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Tumors, whether cancerous or benign, are among the most prominent problems of our 

time, and creating mathematical models to study, understand, and predict their behavior 

is extremely important. In this article, we created a general stochastic model to study 

the development of tumor size and diameter. The significance of our model is that it can 

study tumor growth in general it takes into consideration the number of capillaries that 

are inside the tumors and the quantity of blood that enters the tumor as well as the 

efficiency of the nutrients. We applied this model to simulate the development of a 

tumor called Myxoma, which is a tumor that grows in the heart. In the simulation of the 

growth of the Myxoma tumor volume over time in days, we found that tumor volume 

may reach 7.56 cm3 which is consistent with experimental studies which confirm that 

the tumor volume grows between 3.053 and 7.238 cm3. As for the tumor diameter we 

have found that the change in diameter of tumor Myxoma ranges between 2 and 2.5 cm 

in a period of 360 days, and this is almost consistent with the real data where the size 

of the tumor diameter in the first year ranges between 1.8 and 2.4 cm. 
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1. INTRODUCTION

Cancer is one of the most deadly diseases in the world, 

causing the death of millions of people in recent years. The 

term cancer includes a wide range of diseases that can affect 

any part of the body, according to the World Health 

Organization; cancer killed about 10 million people in 2020, 

which is roughly equivalent to one in six cancer deaths. The 

most common types of cancer in the world are lung, breast, 

colon, rectum, and prostate cancer [1]. 

There is another term that refers to cancer, which is 

malignant tumors. 

In this article, we will use the terms tumors and cancer, the 

distinctive characteristic of malignant tumors is the rapid 

growth of abnormal cells, as these cells grow beyond their 

normal boundaries and can spread and invade surrounding 

tissues in the body. This process is called Metastasis, which is 

metastasis that spreads more widely in the body, this process 

makes cancer more deadly [1]. The main objective of this 

article is to create a model to study how tumors grow over 

time. 

In order to understand how these tumors grow and develop, 

many researchers have created mathematical models to predict 

and study this killer. In 2014, Benzekry et al. [2] discussed 

several mathematical models to study the development of 

tumors and how chemotherapy affects the growth of these 

tumors. These models are often considered simple models, 

such as the exponential model and the Gompertz model [2]. In 

the same context, Ledziewicz and Schättler [3] used the 

Fisher-Kolmogorov and Lotka-Volterra equations to study the 

development of tumors. There are other articles that study 

cancer growth using stochastic models, such as the study 

conducted by Doret and Moseley [4] and Lowengrup et al. [5], 

who used stochastic and deterministic modeling to model the 

growth of this disease, namely cancer [5]. 

In this article, we will follow a different approach from the 

classical methods of modeling the growth of tumors in general, 

whether they are malignant or not. The novelty of our model 

is that it can be useful in studying different types of tumors, 

and it takes into consideration the number of capillaries inside 

the tumor, the quantity of blood that enters the tumor, and 

also nutrient efficiency on the size of the tumor, instead the 

other models don’t take into consideration different variables 

like the quantity of blood and the efficiency of nutrients. 

The specific research questions we are aiming to answer are 

how can we predict the size of the cancer and what is the 

relationship between nutrients, the speed of blood entering the 

tumor, and the size of the tumor? In this article, we will focus 

on answering these two questions by modeling the growth of 

cancer volume and finding the relationship between nutrients 

and their concentration in the blood, the speed of blood entry 

into tumors, and the size of the tumor, whether it is malignant 

or not. First, we will review the literature over the past years, 

where we will focus on the methods used in modeling. After 

that, we will present some statistics that we have collected 

about the most common types of cancer and the death rates 

they cause annually. After that, we will review the stages of 

development of the normal cell and the difference between it 
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and the cancer cell. In the next stage, we will model the growth 

of tumor volume over time. In the penultimate stage, we will 

simulate the model and compare it with data from reality, 

where we will find integration between the results of the model 

and previous studies. Specifically, we will focus on applying 

the model to a type of non-cancerous tumors that grow in the 

heart, due to the availability of some data about it, where we 

will learn about this tumor in the application stage of this 

article. 

 

 

2. LITERATURE REVIEW 

 

For a long time, researchers from all over the world have 

been interested in finding ways to study tumors, whether 

benign or malignant, in order to understand how they grow and 

develop, and also to find ways to treat them. In this review of 

the literature, we will review the most important methods used 

during the past few years. 

Trobia et al. [6] used dynamic logistic modeling to study the 

growth of brain cancer, specifically studying the interaction of 

gliomas and neurons. They used this model to study the effect 

of chemotherapy and how it can be used in a way that kills 

glioma cells with a minimum of neurons. This study concludes 

that adopting appropriate strategies can theoretically allow us 

to use chemotherapy to kill gliomas with minimal damage to 

neurons. 

Later research was done by Khaliq et al. [7], who used fuzzy 

modeling to model cancer growth in the article, aiming to 

model tumor growth in a fuzzy environment using differential 

equations in order to model tumor growth more accurately by 

taking into account that despite the presence of data, there is 

still a certain percentage of error. This is why Rubeena Khaliq 

and others chose fuzzy modeling. The study concludes that the 

fuzzy model will reduce uncertainty by finding parameters 

using real data coming from clinical trials [7]. 

Ghaffari Laleh, et al. [8] looked at how well six classical 

mathematical models can predict tumor growth in patients 

receiving chemotherapy and immunotherapy. The study used 

data from 1472 patients with solid tumors and applied these 

common mathematical models: Exponential, Logistic, Classic 

Bertalanffy, General Bertalanffy, Classic Gompertz, and 

General Gompertz models. The goal was to see how well these 

models fit the tumor growth patterns and predict treatment 

results. Ghaffari Laleh et al. [8] conducted two experiments: 

the first used all available patient data, and the second focused 

on using early data to predict how tumors would grow later on. 

To find the best model parameters, they used optimization 

methods like differential evolution. Their findings showed that 

the Gompertz model performed the best, offering a good 

balance between accuracy and simplicity. The General 

Bertalanffy model also did good but was more complex. 

Interestingly, early treatment responses did not strongly 

predict the final outcomes, which shows the need for more 

detailed models to forecast tumor progression. Overall, the 

research provides a useful tool for evaluating cancer 

treatments using standard clinical data [8]. 

In the same context, Wei [9] used a dynamic model for 

triple-negative breast cancer, where the model focused on 

studying the interaction of immune cells and cancer cells. One 

of the most prominent findings of this study is that in the case 

of a model immune system, the immune system can eliminate 

a relatively small tumor by simulating the model using certain 

parameters. This article also concluded that natural killer cells 

can effectively eliminate cancer cells. 

In the same year, Alinei-Poiana et al. [10] presented that 

fractional calculus can improve tumor growth modeling. They 

took four well-known models used for measuring tumor 

volume and modified them to include fractional calculus. The 

models they focused on were the Exponential, Logistic, 

Gompertz, General Bertalanffy-Pütter, and Classical 

Bertalanffy-Pütter models, and they applied these to data from 

both treated and untreated tumors. In their work, Tudor Alinei-

Poiana et al. [10] compared the fractional models with the 

traditional integer-order models. To do that, they looked at the 

Mean Squared Error (MSE) to measure how accurate each 

model was. The results showed that the fractional models 

performed much better, with their MSE being at least 50% 

lower than the traditional models. Alinei-Poiana et al. [10] 

have shown that fractional calculus, which has a memory 

feature, is well-suited for describing biological processes like 

tumor growth. The fractional models provided a better way to 

predict how tumors evolve, making fractional calculus a 

promising tool for improving cancer modeling and treatment 

in the future. 

Flandoli et al. [11] presented a model that explains how 

solid tumors grow by focusing on the interaction between 

cancer cells, oxygen levels, and the formation of new blood 

vessels, known as angiogenesis. The model uses a stochastic 

approach, treating cancer cells as individual units that multiply 

based on how much oxygen is available around them. 

Meanwhile, oxygen and VEGF are described using partial 

differential equations. 

The model shows how the tumor evolves over time, both 

before and after new blood vessels start to form. It highlights 

how cells divide into different regions of the tumor, with 

proliferating cells near the outer layers where there’s more 

oxygen and hypoxic cells deeper inside. 

Through numerical simulations, Flandoli et al. [11]’s model 

proves to be accurate in reflecting how tumors grow and 

change. The detailed, microscopic perspective also makes it 

possible to adjust the model to specific patients, potentially 

leading to personalized cancer treatments. 

Returning to the dynamic models, Azizi [12] studied the 

importance of mathematical models in studying the growth 

and understanding the development of tumors by presenting a 

three-part dynamic model, explaining that it is important to 

combine mathematical and physical models to predict tumor 

behavior and also the effect of some physical factors such as 

the pressure applied to the tumor and others on its growth and 

the formation of capillaries that feed the tumor. In order not to 

forget, the article presented a common physical model in the 

field of tumor modeling called the reaction-diffusion-

advection equation. The article concludes that mathematical 

oncology, in conjunction with experiments, will lead to 

finding effective strategies to understand the hidden aspects of 

the development and growth of tumors in general and cancers 

in particular, and will also enable the creation of new 

approaches to accelerate the process of finding appropriate 

treatments [12]. 

There are other studies that use different types of 

mathematical models such as modeling by artificial 

intelligence to detect cancer and others, but in this review of 

the literature, we focused on the most prominent models and 

studies that were conducted in the past few years, which we 

were exposed to in the research phase to create the stochastic 

model, which is the focus of this article. However, through all 

these articles that we discuss, we conclude that mathematical 
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models play a vital role in understanding and predicting the 

growth of tumors, both cancerous and benign, and this will 

accelerate the process of finding treatments and medications 

for these tumors. 

In this literature review, we have seen different researches 

on the topic of tumor growth. In our model, we will cover an 

important gap because we will take into account to create our 

model the quantity of blood inside the tumors and also nutrient 

efficiency to model and predict the tumor size, and this method 

of modeling tumor growth is a new approach. The researches 

that were done before us and that we have mentioned in the 

literature review did not include these variables in their model 

which we will consider into account in our article. 
 

 

3. METHODOLOGY 

 

Before going into the details of the model, let's review some 

statistics we have collected. 
 

3.1 Some statistics about cancer 

 

3.1.1 Cancer prevalence by continent 

There are continents that are characterized by a higher 

number of cancer cases than others, and this is according to the 

statistics presented by the World Health Organization on its 

official website [1], where Figure 1 shows that Asia is 

sweeping the first place in terms of the number of cancer cases. 

This may give an idea that cancer infection can be affected 

by geographical factors, although we will not include 

geographical factors in our model, but we present statistics to 

enrich this work and contribute to understanding this disease. 

To make this data clearer, we have represented it on a world 

map. In Figure 2, we clearly see that Latin America, the 

Caribbean region, and the African continent are the places 

with the fewest cancer cases. This is due to several reasons. 

Through these statistics, we find that cancer not only 

invades and destroys the human body, but also invades the 

world day after day and claims millions of lives around the 

world. 

3.1.2 The most common types of cancer in the world 

There are many types of cancer that affect the human body, 

and there are more common types than others. According to 

statistics from the World Health Organization published on its 

website, breast cancer comes in the first stage in terms of the 

number of infections in the world, with about 418,677 

infections in the year 2022, followed by prostate cancer, which 

affected about 329,035 people in the year 2022 as shown in 

Figure 3. 

In most cases, these cancers lead to death in the absence of 

an effective treatment for these cancers. Below, we will 

gradually understand how cancer cells multiply and tumors 

grow to finally reach a model for studying the growth of 

tumors in general, whether cancerous or otherwise. 

 

3.2 Tumor growth volume modeling 

 

3.2.1 Stages of cell development 

In order to model the growth of cancer cells, we need to 

understand how they work, which is a very complex process. 

Therefore, in this section, we will discuss some of the basics 

of how a normal cell divides and the most prominent 

differences between a cancer cell and a normal cell. 

A cell, whether cancerous or normal, goes through four 

basic stages as shown in Figure 4. 

1) In stage G1 or the initial growth stage, the cell 

increases in size and prepares the components necessary for 

DNA replication, this stage is considered important. 

2) In stage S or synthesis stage, the cell replicates its 

DNA in order to divide. 

3) In stage G2, it is the stage of preparation for cell 

division, where the cell completes the preparation of the 

necessary components for cell division. 

4) In stage M, which is the final stage, the cell divides 

into two daughter cells. 

Cancer cells, like normal cells, go through the same stages 

as mentioned, but there are some differences that we will 

discuss [13]. 

 

 
 

Figure 1. Number of cancer cases by continent 
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Figure 2. Continents most affected by cancer 

 

 
 

Figure 3. The most common types of cancer in the world 
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One of the most notable differences is the regulation of the 

cell cycle, as in normal cells the cell cycle is regulated 

regularly and precisely programmed through several different 

mechanisms or checkpoints that ensure that all stages are 

respected and that the cell is not advanced to the next stage 

before the specified time, and also if there is a problem in the 

cell, something like damaged DNA. 

 In contrast, in cancer cells these control mechanisms are 

often weakened or removed, allowing the cell to divide in an 

unfair and uncontrolled manner, and there lies the problem of 

cancer cells [14]. 

In normal cells, there is a mechanism called apoptosis or 

programmed cell death, which eliminates damaged or 

abnormal cells, which makes the cells work efficiently and 

regularly. In cancer cells, these cells often develop resistance 

to apoptosis, which allows them to survive even in the 

presence of damage or abnormalities, which is the most 

prominent thing that makes cancer cells this way, i.e., 

abnormalities and DNA damage [15]. 

Unlike normal cells, cancer cells can divide indefinitely and 

more randomly. They ignore the signals and mechanisms that 

indicate that division in normal cells stops when new cells are 

not needed or when they are otherwise damaged. Cancer cells 

act independently and divide more aggressively [16]. This 

makes cancer cells more powerful and dangerous. 

Similar to normal cells, cancer cells can stimulate the 

formation of new blood vessels to supply themselves with 

nutrients allowing them to grow strongly and spread to other 

parts of the body. Cancer cells can also dominate the 

consumption of nutrients through these blood vessels, which 

negatively affects normal cells [17]. 

Invasion and spread in the body, as cancer cells can spread 

in the body and invade surrounding tissues in advanced stages, 

and this characteristic is not present in normal cells. 
 

 
 

Figure 4. Stages of cell development 
 

3.2.2 Cancer growth model 

Definition (Tumor) 

We will define a tumor as a mass of cells. Unlike normal 

cells, tumors are formed when cells multiply excessively and 

out of control. Cancer cells escape the mechanism of 

programmed cell death. Tumors can be classified into two 

main categories: 

Benign tumors: This type of tumor is considered cancerous 

but does not spread in the body, but can cause some problems 

such as pressure on surrounding organs. 

Malignant tumors: These tumors are cancerous, spread in 

the body, and can invade the surrounding areas [18]. 
 

3.2.3 Modeling the amount of blood entering the tumor at 

moment t 

To model tumor growth, we first need a general 

understanding of the model, as the tumor takes all nutrients 

from the blood. We will rely on this assumption to model 

tumor growth. In the beginning, at moment t, when blood 

enters the tumor, we assume that a quantity Q of blood enters 

the tumor through a certain number of capillaries, which we 

will symbolize as C, as this quantity of blood contains the 

nutrients that the tumor will use for nutrition. However, we 

must take into account that the effect of nutrients on the tumor 

can vary depending on their concentration and other variables. 

Therefore, we must take into account the effectiveness of 

nutrients in increasing the size of the tumor, i.e., the 

percentage of the effect of the type of nutrients entering the 

tumor on increasing its size and the speed of its growth, which 

we will symbolize as 𝐸𝑁 (see Figure 5). 

So we can express the tumor growth with the following 

equation: 

 

𝑇𝑆(𝑡 + 𝑇) = 𝐶𝑁𝑄(𝑡)𝐸𝑁(𝑡) (1) 

 

where, TS is the tumor volume and T is the time period 

between the blood entering the tumor and the effect of 

nutrients on the tumor volume. We will return to this equation 

in detail after extracting 𝑄(𝑡) and 𝐸𝑁(𝑡). 
In our model we will need to know the amount of blood 

entering the tumor at each moment t (see Figure 6). 

 

 
 

Figure 5. The amount of blood entering the tumor 

 

 
 

Figure 6. The amount of blood entering the tumor 

 

For this purpose, in this paragraph, we will model the 

amount of blood entering the tumor at each moment t. 

For this, we will use the following simplified Navier-Stokes 

equation: 

 

𝜌(
𝜕𝑣

𝜕𝑡
+ (𝑣. ∇)𝑣) = −∇𝑝 + 𝛼∇2𝑣 (2) 

 

where, 𝜌 : the density of blood in kg/m3. 𝛼: the dynamic 

viscosity of blood in Pa.s. 𝑣: the speed of blood in m/s. 𝑝: the 

pressure in Pa. 

The Navier-Stokes Equation is a basic equation for studying 

the behavior of fluids and liquids. What is important to us here 

is using it to extract the speed of blood entering the tumor. 

Since blood is a fluid, we can apply this equation here to 

extract the speed of blood, which we will need to know the 

amount of blood entering the tumor. 

We assume that the flow of blood is laminar, i.e., (𝑣. ∇)𝑣 =
0, where, ∇ is a vector differential operator, we don't need 

details about it. 

The equation becomes as follows: 

 

𝜌
𝜕𝑣

𝜕𝑡
= −∇𝑝 + 𝛼∇2𝑣 (3) 
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We assume that the blood flows in one direction x, so the 

equation becomes as follows: 

 

𝜕𝑣𝑥
𝜕𝑡

= −
1

𝜌

𝜕𝑝

𝜕𝑥
+
𝛼

𝜌

𝜕2𝑣𝑥
𝜕𝑥2

 (4) 

 

Therefore, the blood velocity is: 

 

𝑣𝑥(𝑡) = −
1

𝜌
∫
𝜕𝑝

𝜕𝑥
𝑑𝑡 +

𝛼

𝜌
∫
𝜕2𝑣𝑥
𝜕𝑥2

𝑑𝑡 (5) 

 

Blood enters the tumor through the capillaries (see Figure 

7) at a speed 𝑣𝑥 at time t. 

 

 
 

Figure 7. Tumor capillaries [19] 

 

We assume that the average width of the capillaries is 𝐶𝑚 

and that the average radius of the capillaries is 𝑅𝑚 by meter 

(We chose the meter only to unify the units, but on the 

practical level we will work with the millimeter). Then we can 

express the average amount of blood 𝑄𝑚 (by m3/s) entering 

the tumor at time t as follows: 

 

𝑄𝑚(𝑡) = 𝜋𝑅𝑚
2 𝐶𝑚𝑣𝑥(𝑡) (6) 

 

Finally, we get the equation for blood entering the tumor at 

moment t. 

 

𝑄𝑚(𝑡) = −
𝜋𝑅𝑚

2 𝐶𝑚
𝜌

∫
𝜕𝑝

𝜕𝑥
𝑑𝑡 +

𝜋𝑅𝑚
2 𝐶𝑚𝛼

𝜌
∫
𝜕2𝑣𝑥
𝜕𝑥2

𝑑𝑡 (7) 

 

Definition (Nutrient Efficiency Equation) 

We define the Nutrient Efficiency Equation as follows: 

 

𝐸𝑁(t)=𝜆
𝑁(𝑡)

𝐾𝑚+𝑁(𝑡)
 (8) 

 

where, N(t) represents the nutrient concentration at time t. 

𝜆 is constant, as it gives the relationship between the size of 

nutrients and their effect on tumor growth in grams, as its unit 

is grams per liter (L/g). 

𝐾𝑚  is the half-saturation constant, which indicates the 

effectiveness of nutrients on cell growth at half. 

This equation is derived from the Michaelis-Menten 

Equation [20]. 

 

3.2.4 Tumor growth model 

In this section, we will model the evolution of tumor size 

over time. 

To model the development of tumor size, we will develop a 

simplified algorithm for how tumor size develops (see Figure 

8). At first, the tumor takes blood through the capillaries, then 

processes it and extracts the nutrients and oxygen carried by 

the blood, as the blood contains a concentration of 𝐶𝑛 of 

nutrients and also a concentration of oxygen. It also gets rid of 

waste and carbon dioxide through the blood that comes out of 

the tumor [21]. 

 

 
 

Figure 8. Tumor growth stages 

 

We assume that after a period of time T from the beginning 

of the tumor’s consumption of nutrients, its size increases, i.e., 

after the consumption of nutrients at moment t, for a period of 

time T, its effect on the increase in the size of the tumor 

appears, and thus we can express the development of tumor 

size growth in the following model: 

 

𝑇𝑆(𝑡 + 𝑇) = 𝐶𝑁𝑄(𝑡)𝐸𝑁(𝑡) (9) 

 

After using the expressions of Q and 𝐸𝑁 from the Eqs. (7) 

and (8) in TS we get: 

 

𝑇𝑆(𝑡 + 𝑇)

= −
𝜋𝑅𝑚

2 𝜆𝐶𝑚𝐶𝑁
𝜌

𝑁(𝑡)

𝐾𝑚 + 𝑁(𝑡)
∫
𝜕𝑝

𝜕𝑥
𝑑𝑡

+
𝜋𝑅𝑚

2 𝜆𝐶𝑚𝐶𝑁𝛼

𝜌

𝑁(𝑡)

𝐾𝑚 +𝑁(𝑡)
∫
𝜕2𝑣𝑥
𝜕𝑥2

𝑑𝑡 

(10) 

 

We put 

 

{
 
 

 
 𝜉1(𝑡) = −

𝜋𝑅𝑚
2 𝜆𝐶𝑚𝐶𝑁
𝜌

𝑁(𝑡)

𝐾𝑚 +𝑁(𝑡)

𝜉2(𝑡) =
𝜋𝑅𝑚

2 𝜆𝐶𝑚𝐶𝑁𝛼

𝜌

𝑁(𝑡)

𝐾𝑚 + 𝑁(𝑡)

 (11) 

 

Thus, it becomes as follows: 

 

𝑇𝑆(𝑡 + 𝑇) = 𝜉1(𝑡)∫
𝜕𝑝

𝜕𝑥
𝑑𝑡 + 𝜉2(𝑡)∫

𝜕2𝑣𝑥
𝜕𝑥2

𝑑𝑡 (12) 

 

TS is the growth tumor size over time after a period of time 

T, where the tumor has consumed nutrients from moment t to 

moment T. 

We must take into consideration that the model in our hands 

does not take into account the fluctuations and random factors 

that affect the growth of the tumor size. For this reason, we 

will add the random variable ϵ to the model, as this variable 

represents natural randomness and we have used this approach 

previously to express random changes [22]. 
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𝜖 ∼ 𝒩(0, 𝜎2) (13) 

 

where, 𝜎 represents the standard deviation of the noise. 

Thus, the final model becomes as follows: 

 

𝑇𝑆𝜖(𝑡 + 𝑇) = 𝜉1(𝑡)∫  
𝜕𝑝

𝜕𝑥
𝑑𝑡 + 𝜉2(𝑡)∫

𝜕2𝑣𝑥
𝜕𝑥2

𝑑𝑡 + 𝜖(𝑡) (14) 

 

The reason we chose the random model is to obtain more 

accurate results and reduce the error rate in predicting the 

results. 

Regarding the random part of the model, which in our case 

we express as a random variable, it can be expressed in other 

ways, such as adding the Bruneian motion or adding the 

stochastic process. As an example of these two uses, see 

references [23, 24]. 

 

3.3 Results and simulation 

 

Before going into details, we point out that the data used 

here is partial data, meaning that we only have information to 

clarify more, for example, we found that the growth of tumor 

size during a year, ranges between 3.053 and 7.238 cubic 

centimeters (These values were extracted in cubic centimeters 

and the average tumor growth was estimated) during a year, 

but we do not have other details [25, 26]. The second type of 

data is the parameters, which we obtained from articles and 

which we will refer to in front of each parameter we used. The 

parameters here are the constants of the model. It should be 

noted that obtaining more accurate data that contains more 

details requires clinical trials. 

 

 
 

Figure 9. Myxoma of the heart [27] 

 

In this section, we will apply our model to a type of heart 

tumor called Myxoma (see Figure 9), also called cardiac tumor 

or heart tumor. This tumor often grows on the wall that 

separates the two sides of the heart, whether the right or left. 

About 75 percent of these tumors occur in the left atrium of 

the heart and can occur in other places in the heart [28, 29]. 

These tumors are considered non-cancerous, but they cause 

serious problems, the most prominent of which is causing 

blockages, as fluids from the tumor exit into the bloodstream 

and may cause blockages in the brain, lungs, or one of the 

extremities, which may lead to a stroke, pulmonary embolism, 

and others. 40 percent of those infected with these tumors 

suffer from one of the blockages [30]. 

The larger the tumor, the greater the likelihood of problems 

resulting from it, as it can obstruct blood flow inside the heart, 

especially at the atrioventricular valve. These tumors can also 

affect the heartbeat, affect the regularity of the heartbeat, and 

other functions [31, 32]. 

In order to apply the model to this tumor, we will need the 

constants and the definitions of the functions that we will need 

in this case. 

Our model is as follows: 

 

𝑇𝑆𝜖(𝑡 + 𝑇) = 𝐶𝑁𝑄(𝑡)𝐸𝑁(𝑡) + 𝜖(𝑡) 

𝑇𝑆𝜖(𝑡 + 𝑇) = 𝐶𝑁𝜋𝑅𝑚
2 𝐶𝑚𝑣𝑥(𝑡)𝜆

𝑁(𝑡)

𝐾𝑚 + 𝑁(𝑡)
+ 𝜖(𝑡) 

(15) 

 

In the following, we will assume that T=0 just to simplify 

the model. 

In order to simplify the model from the practical point of 

view, we will take 
 

𝑁(𝑡) = exp(𝑎𝑡) (16) 
 

where, a is a constant, and the form of the function N(t) is 

chosen [33, 34]. 

Regarding the concentration of nutrients in the heart or in 

the vicinity of the tumor, i.e., the concentration of glucose, it 

is about 𝐶𝑁 = 5.5𝑚𝑀 (millimoles per liter) or 𝐶𝑁 = 0.991𝑔/
𝐿 [35]. 

The average Myxoma contains between 30 and 60 

microscopically visible capillaries that it forms to obtain 

nutrients. We will take the average between the two values, 

i.e., 45 capillaries on average, and thus we will take 𝐶𝑚 = 45 

[36]. 

The average radius of these capillaries is between 2.5 and 5 

micrometers. By taking the average between these two values, 

we get 𝑅𝑚 = 3.75𝜇𝑚 or 𝑅𝑚 = 3.75 × 10−6 m [18]. 

In general, the blood velocity in the capillaries ranges 

between 0.03 and 0.1 centimeters per second, i.e., the average 

between the two values is 0.065 centimeters per second. Thus, 

 𝑣𝑥 = 0.065 cm/s , i.e., 𝑣𝑥 = 0.065 × 10
−2 m/s  and 𝐾𝑚 =

0.0036 L/g [37, 38]. 

Taking 𝜆 =0.84138 L/g, this constant using information 

about this tumor has been estimated [25]. 

Figure 10 shows the simulation of the growth of the 

Myxoma tumor volume over time per day, as we assumed that 

𝜎  is between 0.15 and 0.20, where we note that the tumor 

volume may reach 7.65 cubic centimeters in 360 days, and this 

is consistent with previous studies, which confirm that the 

tumor volume grows between 3.053 and 7.238 cubic 

centimeters [25, 26]. 

To know the change in the size of the tumor diameter, we 

will use the volume calculation where 𝑉(𝑡) = 𝑇𝑆(𝑡)𝜏  and 

thus we get 
 

𝑉(𝑡) = 𝑇𝑆𝜖(𝑡)𝜏 =
4

3
𝜋𝑟(𝑡)3 (17) 

 

where, 𝑟(𝑡) in cm represents the tumor radius at moment t and 

𝜏 represents the maximum time period we want to simulate the 

model for, after calculation we get a model for the evolution 

of the tumor diameter size as follows: 
 

𝑟(𝑡) = √𝜏
3𝑇𝑆𝜖(𝑡)

4𝜋

3

 (18) 

 

It is noted from Figure 11 that the change in the size of the 

tumor diameter ranges between 2 and 2.5 cm over a period of 
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360 days, which is almost consistent with the real data [39]. 

(Clinical presentation of left atrial Myxoma.) Where the 

growth rate of the tumor ranges between 1.8 and 2.4 cm per 

year, meaning that the size of the tumor diameter in the first 

year, ranges between 1.8 and 2.4 cm, where the growth rate of 

this tumor is somewhat slow. In Figure 11, the change in the 

size of a Myxoma in centimeters after 5 years, where its size 

reaches between 4 and 5 cm, where Reiter et al. [39] confirmed 

that the size of a Myxoma is 5 cm on average, and it can exceed 

5 cm in non-pathological cases, where this is due to 

complications resulting from other diseases, according to the 

study conducted by Kato et al. [40]. Through simulation, it 

appears that the growth of the tumor is slow in the normal 

state. This is consistent with previous studies, such as the study 

conducted by Reiter et al. [39] and Kato et al. [40], where this 

study confirms that the growth of Myxoma tumors as a special 

case and mucosal tumors in general is slow with the passage 

of time. 

We notice in Figure 12 that the development of the tumor 

diameter over 5 years increases with time, and this is while 

maintaining the same conditions in which the tumor appeared. 

This is what takes us to the following observation: the model 

measures the average development of either the size or the 

diameter of the tumor. The model also measures the 

development of the tumor size in general and not specifically, 

i.e., the model does not take into account the age of the patient 

or whether the patient with the tumor has other diseases, etc., 

but this does not mean that the model is not applicable in 

special cases. The constants can be determined according to 

the special case. 
 

 
 

Figure 10. Myxoma volume changes over time in cm3 
 

 
 

Figure 11. Change in the size of the Myxoma diameter over 

time in centimeters 
 

 
 

Figure 12. Myxoma size progression over 5 years 

4. DISCUSSION 

 

The model we have is still in its infancy and needs more 

study and development. There are potential applications for 

the model in clinical studies where the model can be used to 

predict the development of tumor size through the nutrients the 

patient takes and the average capillaries that enter the tumor, 

i.e., the capillaries that the tumor feeds on. Doctors can know 

this information using devices dedicated to this purpose. The 

model can also be used to study the effect of the growth of new 

capillaries on the development of tumor size by taking the 

constant C as a variable over time, where C represents the 

number of capillaries that the tumor feeds on. This can be 

expressed, i.e., the effect of changing capillaries on changing 

tumor size, with the following coefficient: 

 
𝜕𝑇𝑆

𝜕𝐶
 (19) 

 

In the same way, we can use the model to study other effects 

such as the effect of the amount of blood entering the tumor 

and also the effectiveness of nutrients on changing its size in 

the same previous way, i.e., studying the following 

coefficients: 

 
𝜕𝑇𝑆

𝜕𝑄
 and 

𝜕𝑇𝑆

𝜕𝐸𝑁
 (20) 

 

It should be taken into consideration that in this article we 

are only interested in modeling tumor growth and the 

mathematical model where researchers can detail the model in 

the future more than it is on it and its development as we said 

at the beginning of this section because the model has limits 

like other models, the most prominent of which is determining 

the constants according to each tumor, and also some constants 

cannot be obtained directly by calculation, but there must be 

clinical trials dedicated to this purpose or obtaining them from 

previous clinical trials, and this is not an easy matter from an 

applied point of view. From an ethical point of view, can this 

model be applied to predict and study tumors and use these 

predictions for therapeutic purposes or inform the patient of 

his condition or the size of the tumor in the future? It is a matter 

related to the sick person, as the patient or the individuals 

concerned must be informed that the tumor size will be 

predicted using the model and information related to their 

bodies will be used, as the tumor is ultimately considered part 

of the patient's body. For example, when using the number of 

capillaries that enter the tumor to study it, it is an information 

related to the patient's body, and in the end, eliminating the 

disease remains the primary goal, and the disease in our case 

is the growth of the tumor, which may cause the death of many 

tumors, as we explained at the beginning of this article through 

the statistics we listed. 
 

 

5. CONCLUSIONS 

 

The study of tumor growth in general is a very complex and 

difficult process from an applied point of view, which does not 

prevent us from searching for effective methods and 

approaches to understand the behavior of the latter, and the 

model in our hands is one of these methods, as it is considered 

a qualitative model due to its importance, as the model models 

the growth of tumors in general and it gives the relationship 

between nutrients and the amount of blood entering the tumor 
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at each moment, as well as the number of capillaries, which 

makes it a comprehensive model from an applied point of 

view, which makes it effective compared to other classical 

models. We notice this in the applied phase of the article, i.e., 

the part related to simulation and results, where we notice that 

the model works well with minimal data, and this can be useful 

in the case of tumors for which there is not much data 

available, where the model can be used to predict the behavior 

of tumors, in our case, Myxoma tumor. We also conclude that 

the model can be used to study other effects such as the effect 

of the number of capillaries on tumor growth, the amount of 

blood entering the tumor, and the effectiveness of nutrients on 

the development of its size, i.e., the size of the tumor. In 

conclusion, the model in our hands is a new gateway that 

opens to the study of tumors and opens with it new visions that 

will contribute in one way or another to understanding the 

behavior of tumors and predicting them, thus increasing the 

chance of finding treatments for them or limiting their 

development early, which means reducing the victims of these 

tumors in the case of malignant tumors. 

 

 

6. PERSPECTIVE 

 

In this article, we have only created the model and applied 

it in general, but the model still needs further study and 

development. We can also use the model to find the 

relationship between tumor size and other variables such as the 

number of capillaries that the tumor feeds on. The model can 

also be modified from a general model to a specific model by 

adding factors such as age and whether the patient suffers from 

other diseases, as well as adding physical factors such as the 

pressure applied by the body's organs on the tumor and also 

the location of the tumor in the body, as the location of the 

tumor can affect the amount of blood entering the tumor, 

which will affect the development of tumor size over time. 

One of the most prominent challenges is how to find 

constants according to each tumor, and this requires clinical 

trials to determine them accurately. There may be some tumors 

whose size cannot be predicted directly by the model, meaning 

there may be exceptions to the model. In the end, the current 

model is a model that provides an opportunity for researchers 

in the field to discover new ways to solve many of the 

problems raised in tumor modeling and methods of dealing 

with them and predicting their behavior and how they can 

develop over time. 
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