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This manuscript lays the groundwork for the foundational theoretical framework that 

will be used to solve Fuzzy Delay Volterra-Fredholm Integro-Differential Equations 

(FDVFIDE). Approximating solutions to these equations using the Adomian 

Decomposition Method (ADM) allows for the provision of an estimate for the fuzzy 

solution to the FDVFIDE problem. The purpose of this inquiry is not only to investigate 

the presence of solutions and the uniqueness of those solutions but also to investigate 

the convergence features of the approach that has been given. In addition, the success 

of the convergence for the numerical technique that has been proposed is evaluated by 

comparing the approximate solutions that it produces with the exact answers. 
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1. INTRODUCTION

In 1975, Zadeh [1] introduced fuzzy set theory, 

revolutionizing how uncertainty and ambiguous or subjective 

information are represented in mathematical models. The 

study of Fuzzy Differential Equations (FDE) has garnered 

significant attention over recent decades. Researchers have 

diligently explored various methods to solve these equations, 

driven by their extensive practical applications. The rapid 

development of this field is attributed to the inherent simplicity 

and natural appeal of fuzzy set theory, bolstered by numerous 

theoretical advancements and computational techniques. 

Chang and Zadeh [2] first proposed many foundational 

concepts in fuzzy derivatives. Kaleva [3] Introduced fuzzy 

differential equations and their properties. Building upon these 

developments, Allahviranloo et al. [4] employed Seikkala 

[5]’s derivative to discuss numerical methods, precisely the 

predictor-corrector method, applied to solve fuzzy differential 

equations. Jafari et al. [6] expanded this work by using the 

variational iteration method to solve nth FDEs, while Chalco-

Cano et al. [7] explored new solutions and properties of fuzzy 

differential equations. Kaleva [3] initially defined the integral 

of fuzzy functions utilizing a Lebesgue-type integration 

approach. Rasha et al. [8] formed new Runge-Kutta Fehlberg 

Method for the Numerical Solution of Second-Order Fuzzy 

Initial Value Problems. 

Fuzzy integro-differential equations advance the concept 

further by incorporating fuzzy set theory with integro-

differential equations, offering a comprehensive framework 

for modeling the intrinsic uncertainty in dynamical systems. 

This synthesis provides a natural and effective way to address 

real-world imprecision. In recent scenarios, a diverse array of 

sophisticated methodologies for addressing fuzzy integro-

differential equations has gained prominence. Allahviranloo et 

al. [9] explored the expansion method to approximate 

solutions of both linear and nonlinear fuzzy Volterra integro-

differential equations. Waleed, Al-Hayani and Younis [10] 

presented a numerical study using the Adomian 

Decomposition Method to solve systems of fuzzy Fredholm 

integral equations of the second kind. Georgieva and 

Naydenova [11] found an approximate solution method for 

nonlinear Volterra-Fredholm fuzzy integral equations. Osama 

et al. [12] used the Variational Iteration Method for Solving 

Linear Fuzzy Random Ordinary Differential Equations. 

This paper explicitly examines the FDVFIDE, which 

integrates Volterra and Fredholm operators in a fuzzy delay 

framework, allowing for more robust modeling of systems that 

exhibit both local (Volterra) and nonlocal (Fredholm) 

behavior. Existing models often focus on one operator or fail 

to address the combination of both within a fuzzy context. The 

FDVFIDE approach thus offers a more comprehensive 

framework for capturing the complex dynamics of such 

systems.  

Traditional fuzzy integrodifferential equations primarily 

address systems with either time delays [13] or uncertainties 

[14], but few methods effectively combine the two in a holistic 

model. Additionally, most studies overlook the interplay 

between local and nonlocal effects, which is critical for 

accurately describing various real-world systems.  

The FDVFIDE model enhances the accuracy of systems 

analysis in environments with inherent uncertainties and 

delays. It offers improved computational efficiency and better 

stability in solving these equations, particularly in scenarios 

where both delay effects and fuzzy uncertainties are critical. 

This research addresses this gap by developing an approach 

for these interactions. The proposed method is especially 
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relevant for real-world applications like control systems, 

engineering problems, and biological modeling, where both 

time-dependent behavior and imprecise data must be handled 

simultaneously. 

The FDVFIDE with both continuous and discrete 

distributed delays 𝜀 > 0 is given by: 

 

�̂� ′(𝑠, 𝑇) = �̂�(𝑊, 𝑠) + ∫ 𝑘1(𝑠, 𝑟)�̂�
𝑠−ε 

𝑎

(𝑟, 𝑇)𝑑𝑟

+∫ 𝑘2((𝑠, 𝑟))�̂�
𝑏

𝑎

(𝑟 − 𝜀, 𝑇)𝑑𝑟, 𝑠 ∈ [0, 𝑇], 

𝑊(𝑠) = 𝑠, 𝑠 ∈ [−𝜖, 0)  
 

Given 0<T<1 and �̂�(𝑊, 𝑠) is presumed to be a fuzzy linear 

function in W to mitigate computational complexity, where a 

and b are real constants, k1 and k2, are the predefined functions, 

and Φ denotes a prehistory function. 

The study's main objective is to establish the existence and 

uniqueness of ADM and examine their convergence through 

solving FDVFIDE with the exact solutions. This paper 

highlights the ADM for FDVFIDE, emphasizing its ability to 

handle nonlinear complexities, which improves approximate 

solution accuracy and extends its applicability. ADM 

significantly reduces computational effort while maintaining 

high accuracy. By advancing the theoretical and numerical 

understanding of FDVFIDE, this paper enhances the 

application of fuzzy set theory in modeling complex systems, 

improving precision and reliability in various scientific and 

engineering fields.  

 

 

2. FOUNDATIONAL CONCEPTS 

 

This section delineates a comprehensive exposition of 

definitions, propositions, and theorems about fuzzy-valued 

functions, the intricacies of Riemann integration, and the 

profound principles underlying fixed point theory. It 

systematically elucidates the foundational concepts, formal 

statements, and rigorous proofs that form the bedrock of these 

mathematical domains. 

 

2.1 Membership function 

 

Let 𝑇 be a fuzzy set with δ be a non-empty set. 𝜇𝑇: 𝛿 →
[0,1] and 𝜇𝑇(𝑥) is defined as the degree of membership of 

element 𝑥 in fuzzy set 𝑇 for each 𝑥 ∈ 𝛿. It is evident that 𝑇 is 

defined by the set of tuples 𝑇 = {(𝑥, 𝜇𝑇(𝑥))|𝑥 ∈ 𝛿}. 
 

2.2 α-cut 

 

The α-cut [15] of a fuzzy set A includes all elements in the 

universe of discourse X with membership values in A that are 

at least α. This process effectively "slices" the fuzzy set at a 

specific membership level, resulting in a traditional crisp set. 

 

2.3 A triangular fuzzy number (TFN) 

 

It is a simple and commonly used type of fuzzy number 

characterized by a piece-wise linear membership function that 

forms a triangular shape. It is defined by three  parameters: the 

lower limit 𝛼, the peak 𝑎, and the upper limit 𝛽 as shown in 

Figure 1. These parameters can be written as T=(α,      a,   β) [16]. 

Then µT(x) of a TFN is given by: 

𝜇𝑇(𝑥) =

{
 
 

 
 

0, if 𝑥 ≤ 𝛼
𝑥−𝛼

𝑎−𝛼
, if 𝛼 < 𝑥 ≤ 𝑎

𝛽−𝑥

𝛽−𝑎
, if 𝛼 < 𝑐 < 𝛽

0, if 𝑥 ≥ 𝛽

  

 

 
 

Figure 1. Triangular fuzzy number 

 

2.4 Hausdorff distance between fuzzy numbers 

 

It is defined as: 

 

𝐷: {𝑅𝑇 ∗ 𝑅𝑇} → 𝑅+ ⋃{0} 
 

where,  

𝐷(𝜔, 𝛿) = 𝑠𝑢𝑝
𝑇∈[0,1]

max {|𝜔(𝑇) − 𝛿(𝑇)| , |𝑤(𝑇) − 𝛿(𝑇)|}, with 

𝜔 = (𝜔(𝑇), 𝑤(𝑇)) and 𝛿 = (𝛿(𝑇), 𝛿(𝑇)) ⊂ R. 

 

Remark 1 

Let 𝜔(𝑇) = (𝜔(𝑇), 𝑤(𝑇))  represent a fuzzy number. We 

define the central value and the half-width of the fuzzy number 

as follows: 

 

𝜔𝑐(𝑇) =
𝜔(𝑇)+𝑤(𝑇)

2
 and 𝜔𝑑(𝑇) =

𝜔(𝑇)−𝑤(𝑇)

2
 

 

Consequently, we have ωd(T)≥0 and can express the bounds 

of the fuzzy number as 𝜔(𝑇) = 𝜔𝑐(𝑇) − 𝜔𝑑(𝑇) and 𝑤 (𝑇) =

𝜔𝑐(𝑇) + 𝜔𝑑(𝑇).  A fuzzy number 𝜔 ∈ 𝐸  is defined as 

symmetric if it is a central value. ωc(T) remains invariant for 

all T within the interval 0≤T≤1. This implies that the 

membership function of the fuzzy number does not change 

with varying levels of T, thereby maintaining consistent 

fuzziness throughout the interval. 

 

2.5 Fuzzy-valued function 

 

A fuzzy-valued function h: R→E is termed continuous if, 

for any fixed point 𝑖0 ∈ 𝑅 and ∀𝜀 > 0, ∃ a corresponding δ>0 

such that whenever |i-i0|<δ, it follows that |h(i)-h(i0)|<ε. This 

definition ensures that small perturbations in the input result 

in correspondingly small changes in the output, thereby 

preserving the functional relationship between i and h(i) 

within the desired precision. 

 

Theorem 1 

Let 𝑓(𝑇) denote a fuzzy-valued function defined over the 

interval [𝑎,∞] , represented as the pair (𝑓(𝑇, 𝛾), 𝑓(𝑇, 𝛾). If 

𝑓(𝑇) assumes the form of a triangular fuzzy number for each 
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𝑇 , specified as 𝑓(𝑇) = (𝑎(𝑇),𝑚(𝑇), 𝑏(𝑇)) , where 𝑎(𝑇) ≤
𝑚(𝑇) ≤ 𝑏(𝑇) for all 𝑇 ∈ [𝑎, 𝑏], then the integral of 𝑓 over the 

interval [𝑎, 𝑏] can be computed as [17]: 

 

∫ 𝑓(𝑇)𝑑𝑇 = (∫ 𝑎(𝑇)𝑑𝑇,
𝑏

𝑎
∫ 𝑚(𝑇)𝑑𝑇,
𝑏

𝑎
∫ 𝑏(𝑇)𝑑𝑇
𝑏

𝑎
)

𝑏

𝑎
  

 

Theorem 2 

 

In the context of a comprehensive metric space (𝜒, 𝑑), every 

contraction mapping 𝜏: 𝜒 → 𝜒 is guaranteed to have a singular 

fixed point χ in χ, such that 𝜏(𝜒) = 𝜒. This implies that there 

exists a unique element χ. within the space 𝜒 . where the 

application of the mapping τ leaves the element invariant, the 

uniqueness and existence of this fixed point are fundamental 

properties derived from the contraction mapping principle, 

which ensures that the distance between the images of two 

distinct points under τ is strictly less than the distance between 

the points themselves, thereby driving iterative sequences 

toward convergence at the fixed point [18]. 

 

2.6 Adomian polynomials 

 

Adomian polynomials [16] simplify nonlinear terms in 

differential and integral equations, aiding iterative solutions 

through the Adomian Decomposition Method. Represented as 

An, these polynomials express a nonlinear function N(u) in 

terms of components un. 

If u = ∑ un
∞
n=0  then N(u) is 𝑁(𝑢) = ∑ 𝐴𝑛

∞
𝑛=0 , with each An 

given by: 

 

𝐴𝑛 =
1

𝑛!
(
𝑑𝑛

𝑑𝜆𝑛
𝑁(∑𝜇𝑘

∞

𝑘=0

𝜆𝑘))

𝜆=0

 (1) 

 

 

3. FUZZY DELAY VOLTERRA-FREDHOLM 

INTEGRODIFFERENTIAL EQUATION 

 

In this section, we conduct an in-depth analysis of the 

FDVFIDE framework [19], exploring its intricate mechanisms 
and theoretical underpinnings. Through a comprehensive 

examination, we aim to elucidate the sophisticated principles 

governing its operation, thereby enhancing our understanding 

of its practical applications and potential implications. 

 

Ω̃′(Υ) = 𝑓(Υ) + 𝜆 ∫ 𝑘1(Υ, 𝜌)𝐹1(Ω̃(Υ))
Υ−𝜏

0
𝑑𝜌 +

𝜇 ∫ 𝑘2(Υ, 𝜌)𝐹2(Ω̃(Υ))
Υ

0
𝑑𝜌  

(2) 

 

With the initial stipulation 

 

Ω̃0 (0) =  Ω(0) (3) 

 

Given (𝜆, 𝜇) ∈ 𝑅, the functions 𝑓(Υ, 𝑘1, 𝑘2), 𝐹1(Ω̃)(Υ) and 

𝐹2(Ω̃)(Υ − τ) are analytic. Here, k1 and k2 are mappings from 

D([0, B]2) to R+ that possess the requisite derivatives over the 

interval 0 ≤ 𝑡 ≤ 𝑥 ≤ 𝐵 . The expressions Ω̃(Υ)  and Ω̃(Υ −
𝜏) represent indeterminate functions. The solution is 

articulated as follows: 

 

Ω̃(Υ) =  ∑ Ω̃𝑖 (Υ)
∞
𝑖=0    (4) 

 

Let 

Ω̃(Υ, 𝜌) = Ω(Υ, 𝜌), Ω(Υ, 𝜌), 𝑓(Υ, 𝜌) = 𝑓(Υ, 𝜌), 𝑓(Υ, 𝜌) 

Ω̃′(Υ, 𝜌) = Ω′(Υ, 𝜌), Ω′(Υ, 𝜌), 𝑓′(Υ, 𝜌) = 𝑓′(Υ, 𝜌), 𝑓′(Υ, 𝜌) 

 

Therefore, the FDVFIDE (2) can be written as follows: 

 

Ω̃′(Υ, 𝜌) = 𝑓 (Υ) + 𝜆 ∫ 𝑘1
Υ−𝜏

0
(Υ, 𝜌)𝐹1(Ω̃ (𝑣, 𝜌))𝑑𝜌 +

𝜇 ∫ 𝑘2
Υ

0
(Υ, 𝜌)𝐹2(Ω̃(𝑣 − 𝜏, 𝜌))𝑑𝜌  

(5) 

 

With the Remark 2.1, let 

 

𝛺𝑐(Υ, 𝜌) =
(𝛺(𝛶,𝜌)+𝛺(𝛶,𝜌))

2
, 𝛺𝑑(Υ, 𝜌) =

(𝛺(𝛶,𝜌)−𝛺(𝛶,𝜌))

2
  

𝑓𝑐(Υ, 𝜌) =
(f(Υ,𝜌)+f(Υ,𝜌))

2
, 𝑓𝑑(Υ, 𝜌) =

(𝑓(𝛶,𝜌)−𝑓(𝛶,𝜌))

2
  

 

then (5) will become: 

 

Ω′𝑐(Υ, 𝜌) = 𝑓𝑐(Υ, ρ) +

𝜆 ∫ 𝑘1
Υ−𝜏

0
(Υ, 𝑣)𝐹1(Ω

𝑐(𝑣, 𝜌))𝑑𝜌 +

𝜇 ∫ 𝑘2
Υ

0
(Υ, 𝑣)𝐹2(Ω

𝑐(𝑣 − 𝜏, 𝜌))𝑑𝜌  

(6) 

 

Ω
′𝑑
(Υ, 𝜌) = 𝑓

𝑑
(Υ, ρ) +

𝜆 ∫ 𝑘1
Υ−𝜏

0
(Υ, 𝑣)𝐹1(Ω

𝑑
(𝑣, 𝜌))𝑑𝜌 +

𝜇 ∫ 𝑘2
Υ

0
(Υ, 𝑣)𝐹2(Ω

𝑑
(𝑣 − 𝜏, 𝜌))𝑑𝜌  

(7) 

 

and 

 

Ω𝑐(0, 𝜌) =
(Ω(0,𝜌)+Ω(0,𝜌))

2
,  

Ω𝑑(0, 𝜌) =
(Ω(0,𝜌)−Ω(0,𝜌))

2
  

(8) 

 

 

4. FLOWCHART FOR THE ADOMIAN 

DECOMPOSITION METHOD 

 

(1) Start: Begin the decomposition method process. 

(2) Define the Nonlinear Differential Equation:  

Specify the nonlinear differential equation you want to 

solve. 

(3) Initialize Iteration: Set n=0. 

(4) Construct the Decomposition Solution: 

a. Decompose the nonlinear differential equation into a 

series of linear or simpler equations. 

b. Use the Adomian polynomials to express the solution in 

terms of a series. 

(5) Calculate Adomian Polynomials: 

a. Compute each Adomian polynomial 𝐴𝑛up to a desired 

order. 

b. Typically involves recursive calculations based on the 

original equation and its nonlinear terms. 

(6) Compute Components: 

a. Compute the components 𝑢𝑛 of the solution series using 

the Adomian polynomials. 

b. Accumulate the components to form the series solution 

𝑢(𝑥) = ∑ 𝑢𝑛 
∞
𝑛=0 . 

(7) Check Convergence: 

a. Assess the convergence of the series solution. 

b. Determine if further terms are needed for accuracy. 

(8) Iterate or Terminate: 

a. If convergence is satisfactory, proceed to the next step. 
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b. Otherwise, increment 𝑛  and repeat steps 4-7 until 

convergence criteria are met. 

(9) Output Solution:  

Once convergence is achieved, output the approximate 

solution u(x). 

(10) End: End of the decomposition method. 

 

 

5. METHODOLOGICAL OVERVIEW 

 

In this section, we elucidate the principal algorithm 

underpinning ADM [20, 21] employed to address a nonlinear 

FDVFIDE [22] of the specified form: 

 

Ω′(Υ, 𝑇) = 𝑓(Υ, T) + 𝜆 ∫ 𝑘1
Υ−𝜏

0
(Υ, 𝜌)𝐹1(Ω(𝜌, 𝑇))𝑑𝜌 +

𝜇 ∫ 𝑘2
Υ

0
(Υ, 𝜌)𝐹2(Ω(𝜌 − 𝜏, 𝜌))𝑑𝜌  

Ω
′
(Υ, 𝑇) = 𝑓 (Υ, T) + 𝜆 ∫ 𝑘1

Υ−𝜏

0
(Υ, 𝜌)𝐹1(Ω(𝜌, 𝑇))𝑑𝜌 +

𝜇 ∫ 𝑘2
Υ

0
(Υ, 𝜌)𝐹2(Ω(𝜌 − 𝜏, 𝜌))𝑑𝜌  

(9) 

 

The FDVFIDE can be written as follows: 

 

𝐿Ω′(Υ, 𝑇) = 𝑓(Υ, T) + 𝜆 ∫ 𝑘1
Υ−𝜏

0
(Υ, 𝜌)𝐹1(Ω(𝜌, 𝑇))𝑑𝜌 +

𝜇 ∫ 𝑘2
Υ

0
(Υ, 𝜌)𝐹2(Ω(𝜌 − 𝜏, 𝜌))𝑑𝜌  

𝐿Ω
′
(Υ, 𝑇) = 𝑓(Υ, T) + 𝜆 ∫ 𝑘1

Υ−𝜏

0
(Υ, 𝜌)𝐹1(Ω(𝜌, 𝑇))𝑑𝜌 +

𝜇 ∫ 𝑘2
Υ

0
(Υ, 𝜌)𝐹2(Ω(𝜌 − 𝜏, 𝜌))𝑑𝜌  

(10) 

 

Let L represent the first-order derivative operator 

concerning the variable s. Consider 𝐺(Ω ̃(𝜌, 𝑇), Ω ̃(𝜌 − 𝜏, 𝑇)) 
and 𝐻(Ω ̃(𝜌, 𝑇), Ω ̃(𝜌 − 𝜏, 𝑇))  as nonlinear functionals. By 

invoking the application of the inverse operator L-1 We derive 

the following formulations for both sides of Eq. (10). 

 

Ω (Υ, Τ) = 𝐿−1𝑓 (Υ, Τ) 

Ω (Υ, Τ) = 𝐿−1𝑓(Υ, Τ) 
(11) 

 

where, the functions 

 

𝐿−1𝑓(Υ, T) = (𝜆 ∫ 𝑘1
Υ−𝜏

0
(Υ, 𝜌)𝐹1(Ω(𝜌, 𝑇))𝑑𝜌 +

𝜇 ∫ 𝑘2
Υ

0
(Υ, 𝜌)𝐹2(Ω(𝜌 − 𝜏, 𝜌))𝑑𝜌)  

(12) 

 

𝐿−1 𝑓(Υ, T) = (𝜆 ∫ 𝑘1
Υ−𝜏

0
(Υ, 𝜌)𝐹1(Ω(𝜌, 𝑇))𝑑𝜌 +

𝜇 ∫ 𝑘2
Υ

0
(Υ, 𝜌)𝐹2(Ω(𝜌 − 𝜏, 𝜌))𝑑𝜌)  

(13) 

 

The ADM (Adomian Decomposition Method) posits that 

the unknown functions can be expressed as infinite series 

expansions:  

 

Ω(Υ, Τ) = ∑ Ω𝑖
∞
𝑖=0 (Υ, Τ)  

Ω(Υ, Τ) = ∑ Ω𝑖
∞
𝑖=0 (Υ, Τ)  

(14) 

 

The nonlinear operators defined in (12) and (13) are 

subsequently decomposed into infinite polynomials. 

 

𝐺 [𝐹1 (Ω (Υ, Τ)) 𝑑𝜌 + 𝐹2 (Ω(ρ − τ, Τ)) 𝑑𝜌] = ∑ 𝐴𝑛
∞
𝑖=0   

𝐻 [𝐹1 (Ω(Υ, Τ)) 𝑑𝜌 + 𝐹2 (Ω(ρ − τ, Τ)) 𝑑𝜌] = ∑ 𝐴𝑛
∞
𝑖=0   

(15) 

 

where, �̃�𝑛 = [𝐴𝑛, 𝐴𝑛], 𝑛 ≥ 0  are so-called Adomian 

polynomials and are defined by: 

𝐴𝑛 =
1

𝑛!
[
𝑑𝑛

𝑑𝜆𝑛
𝐺 (∑ 𝜆𝑖𝑛

𝑖=0 Ω
𝑖
, ∑ 𝜆𝑖𝑛

𝑖=0 Ω𝑖)]
𝜆=0

  

𝐴𝑛 =
1

𝑛!
[
𝑑𝑛

𝑑𝜆𝑛
𝐺 (∑ 𝜆𝑖𝑛

𝑖=0 Ω
𝑖
, ∑ 𝜆𝑖𝑛

𝑖=0 Ω𝑖)]
𝜆=0

  
(16) 

 

substitute Eqs. (14) and (15) into Eq. (11), we get: 

 

Ω̃0 = �̃�(Υ, Τ) 

Ω̃𝑛+1 = 𝐿
−1 (∫ 𝑘1

𝑠−𝜏

0

(Υ, 𝜌)�̃�𝑛𝑑𝜌 + ∫ 𝑘2(Υ, 𝜌)�̃�𝑛𝑑𝜌
Υ

0

), 

𝑛 ≥ 0  

(17) 

 

We approximate Ω̃ = [Ω(Υ, Τ), Ω(Υ, Τ)]  by �̃� =

∑ Ω̃𝑖
𝑛−1
𝑖=0 (Υ, 𝑇), where, lim

𝑛→∞
�̃� = Ω̃𝑖Υ, 𝑇). 

 

 

6. UNIQUENESS AND CONVERGENCE OF THE 

METHOD 

 

In this section, we rigorously explore the existence and 

uniqueness of solutions as detailed in study [23]. Furthermore, 

we undertake an exhaustive examination of the convergence 

properties of the ADM methodology. 

 

6.1 Uniqueness theorem 

 

�̃�(𝚼) = �̃� (𝚼) + ∫ 𝑘1

Υ−𝜏

0

(Υ, 𝑡)�̃�1(𝜌)𝑑𝜌 + ∫ 𝑘2

Υ

0

(Υ, 𝑡)�̃�2(𝜌 − 𝜏)𝑑𝜌 

 

the above equation has a unique solution when-ever 0 < 𝑇 <
1, where 𝑇 = (𝑀1𝐿1 +𝑀2𝐿2)(𝑏 − 𝑎). 

Proof: Let Ω̃ and Ω∗̌  represent two distinct solutions to 

Ω (Υ) and Ω (Υ) respectively. Then: 

 

|�̃� − Ω∗̌| = |(�̃�(𝚼) + 𝝀∫ 𝑘1
s−𝜏

0
(Υ, 𝑡)[𝐹1(𝜌), Ω̃(𝜌)]𝑑𝜌 +

𝜇 ∫ 𝑘2
Υ

0
((Υ, 𝑡)[𝐹2 (𝜌, Ω̃(𝜌 − 𝜏)]𝑑𝜌) −

(
�̃�(𝚼)𝝀 ∫ 𝑘1

Υ−𝜏

0
(Υ, 𝑡)[𝐹1(𝜌), Ω̃

∗(𝜌)]𝑑𝜌𝜇

∫ 𝑘2
Υ

0
(Υ, 𝑡)[𝐹2(𝜌, Ω̃

∗(𝜌 − 𝜏)]𝑑𝜌
)|  

= |(𝝀 ∫ 𝑘1
Υ−𝜏

0
(Υ, 𝑡)[𝐹1(𝜌), Ω̃(𝜌)]𝑑𝜌 + 𝜇 ∫ 𝑘2

Υ

0
((Υ, 𝑡)[𝐹2(𝜌, Ω̃

∗(𝜌 −

𝜏)]𝑑𝜌) − (𝝀 ∫ 𝑘1
Υ−𝜏

0
(Υ, 𝑡)[𝐹1(𝜌), Ω̃

∗(𝜌)]𝑑𝜌 +

𝜇 ∫ 𝑘2
Υ

0
(Υ, 𝑡)[𝐹2 ((𝜌, Ω̃

∗(𝜌 − 𝜏)]𝑑𝜌)|  

= |(∫ 𝜆𝑘1
Υ−𝜏

0
(Υ, 𝑡)[𝐹1 (𝜌), Ω ̃(𝜌)]𝑑𝜌 −

∫ 𝜆𝑘2
Υ

0
(Υ, 𝑡)[𝐹1 (𝜌, Ω̃

∗(𝜌)]𝑑𝜌) + (∫ 𝜇𝑘1
Υ−𝜏

0
(Υ, 𝑡)[𝐹1 (𝜌), Ω̃

∗(𝜌 −

𝜏)]𝑑𝜌 − ∫ 𝜇𝑘2
Υ

0
(Υ, 𝑡)[𝐹2 (𝜌, Ω̃

∗(𝜌 − 𝜏)]𝑑𝜌)|  

= |(∫ 𝜆𝑘1
Υ−𝜏

0
(Υ, 𝑡)[𝐹1 (𝜌), Ω ̃(𝜌)]𝑑𝜌 − [𝐹2 (𝜌, Ω̃(𝜌)]𝑑𝜌) +

(∫ 𝜇𝑘2
Υ

0
(Υ, 𝑡)[𝐹1 (𝜌), Ω̃

∗(𝜌 − 𝜏)]𝑑𝜌 − [𝐹2 (𝜌, Ω̃
∗(𝜌 − 𝜏)]𝑑𝜌)|  

≤ (𝑀1𝐿1 (𝑏 − 𝑎)|Ω̃ −  Ω̃
∗| + 𝑀2𝐿2)(𝑏 − 𝑎)|Ω̃ − Ω̃

∗| 

≤ (𝑀1𝐿1 +𝑀2𝐿2)(𝑏 − 𝑎)|Ω̃ − Ω̃
∗| ≤ 𝑇|Ω̃ − Ω̃∗| 

 

Given the inequality (1 − 𝑇)|Ω − Ω∗̌| ≤ 0  we infer that 

Ω = Ω∗̌. These follow because the only non-negative quantity 

that satisfies the inequality 0≤0 is zero itself. Consequently, 

the absolute value expression |Ω − Ω∗̌| must be zero, implying 

that Ω is identically equal to Ω∗̌. This conclusion finalizes the 

proof. 
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6.2 Convergence theorem 
 

If the series solution Ω(Υ, 𝛾) = ∑ Ω̃𝑖
∞
𝑖=0 (Υ, 𝛾)  derived 

through the FDVFIDE, exhibits convergence, then it 

converges to the precise solution of Eq. (2) for 0<T<1 and 

||Ω̃1(ϒ, γ)|| < ∞. 
Proof: Consider the Banach space (𝐶[𝑎, 𝑏], ∥. ∥) , 

comprising all continuous functions defined on the interval 

𝐽 = [𝑎, 𝑏], where the condition ||Ω̃1(ϒ, γ)|| < ∞. holds. Let us 

introduce the sequence of partial sums denoted as Υ𝑃 . We 

identify Υ𝑃 and Υ𝑄 as arbitrary partial sums with the property 

that 𝑛 ≥ 𝑚.  It is incumbent upon us to establish that the 

sequence Υ𝑃 is a Cauchy sequence within this Banach space. 

To this, we must demonstrate that for any ε > 0, there is an 

integer N such that the inequality exists for all n, m ≥ N. 

‖ΥΡ − ΥQ‖ < ε is satisfied. It will show the sequence of partial 

sums. Υ𝑃  converges, thereby confirming that it forms a 

Cauchy sequence in the Banach space context. 

Now, 
 

‖ΥΡ − ΥQ‖ = max
∀ 𝑥∈[𝑎,𝑏]

|ΥΡ − ΥQ| = max
∀ 𝑥∈[𝑎,𝑏]

|∑ui(Υ, γ) −∑Ωi(Υ, γ)

Q

i=0

Ρ

i=0

|

= max
∀ 𝑥∈[𝑎,𝑏]

| ∑ Ωi(Υ, γ)

P

i=Ω+1

| 

= max
∀ Υ∈[𝑎,𝑏]

| ∑ (μ∫ k1

Υ−τ

a

(Υ, ρ)Ãi(s)dρ

P

i=q+1

+ λ∫ ∫ k2

Υ−τ

a

(Υ, ρ)B̃i(ρ − τ)dρ
Υ

0

)| 

= max
∀ x∈[𝑎,𝑏]

|(μ∫ k1

Υ−τ

a

(Υ, ρ)Ãi(s)dρ + λ∫ ∫ k2

Υ−τ

a

(Υ, ρ)B̃i(ρ − τ)dρ
Υ

0

)| 

 

From the study [19], we have: 
 

∑ �̃�𝑖 = 𝐹1
𝑛−1
𝑖=1  (𝜌, Υ𝑝−1) − 𝐹1 (𝜌, ΥQ−1)  

∑ �̃�𝑖 = 𝐹2
𝑝−1
𝑖=𝑞  (𝜌, Υ𝑝−1) − 𝐹2 (𝜌, ΥQ−1)  

 

So, 
 

‖ΥΡ − ΥQ‖ = max
∀Υ∈[𝑎,𝑏]

|(μ∫ k1

Υ−τ

a

(Υ, ρ)(−F1(ρ, Υp−1) − F1(ρ, ΥQ−1)dρ

+ λ∫ k2

Υ

0

(Υ, ρ)(F2(ρ − τ, Υp−1)

− F2((ρ − τ, ΥQ−1))dρ)| 

≤ max
∀ Υ∈[𝑎,𝑏]

(|(μ∫ k1

Υ−τ

a

(Υ, ρ)(−F1(ρ,Υp−1) − F1(ρ, ΥQ−1)dρ

+ |λ∫ k2

Υ

0

(Υ, ρ)(F2 (ρ − τ, Υp−1)  

− F2((ρ − τ, ΥQ−1))dρ)|)|) 

≤ 𝑀1𝐿1 ||Υ𝑝−1 − ΥΩ−1||𝑏 − 𝑎| + (𝑀2𝐿2 ||Υ𝑝−1 − ΥQ−1||𝑏 − 𝑎||)|

= (𝑀1𝐿1 +𝑀2𝐿2)(𝑏 − 𝑎)|Υ𝑝−1 − ΥQ−1|

= 𝑇|Υ𝑝−1 − ΥQ−1| 

 

Let 𝑃 = 𝑄 + 1, then: 

 

‖ΥΡ − ΥQ‖ ≤ ‖ΥQ − ΥQ−1‖ ≤ 𝑇
2‖ΥQ−1 − ΥQ−2‖ ≤ 𝑇

𝑞‖Υ1 − Υ0‖ 

 

We have: 

 

‖ΥΡ − ΥQ‖ ≤ ‖ΥQ+1 − ΥQ‖ + ‖ΥQ+2 − ΥQ+1‖ + ⋯‖ΥP − ΥP−1‖

≤ [𝑇𝑄 + 𝑇𝑄+1 +⋯𝑇𝑃−1]‖Υ1 − Υ0‖

≤ [𝑇 + 𝑇2 +⋯𝑇𝑃−𝑄−1]‖Υ1 − Υ0‖

≤ 𝑇𝑄 [
1 − 𝑇𝑃−𝑄

1 − 𝑇
] ‖Ω1(Υ, 𝑇)‖ 

 

Since 0<T<1, we have 1 − 𝑇𝑃−𝑄 < 1, then: 

 

‖ΥΡ − ΥQ‖ ≤ max
∀ Υ∈[𝑎,𝑏]

|Ω1(Υ, 𝑇)| 

 

But Ω1(Υ, 𝛾) < ∞ . So as 𝑄 → ∞, ‖ΥΡ − ΥQ‖ → 0.  We 

conclude that Υ𝑃  is a Cauchy sequence, therefore (Υ, 𝛾) =

lim
𝑃→∞

Ω(Υ, 𝛾). 

Comparably, we observe that, Υ𝑃  constitutes a Cauchy 

sequence. Consequently, this allows us to express the 

following:  

 

Ω(Υ, 𝛾) = lim
𝑃→∞

Ω(Υ, 𝛾) (18) 

 

 

7. ILLUSTRATIVE NUMERICAL STUDY 
 

In this part, we address the FDVFIDE utilizing the ADM. 

 

Example 1 
 

�̃�′(𝑧) = 1 + ∫ (𝑧 − 𝛤)�̃�′(𝛤)𝑑𝛤 + ∫𝑧𝛤�̃�′(𝛤 − 0.3)𝑑𝛤

1

0

𝑧−0.3

0

, 

�̃�′(0) = (𝑇, 2 − 𝑇) 

(19) 

 

where, 
 

𝑘
′
(𝑧) = 1 + ∫ (𝑧 − 𝛤)𝑘(𝛤)𝑑𝛤 + ∫𝑧𝛤𝑘(𝛤 − 0.3)𝑑𝛤

1

0

𝑧−0.3

0

, 

𝑘(0) = (𝑇) 

(20) 

 

𝑘′(𝑧) = 1 + ∫ (𝑧 − 𝛤)𝑘(𝛤)𝑑𝛤 +∫𝑧𝛤𝑘(𝛤 − 0.3)𝑑𝛤

1

0

𝑧−0.3

0

, 

𝑘(0) = (𝑇, 2 − 𝑇)  

(21) 

 

The exact solutions of this FDVFIDE Eqs. (20) and (21) are 

given by: 

 

�̃� (𝑧) = (1 + 𝑇𝑧, 1 + (2 − 𝑇)𝑧) 
 

By utilizing the ADM technique, Eqs. (20) and (21) can be 

reformulated as follows: 
 

𝑘
′
(𝑧) = 𝑇 + 𝑧 + 𝐿−1 [∫ (𝑧 − 𝛤)𝑘(𝛤)𝑑𝛤 +

𝑧−0.3

0

∫ 𝑧𝛤𝑘(𝛤 − 0.3)𝑑𝛤
1

0
]  

(22) 

 

𝑘′(𝑧) = (2 − 𝑇) + 𝑧 + 𝐿−1 [∫ (𝑧 − 𝛤)𝑘(𝛤)𝑑𝛤 +
𝑧−0.3

0

∫ 𝑧𝛤𝑘(𝛤 − 0.3)𝑑𝛤
1

0
]  

(23) 

 

By employing the decomposition technique, the iterations 

of Eqs. (22) and (23) are calculated and displayed in Table 1 

at z=1. These results are compared with the exact solutions, as 

shown in Figure 2, highlighting the method’s convergence 

3462



 

towards the FDVFIDE. The FDVFIDE is solved using 

MATLAB R2015a. 
 

Table 1. Comparison between exact and approximate 

solution 
 

 Exact Solution Approximate Solution 

T U(z) U(z) κ(z) κ(z) 

0 1 3 1.00735 3.00830 

0.2 1.2 2.8 1.20584 2.80672 

0.4 1.4 2.6 1.40595 2.60661 

0.6 1.6 2.4 1.60606 2.40650 

0.8 1.8 2.2 1.80617 2.2063 

1.0 2 2 2.00628 2.00628 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. Convergences of exact and approximate method 

 

The decomposition technique solves the given problem 

effectively based on the information provided. The 

approximate solutions converge to the exact solutions, 

suggesting that the method is accurate and stable. 

 
 

8. CONCLUSION 

 

The Adomian Decomposition Method (ADM) is a 

numerical technique for solving FDVFIDE. It's a reliable and 

efficient method that can handle complex equations with 

minimal computational effort. ADM has been shown to solve 

a wide range of FDVFIDE accurately, and its convergence 

properties have been studied in detail. ADM exhibits 

exceptional efficacy and efficiency in numerically resolving a 

comprehensive array of FDVFIDE.  

The outcomes substantiate the convergence domain of the 

ADM series solution. An illustrative example, alongside the 

convergence theorem, underscores the method’s precision and 

effectiveness. The futuristic scope of the study is the 

convergence of different iterative techniques, and by 

increasing iteration, the convergence of the methods may be 

more efficient. 

 

 

REFERENCES 

 

[1] Zadeh, L. (1975). The concept of a linguistic variable and 

its application to approximate reasoning. Information 

Science, 8: 199-249. https://doi.org/10.1016/0020-

0255(75)90036-5 

[2] Chang, S.S., Zadeh, L.A. (1972). On fuzzy mapping and 

control. IEEE Transactions on Systems, Man, and 

Cybernetics, (1): 30-34. 

https://doi.org/10.1109/TSMC.1972.5408553 

[3] Kaleva, O. (1987). Fuzzy differential equation. Fuzzy 

Sets and Systems, 24: 301-317. 

https://doi.org/10.1016/0165-0114(87)90029-7 

[4] Allahviranloo, T., Ahmady, N., Ahmady, E. (2007). 

Numerical solution of fuzzy differential equations by 

predictor-corrector method. Information Sciences, 

177(7): 1633-1647. 

https://doi.org/10.1016/j.ins.2006.09.015 

[5] Seikkala, S. (1987). On the fuzzy initial value problem. 

Fuzzy Set and System, 24: 319-330. 

https://doi.org/10.1016/0165-0114(87)90030-3 

[6] Jafari, H., Saeidy, M., Baleanu, D. (2012). The 

variational iteration method for solving n-th order fuzzy 

differential equations. Central European Journal of 

Physics, 10(1): 76-85. https://doi.org/10.2478/s11534-

011-0083-7 

[7] Chalco-Cano, Y., Román-Flores, H. (2008). On new 

solutions of fuzzy differential equations. Chaos, Solitons 

& Fractals, 38(1): 112-119. 

https://doi.org/10.1016/j.chaos.2006.10.043 

[8] Rasha H., Rawaa I., Alif (2023). The new Runge-Kutta 

Fehlberg method for the numerical solution of second-

order fuzzy initial value problems. Mathematical 

Modelling of Engineering Problems, 10(4): 1409-1418. 

https://doi.org/10.18280/mmep.100436  

[9] Allahviranloo, T., Abbasbandy, S., Hashemzehi, S. 

(2014). Approximating the solution of the linear and 

nonlinear fuzzy Volterra integro-differential equations 

using expansion method. Abstract and Applied Analysis. 

2014: 1-8. https://doi.org/10.1155/2014/713892 

[10] Al-Hayani, W., Younis, M.T. (2023). A numerical study 

3463

https://www.bing.com/ck/a?!&&p=9dc84deaacf23d03JmltdHM9MTcyODQzMjAwMCZpZ3VpZD0zM2ExOGExMC02Njc1LTY1ZjUtMDhiOC05ZWUzNjdhNjY0MjYmaW5zaWQ9NTE3Nw&ptn=3&ver=2&hsh=3&fclid=33a18a10-6675-65f5-08b8-9ee367a66426&psq=Abstr.+Appl.+Anal&u=a1aHR0cHM6Ly9vbmxpbmVsaWJyYXJ5LndpbGV5LmNvbS9qb3VybmFsLzQwNTg_bXNvY2tpZD0zM2ExOGExMDY2NzU2NWY1MDhiODllZTM2N2E2NjQyNg&ntb=1


 

for solving the systems of fuzzy Fredholm integral 

equations of the second kind using the Adomian 

Decomposition Method. Iraqi Journal of Science, 64(7): 

4407-4430. https://doi.org/10.24996/ijs.2023.64.7.31 

[11] Georgieva, A., Naydenova, I. (2022). Approximate 

solution of nonlinear Volterra-Fredholm fuzzy integral 

equations. AIP Conference Proceedings, 2505(1): 

070002. https://doi.org/10.1063/5.0100646 

[12] Osama M., Fadhel S., Mizal H., (2023). Using variational 

iteration method for solving linear fuzzy random 

ordinary differential equations. Mathematical Modelling 

of Engineering Problems, 10(4): 1457-1466. 

https://doi.org/10.18280/mmep.100442 

[13] Amin, R., Ahmadian, A., Alreshidi, N.A., Gao, L., 

Salimi, M. (2021). Existence and computational results 

to Volterra-Fredholm integro-differential equations 

involving delay term. Computational and Applied 

Mathematics, 40: 1-18. https://doi.org/10.1007/s40314-

021-01643-y 

[14] Ziari, S., Bica, A.M., Ezzati, R. (2022). Successive 

approximations method for fuzzy Fredholm-Volterra 

Integral equations of the second kind. Advances in Fuzzy 

Integral and Differential Equations, 412: 209-228. 

https://doi.org/10.1007/978-3-030-73711-5_9 

[15] Dubois, D., Prade, H. (1978). Operations on fuzzy 

numbers. International Journal of Systems Science, 9: 

613-626. https://doi.org/10.1080/00207727808941724 

[16] Narayanamoorthy, S., Yookesh, T.L. (2015). 

Approximate method for solving the linear fuzzy delay 

differential equations. Discrete Dynamics in Nature and 

Society, 2015: 1-9. https://doi.org/10.1155/2015/273830 

[17] Nanda, S. (1989). On integration of fuzzy mappings. 

Fuzzy Sets and Systems, 32: 95-101. 

https://doi.org/10.1016/0165-0114(89)90090-0 

[18] Zhou, Y. (2014). Basic Theory of Fractional Differential 

Equations. Singapore: World Scientific. 6. 

[19] Hamoud, A.A., Ghadle, K. (2018). Homotopy analysis 

method for the first order fuzzy Volterra-Fredholm 

integro-differential equations. Indonesian Journal of 

Electrical Engineering and Computer Science, 11(3): 

857-867. 

[20] Adomain, G., Rach, R. (1983). Nonlinear stochastic 

differential-delay equations. Journal of Mathematical 

Analysis and Applications, 19(1): 94-101. 

http://doi.org/10.1016/0022-247X(83)90094-X 

[21] Adomian, G. (1983). Stochastic Systems. Academic 

Press. 

[22] Yookesh, T.L., Chithambarathanu, M., Kumar, E.B., 

Sekhar, P.S. (2021). Efficiency of iterative filtering 

method for solving Volterra fuzzy integral equations 

with a delay and material investigation. Materials Today: 

Proceedings, 47: 6101-6104. 

https://doi.org/10.1016/j.matpr.2021.05.025 

[23] Amirali, I., Acar, H. (2024). Stability inequalities and 

numerical solution for neutral Volterra delay integro-

differential equation. Journal of Computational and 

Applied Mathematics, 436: 115343. 

https://doi.org/10.1016/j.cam.2023.115343 

 

3464

https://doi.org/10.1007/978-3-030-73711-5_9



