numerous layers of 

neurons, where every layer performs a weighted sum of its 

inputs and is then fed through a non-linear activation function 

like a sigmoid function, as shown in Eq. (16): 

 

𝑦 = 𝑓(∑ 𝑊𝑖
𝑖

𝑋𝑖 + 𝑏) (16) 

 

where, 𝑦 is the output, 𝑋𝑖 are the inputs, 𝑊𝑖 are the weights, 𝑏 

is the bias, and 𝑓 is the activation function. During training, 

the ANN adjusts its weights 𝑊𝑖 and biases 𝑏 to minimize the 

error between its predicted output and the actual MPP, using 

techniques like backpropagation and gradient descent. The 

loss function 𝐿 used for this optimization is often the mean 

squared error (MSE), as shown in Eq. (17). 
 

𝐿 =
1

𝑛
∑(𝑃𝑝𝑟𝑒𝑑,𝑖 − 𝑃𝑎𝑐𝑡𝑢𝑎𝑙,𝑖)

2

𝑛

𝑖=1

 (17) 

 

where, 𝑃𝑝𝑟𝑒𝑑,𝑖 is the power predicted by the ANN and 𝑃𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 

is the actual measured power . 

The ANN [32] is structured as a feedforward neural 

network. It consists of an input layer that receives voltage 

(Vpv) and current (Ipv) inputs, hidden layers configured with 

a specified number of neurons to capture non-linear 

relationships, and an output layer that generates the predicted 

duty cycle (D) for PWM control. 

The training process begins with data collection under 

various irradiance and temperature conditions as input and the 

values of VMP as output to ensure diverse scenarios. To achieve 

convergence, the network is trained using backpropagation 

with a learning rate of 0.01 over 1100 epochs. A 5-fold cross-

validation method is employed to evaluate performance 

robustly with an 80-20 train-test split. 

Parameter selection is crucial for the network's efficiency. 

The sigmoid activation function is used in the hidden layers to 

handle non-linearities. MSE serves as the loss function to 

minimize prediction inaccuracies, while the Adam optimizer 

is chosen for efficient training and faster convergence. 

Once trained, the ANN can rapidly infer the MPP under 

various conditions, providing a robust and adaptive MPPT 

solution. The ANN can handle the non-linear and dynamic 

nature of PV systems more effectively than traditional 

algorithms, ensuring optimal performance even under 

challenging conditions such as partial shading and fluctuating 

irradiance [33]. 
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Essentially, ANNs improve MPPT by learning complex 

relationships relating PV parameters to the MPP, adapting to 

fast environmental changes, and providing a more accurate 

and robust tracking solution. Thus, this makes them a valuable 

constituent of advanced PV system management strategies . 

 

5.3 Hybrid MPPT combining INC and ANN 

 

The hybrid technique combines two controllers: the ANN 

and INC methods to sustain maximum power and enhance 

efficiency under changing environmental conditions. The 

neural network consists of an input layer with two nodes, a 

hidden layer containing ten nodes, and an output layer with 

one node. The core concept of the hybrid algorithm is to utilize 

the ANN controller to predict voltage values during insolation 

fluctuations, provided the irradiation changes are minimal. If 

the change is significant, the step size in the INC method 

becomes too small to reach the MPP, leading to oscillations 

[34]. The figure below illustrates the contemporary hybrid 

model control for MPPT. This approach's inputs include the 

PV panel's current, voltage, and power variation. The 

maximum power is determined using the neural network 

learning algorithm by adjusting the neurons' weights and 

integrating the results with those from the INC algorithm. 

In this control approach, the ANN output is combined with 

the INC algorithm output, and the average duty cycle produced 

is sent to the PWM generator to create the switching pulses as 

shown in Figure 11.  

 

 
 

Figure 11. The flow diagram of the proposed hybrid-based MPPT for CBC 
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Figure 12. Flow chart for hybrid MPPT based on ANN and INC [35] 
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When the duty ratios from both methods are combined, the 

error in the duty cycle is minimized. This approach helps 

decrease oscillations around the maximum power point [35], 

as demonstrated in Figure 12. 

The maximum power points for converter operation are 

determined by observing the power levels at various points 

using the INC method and the neural network approach. 

Moreover, the maximum power is modified in response to 

environmental conditions. Unlike other complex hybrid 

methods for efficiently tracking the MPP, this strategy lowers 

system costs by decreasing the number of sensors needed. The 

hybrid techniques differ in their response speed, measurement 

assumptions, hardware implementation, number of sensors, 

and complexity. 

D1 represents the duty cycle produced by the ANN method, 

while D2 is the duty cycle generated by the INC. The combined 

result is given by D = (D1 + D2)/2. 

The hybrid MPPT model [36], which combines the 

strengths of the INC algorithm and ANN, offers superior 

performance. Here is how the integration takes place : 

Initial Tracking with INC: The INC algorithm is used for 

initial tracking due to its quick response to changes in 

operating conditions. It provides a reliable starting point for 

MPP tracking. 

ANN for Fine-Tuning: The ANN then takes over for fine-

tuning the tracking process against nonlinearities and 

disturbances to which it would be difficult for the INC 

algorithm alone to respond, like partial shading or fast 

irradiance changes . 

Dynamic Adjustment: The current operating conditions 

dynamically switch between the INC algorithm and the ANN. 

In stable conditions, INC's algorithm can handle tracking; in 

fluctuating conditions, the ANN refines the prediction . 

Improved Efficiency and Robustness: The hybrid model 

will integrate the INC algorithm's fast response with the 

ANN's adaptive learning ability to improve MPPT efficiency, 

dynamic response, and robustness against disturbances. 

 

6. SIMULATION RESULT 

 

The Hybrid INC-ANN Algorithm performs superiorly in 

tracking the MPP of solar panels compared to the use of 

standalone INC and ANN models, as shown in Table 2. The 

power tracking under varying environmental conditions, such 

as changes in irradiance and temperature, was consistently 

higher with the hybrid model, as shown in Figures 13 and 14. 

 

 
 

Figure 13. Power for hybrid, INC, and ANN when 

irradiation G=1000 

 

 
 

Figure 14. Maximum power and power tracking of MPPT 

algorithms with different irradiation 

Table 2. Simulation results of MPPT algorithms with different irradiation 

 
Irradiation 

Values (W/m2) 
MPPT Methods Maximum Power (W) Power Tracking (W) Voltage (V) Current (I) Efficiency 

1000 

INC 213.5 178.9 73.23 2.442 83.79 

ANN 240.4 213.8 80.06 2.67 88.94 

Hybrid 248.6 242.4 85.24 2.843 97.48 

700 

INC 108.4 88.38 51.48 1.717 81.52 

ANN 166.5 129 62.2 2.074 77.51 

Hybrid 173.7 166.6 70.67 2.357 95.91 

300 

INC 22.43 16.37 22.15 0.7389 72.99 

ANN 71.17 63.89 43.77 1.46 89.78 

Hybrid 73.39 66.9 44.79 1.494 91.15 

 
 

Figure 15. Voltage for hybrid, INC, and ANN when G=1000 

 
 

Figure 16. The voltage of MPPT algorithms with different 

irradiation 

3386



 

 
 

Figure 17. Efficiency for hybrid, INC, and ANN of G=1000 

 

 
 

Figure 18. Efficiency of MPPT algorithms with different 

irradiation 

 

Table 3. Comparison of different MPPT methods with 

related works 

 
Ref. Year Method Efficiency 

[30] 2017 Hybrid (P&O+ANN) 89.4% 

[35] 2022 Hybrid (P&O+ANN) 97.5% 

[36] 2024 Hybrid (INC+ANN) 87.62% 

This Work 2024 Hybrid (INC+ANN) 97.5% 

 

The hybrid model's voltage regulation was more precise, 

maintaining the operating voltage closer to the MPP voltage, 

as shown in Figures 15 and 16. This precision in voltage 

tracking contributed to improved efficiency and power output. 

The efficiency profile obtained from the hybrid model 

showed a smoother and more stable response to changes in 

environmental conditions. The hybrid model's ability to 

quickly adapt to variations in irradiance and temperature 

resulted in a more consistent efficiency, as shown in Figure 17. 

The ANN component of the hybrid model provided predictive 

adjustments. In contrast, the INC component fine-tuned the 

immediate response, minimizing oscillations around the MPP. 

One such critical metric that can be used to evaluate MPP 

tracking algorithms is efficiency. As shown in Figure 18, the 

average efficiency using the hybrid ANN-INC model was 

97.48%, much higher than that of the ANN model and the INC 

model, with efficiencies of 88.94% and 83.79%, respectively. 

This is attributed to the fact that the hybrid model manages to 

mix ANN's predictive qualities with the accuracy of INC in 

real-time, thus accomplishing effective and responsive MPP 

tracking. Table 3 shows the comparison of this proposed 

model with different MPPT-related works. 

 

 

7. PRACTICAL AND IMPLEMENTATION 

 

Implementing the high-gain cubic boost converter and 

hybrid MPPT in real-world solar PV systems requires careful 

consideration. The performance of any converter depends on 

the availability of special components that can handle high 

power levels efficiently with good thermal management. 

Performances are affected under actual operating conditions, 

such as temperature variations, requiring reliable solutions. 

The hybrid MPPT algorithm develops better power 

extraction by dynamic adaptation, while its complexity grows 

with the challenges in deployment and maintenance. Real-time 

processing demands may require advanced microcontrollers 

that will affect cost and power consumption. Integration into 

existing systems is the only way to take this into realistic 

implementation. Various possible limitations include reduced 

performance with partial shading and rapid weather changes. 

The system is scalable since it is modularly designed, though 

initial costs may be higher owing to the requirement for more 

specialized components. In the long run, energy efficiency can 

offset such costs. Hardware upgrades and compatibility with 

current systems will be needed for seamless integration. 

The proposed system can be successfully implemented by 

realizing maximum benefits from its practical applications by 

making the possible limitations and drawbacks minimally 

effective. 

 

 

8. CONCLUSION 

 

The proposed paper presented a hybrid ANN-INC 

algorithm as an MPPT controller to track the MPP of solar 

panels more effectively. This proposed algorithm improved 

the inherent limitations of both artificial neural networks and 

incremental conductance techniques in conventional MPPT 

methods. The hybrid approach mitigated the inability of the 

ANN to reach the MPP under low solar irradiation and 

improved the tracking speed of the INC method. The 

simulation results for different levels of solar irradiation 

demonstrated the hybrid ANN–INC algorithm's superior 

operational characteristics in terms of fast convergence to the 

MPP, locating the MPP of the solar panel more precisely, and 

rapidly adapting to changes in solar irradiation. The hybrid 

ANN–INC model provided a mean efficiency of 

approximately 97.48% at radiation 1000 W/m2 far higher than 

the standalone ANN and INC models at about 88.94% and 

83.79%, respectively. When the radiation was 700 W/m2, the 

hybrid ANN–INC model provided an efficiency of 

approximately 95.91%, also higher than the standalone ANN 

and INC models at about 77.51% and 72.99%, respectively 

and radiation was 300 W/m2, the hybrid ANN–INC model 

provided an efficiency of approximately 91.15% also higher 

than the standalone ANN and INC models at about 89.78% 

and 72.99%, respectively. The results have demonstrated that 

the hybrid ANN–INC algorithm works by overcoming the 

shortcomings of traditional MPPT methods to deliver a 

resilient and efficient solution for maximizing power 

extraction from photovoltaic panels. This approach efficiently 

extracts maximum power even under fluctuating atmospheric 

conditions, providing higher power output than other 

techniques. 

 

 

9. FUTURE WORK 

 

Future studies are needed in several areas that hold the key 

to improving performance and making up for certain 

weaknesses within the system. Research into advanced 
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materials will help improve the thermal management of the 

system and its reliability. Stronger algorithms will allow the 

system to behave more adequately under dynamic 

environmental changes and lower response times when sudden 

weather changes occur. Integration of artificial intelligence in 

such systems further enhances predictability through adaptive 

control. Scalability studies are required for larger applications 

to establish that services can be provided at reasonable costs 

and must be compatible with available infrastructure. Finally, 

large-scale field trials yield valuable real-world data for 

further refinements and validation. In these manners, various 

current challenges can be met, and full potential achieved in 

practical applications. 
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NOMENCLATURE 

 

𝐼𝑝ℎ  Light-generated current source in (A) 

𝐼𝑑  Diode current in (A) 

𝐼𝑝  Parallel resistance current in (A) 

𝑉𝑂  Output voltage in (V) 

𝑉𝑜𝑐   Open-circuit voltage in (V) 

𝑉𝑀𝑃  Voltage at maximum power point in (V) 

𝐼𝑀𝑃   Current at maximum power point in (A) 

𝑃𝑀𝑃   Power at maximum power point in (W) 

𝐼𝐶   Output current in (A) 

𝐼𝑠  Diode saturation current in (A) 

𝐼𝑟𝑠  Diode reverse saturation current in (A) 

𝐼𝑠𝑐   Short-circuit current in (A) 

A Diode ideality factor, which =1.0189 

𝑉𝑇  Thermal voltage = 26 mV at 300 K 

𝑛𝑠  Cells connected in series 

𝑛𝑝  Cells connected in parallel 

𝐾𝐵  Boltzmann constant, which = (1.381×10-23 J/K) 

𝑞  Charge of electron, which = (1.6×10-19 C) 

𝑇𝑟𝑒𝑓   Reference temperature = 298K 

𝑇  Operating temperature 

𝑅𝑠𝑒  Series resistance of a PV, which = 0.237 Ω 

𝑅𝑝𝑎  Parallel resistance of a PV, which =240.6 Ω 

𝐺𝑝𝑎  Parallel admittance of a PV 

𝐸𝑔  Band gap of the silicon, which =1.1 eV 

Gir Irradiation in (W/m2) 

GSTC 
Irradiation at standard test condition (STC), which = 

1000W/m2 

𝐼𝑠𝑐𝑆𝑇𝐶
  

Short circuit current of cell at (STC) (in Ampere), 

which happen with (T=25 short Cell’s short-circuit 

current  
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𝐾𝑆𝐶   
Short is the cell’s short-circuit current Temperature 

coefficient (A/K), which = 0.086998 mA/℃ 
𝐾𝑂𝑉  

Cell’s open-circuit voltage temperature coefficient 

(V/K), which = -0.369 m V/℃ 
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