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The demand for oil and its subproducts is steadily increasing, making the study of 

oilfields and in particular oil wells a crucial aspect of exploitation engineering. 

Information obtained from fluid filtration and the study of pressure drop in reservoir 

conditions is of great importance in determining the productive capabilities of the 

oilfield reservoir. The behavior of fluid flow in a reservoir is usually modeled by a 

nonlinear partial differential equation (PDE), which is often simplified to a linear form 

in the petroleum industry for practical applications. This paper presents an analytical 

solution using the separable-variable technique for the constant-flow radial diffusivity 

equation, which describes the pressure drop in the near-wellbore region under 

conditions of constant oil production. The production data for the Amonica oilfield were 

provided by the Geological Institute of Oil and Gas in Fier, Albania. Our findings 

underscore the importance of depletion time, production rate, and reservoir radius in 

calculating pressure drops. A sensitivity analysis shows that the primary factors 

influencing the pressure profile are several parameters such as permeability, porosity, 

and viscosity. Additionally, we determined that the radial diffusivity equation solution 

for a finite constant flow rate during the initial transient flow period can be derived 

using the separable-variable method, which was approximated by the so-called linear 

solution. It is assumed that, in comparison to infinite reservoirs, the well radius is 

negligible, and the area near the wellbore can be treated as a point source. 
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1. INTRODUCTION

The radial diffusivity equation is a fundamental equation 

which is used in many different fields, including mathematics, 

physics, chemistry, and engineering [1]. In the context of oil 

wells, this equation is widely employed to simulate fluid 

movement through porous materials. One of the main 

solutions of the radial diffusivity equation is to maintain the 

flow of the fluid in the well at a constant rate during a finite 

period of time [2]. 

This solution is particularly useful in the petroleum industry 

for analyzing production wells or injection wells where a flow 

rate is held constant for a certain duration [3]. 

The well survey involves the production of a well with 

constant flow or with variable flow, from where we can 

simultaneously make a continuous record of the change of 

pressure values in near the bottom hole area as shown in Figure 

1. 

Considering near-bottom pressure as a function of time, it is 

possible to analyze values according to the known flow rate, 

and in this way reservoir parameters could be determined [4]. 

In the framework of this work, pressure levels were measured 

in the wells of the Amonica oilfield in Albania, and with these 

data, graphs are built for the progress of the layer pressure over 

the years [5]. 

The Amonica oilfield is characterized by two distinct 

hypsometric zones: an upper zone saturated with oil and a 

lower zone saturated with water [6]. 

Figure 1. The cylindrical drainage region in a uniform 

reservoir 
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So, for better control of the progress of the layer pressure in 

time and to have values at points as uniformly distributed, it is 

necessary to carry out systematic measurements in observation 

wells. In this case, the exploitation and processing of this 

oilfield were based on the determination of a fluid extraction, 

which would then provide the opportunity to draw up 

conclusions for the processing of the oilfield as a whole [7]. 

Various numerical and analytical methods have been 

developed to solve the diffusivity equation. It is well 

established that the equation can be expressed using 

dimensionless parameters, with the general solution 

representing dimensionless pressure as a function of two 

variables: dimensionless radius and time. 

Several numerical and analytical methods are presented to 

solve the diffusivity equation. It is known that it can be 

expressed using dimensionless parameters, the general 

solution of which will be for dimensionless pressure as a 

function of two parameters, dimensionless radius and time [8]. 

The finite constant flow solution for all-time fluid flow was 

first introduced by Hurst and Van Everdingen in 1949. The 

researchers applied the Laplace transform method to the radial 

diffusivity equation for both finite constant flow and constant 

finite pressure scenarios [9]. 

The purpose of this research is to apply the solution of the 

radial diffusivity equation for wells with variable flow rates 

and for reservoirs limited in extent [10]. 

The mathematical approach applied to the diffusion 

problem takes into account the reduction of several parameters 

to study the nonlinear terms in engineering problems in the 

hydrocarbon industry. Consequently, we have a simplified 

expression for the diffusivity equation and support 

engineering decisions based on the various rock and fluid 

properties in oil reservoirs [11]. 

The importance of the dynamic study of the hydrocarbon 

reservoir by means of the radial diffusivity equation is to 

evaluate the behavior and predict its future performance. Our 

contribution, in this case, is that the use and processing of this 

resource should be based on the definition of fluid extraction, 

in which the change in the energy of the layer does not change 

and the water content is minimal [12, 13]. 

Subsequently, measurements were made of the well levels, 

which resulted in improved values with natural flow. This 

indicates a maximum effectiveness in the extraction of oil 

from this source and the impact on the increase of debit in the 

time interval of exploitation [14]. 

The results of the study show the importance of production 

rate and reservoir radius in calculating the pressure drop from 

the well to the contour. Analytical solutions are applicable to 

well test analysis and fluid flow prediction [15]. 

 

 

2. METHODOLOGY 

 

The radial diffusivity equation with constant finite flow 

serves as the fundamental equation in well analysis. Despite 

the extension of the short transient flow period, the solution is 

strongly influenced by the reservoir boundary condition. 

This research presents the finite constant flow solution for a 

well of Amonica oilfield, located within the no-flow boundary 

across all the geometric arrangements studied by Matthews, 

Brons, and Hazebroek, and for each value of flow time [16]. 

This solution leads to a general wellbore equation that is 

applicable to analyze any pressure developed near the bottom 

hole area. 

In order to determine the pressure measurement in 

accordance with the collector properties of the well drainage 

area, the water-oil contact, as well as the physico-chemical 

properties of the fluids contained in the layer, hydrodynamic 

studies of the wells are carried out [17]. 

Thus, in the phase of using fountains of wells in the source 

of Amonica, Albania, the hydrodynamic studies for the wells 

were carried out Am-7, 9, 16, 22, 30, 31, 32, 8, 15, 16, 18, 21 

as well as the operating pressures were evaluated using direct 

measurement with a manometer [18, 19]. 

Based on this study, the optimal flows for the initial phase 

in the wells Am-7, 9, and 16 are from 45-52 m3/day, and for 

these flow values, the pressures were from 10-30 atm. In this 

paper, such studies are presented for reservoirs with fluids of 

small and constant viscosity, mainly for unsaturated oil [20]. 

Beginning with the static pressure equilibrium and constant 

flow conditions, the solution to the radial diffusivity equation 

is often described in terms of the bottom-hole flow pressure, 

which evolves over time following a change in the well's flow 

rate from 0 to Q as shown in Figure 2.  

The resulting pressure drop (Figure 3) can typically be 

divided into three distinct stages, based on the duration of flow, 

the reservoir geometry, and the reservoir's characteristics [21]. 

 

 
 

Figure 2. Finite constant flow solution, constant produced 

 

 
 

Figure 3. The resulting flow pressure drop at the bottom of 

the well 

 

 
 

Figure 4. Radial fluid flow near a production well 
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Initially, the pressure can be described by the time-

dependent solution of the diffusion equation, assuming that the 

pressure near the well's bottomhole is unaffected by the 

boundaries of the drainage area, and vice versa. This scenario 

corresponds to an infinite reservoir condition. 

During transient flow, the reservoir's boundaries seem 

limitless. Subsequent to the transient stage, the so-called later 

transient phase is passed (Figure 4). 

At this stage, as the drainage boundaries begin to influence 

the flow, it is essential to determine an approximate constant 

flow solution for the later transient phase in wells with non-

flowing boundaries. The shape of the drainage area and the 

well's location relative to these boundaries are key factors that 

significantly impact the flow behavior [22]. 

 

2.1 Analytical solution with constant finite flow 

 

In stabilized flow conditions with no-flow contours, the 

flow rate stays constant even as the end-well pressure changes 

over time, making the calculations much easier [23]. The 

solution is based on the following boundary and starting 

conditions as shown in Table 1. 

 

Table 1. Starting and edge values for the diffusion equations 

 
Initial Conditions  Boundary Conditions 

𝑝 = 𝑝𝑙  𝑡 = 0 R 

𝑝 = 𝑝𝑙  𝑡 = ∞ for each r 

lim
𝑟→0

𝑟
𝜕𝑝

𝜕𝑟
=

𝑄𝜇

2𝜋𝑘ℎ
 𝑡 > 0  

 

Condition (a) states that prior to production, the pressure 

throughout the drainage volume is equal to the initial reservoir 

pressure, 𝑝 − 𝑙. 
Condition (b) specifies that the pressure at the outer 

boundary remains unaffected by pressure changes near the 

bottomhole. 

Condition (c) addresses the source within the boundary 

conditions, indicating that the rock formation is uniform and 

isotropic, with full well penetration facilitating radial flow. 

The fluid is assumed to have steady viscosity and a slight, 

constant compressibility. 

The derived solution is valuable for modeling the flow of 

unsaturated oil. By developing a simplified pressure analysis 

theory based on these assumptions, several limitations can be 

overcome. This allows for the inclusion of factors such as 

partial well completions and high-compressibility fluid flow. 

Under these conditions, the radial diffusivity equation for a 

compressible fluid takes the following form: 

 

1 1
r

r r r t

 



   
= 

   
 (1) 

 
2

2

1 1

r r tr

  



  
+ =

 
 (2) 

 

where, 𝜒 =
𝑘

𝜑𝜇𝛽
 is the diffusivity coefficient of the layer. 

The equations above are currently expressed in terms of 

liquid density, a parameter that is not typically measured under 

reservoir conditions. Therefore, we will re-express them in 

terms of pressure. To achieve this, we begin with the equation 

of state for a compressible fluid in porous media: 

 

( )0 01 P P  = + −    (3) 

 
𝜕𝜌

𝜕𝑟
= 𝜌0𝛽

𝜕𝑃

𝜕𝑟
 and 

𝜕2𝜌

𝜕𝑟2 = 𝜌0𝛽
𝜕2𝑃

𝜕𝑟2 and 
𝜕𝜌

𝜕𝑡
= 𝜌0𝛽

𝜕𝑃

𝜕𝑡
 

 

After taking the first and second derivatives of Eq. (3) and 

substituting into Eq. (2) we obtain a nonlinear differential 

equation of the second order: 

 
2

0 02

1 1
( )

P P P

r r tr
   



  
+ =

 
 

2

2

1 1P P P

r r tr 

  
+ =

 
 

(4) 

 

Let denote 𝑥 =
𝑟2

𝜒𝑡
, so if we take derivatives in terms of x, 

applying chain rule of derivatives, we obtain: 

 

P P x

t x t

  
=

  
, 

2

2

x r

t t

 −
=


 and 

2

2
( )

P r P

t xt

 − 
=

 
 

 

So the right term of the nonlinear Eq. (4) takes form as: 

 
2

2 2

1 P r P

t xt 

 − 
=

 
 (5) 

 

In the same way, we find the two terms of the left side of 

Eq. (4): 

 

P P x

r x r

  
=

  
, 

2x r

r t


=


 and 

2P r P

r t x

 
=

 
 

 

So 

 

1 2P P

r r t x

 
=

 
 (6) 

 
2

2
( )

P P

r rr

  
=
 

, 
2

2

2
( )

P P r

r x tr 

  
=
 

 

2

2

2 2
( ) ( )

P r P P r

r t x r x tr  

    
= +
   

 

 

According to the chain rule of derivation we get: 

 
2

2

2 2
( )

P P P x r

t x x x r tr  

    
= +

   
 

2 2 2

2 2 2 2

2 4P P r P

t xr t x 

  
= +

 
 

(7) 

 

Through first derivative and the second derivative we 

determined each of the nonlinear terms of Eq. (2) and by 

substituting Eqs. (5)-(7) we can write Eq. (4) as: 

 
2 2 2

2 2 2 2 2

4 4P r P r P

t x xt x t  

  − 
+ =

 
 

2 2 2

2 2 2 2 2

4 4
0

P r P r P

t x xt x t  

  
+ + =

 
 

(8) 
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Multiply by 𝜒𝑡 on both sides of Eq. (8), and substitute 𝑥 =
𝑟2

𝜒𝑡
 we transform Eq. (8) as linear equation of the second order: 

 

( )
2

2
4 4 0

P P
x x

x x

 
+ + =

 
 (9) 

 

Denoting with 𝑦 =
𝜕𝑃

𝜕𝑥
 and hence 𝑦′ =

𝜕𝑦

𝜕𝑥
, and Eq. (9) takes 

the form of a linear equation with separable variables: 

 

( )4 4 0
y

x y x
x


+ + =


 (10) 

 

Now we proceed with solving Eq. (10), so: 

 

4 ( 4 )
y

x x y
x


= − −


, 

4 4

4 4

y
y

x x x

 − 
= − 

  
 

1 1

4

dy
dx

y x

− 
= − 
 

, 
1 1

4

dy
dx dx

y x
= − −    

4
1ln ln ln ln

x

y x e C
−

= − + +  

 

4

1

x

e
y C

x

−

=  (11) 

 

Since we denoted 𝑦 =
𝜕𝑃

𝜕𝑥
 then Eq. (11) takes form as: 

 

4

1

x

P e
C

x x

−


=


 (12) 

 

Solving Eq. (12) we obtain the pressure distribution in the 

layer 

 

4

1 2

x

e
P C dx C

x

−

= +  (13) 

 

𝑃 - pressure distribution field in the layer 

𝐶1 and 𝐶2 are integration constants that we determine from 

the boundary conditions 

 

(a) Initial conditions: 𝑡 = 0, 𝑃 = 𝑃𝑙 , 𝑥 =
𝑟2

𝜒𝑡
 

 

4

1

x

l

e
P P C dx

x

−

= +   

4
1 22

x
t

P C e dx C
r

 −

= +  

(14) 

 

The constant 𝐶1 is related to the commissioning of the well. 

We know that the flow of oil expressed as a function of 

density is [1]: 

 

( )2

ln

c w

c

w

kh
Q

r

r

  



−
=  

(15) 

 

where, 𝑄 = 𝐹 ∗ 𝑣 = 2𝜋𝑟ℎ, v the filtration velocity according 

to Darcy's law is given by: 𝑣 =
𝑘

𝜇

𝑑𝑃

𝑑𝑟
 and from the displacement 

in Eq. (15) of the debit we have: 

 

4

1 2

2 2
x

kh r e
Q C

t r

t



 



−

=    
(16) 

 

By substituting Eq. (12) and the filtration rate according to 

Darcy's law in the above equation, we get: 

 
2

4

1

4
r

tkh
Q e C



−

=   (17) 

 

(b) Initial conditions: 𝑡 → ∞  and 𝑝 = 𝑝𝑙  

 

1
4

Q
C

kh




=  

4

4 / 4 4

x

l

Q e x
P P d

kh x





−

 
= +  

 
  

(18) 

 

( )
4

u

l

Q e
P P d u

kh u





−

= +   (19) 

 

∫
𝑒−𝑢

𝑢
𝑑(𝑢) = −𝐸𝑖(𝑢)  exponential integral and 𝐸𝑖(𝑢) =

𝑙𝑛
1

𝑢
− 0.5772 where the number 0.5772 is Euler's constant 

 

( ) 2

4
, ln 0.5772

4
l

Q t
P r t P

kh r

 



 
= − − 

 
 (20) 

 

Solving the constant flow rate diffusivity equation. 

 

 

3. RESULTS AND DISCUSSION 

 

The study presents and discusses the findings of the 

analytical solution using separable variables for the radial 

diffusivity equation with finite constant discharge. The critical 

reservoir radius, defined as the maximum radius of a reservoir 

with specific properties of the formation rock and reservoir 

fluid, was used to analyze the results. This radius is determined 

from both linear and nonlinear solutions [24, 25]. 

This is a convenient technique because it can incorporate 

the influences of oilfield reservoir variations and complex 

natural or hydraulic fracture patterns [26]. We initiated our 

study with the finite constant flow solution in a reservoir with 

infinite boundaries. The approximation is verified with various 

applications for which Laplace transform reference solutions 

are available [27]. 

Pressure studies are often conducted to determine the extent 

of communication between wells, such as in pulsation studies. 

In these cases, transient pressures induced in one well are 

recorded at a remote well [28]. 

The solution to the equation for transient fluid flow is not 

valid for the entire drainage area with respect to the well's 

position relative to the contour. For a short period, Eq. (20) is 

applicable only when the reservoir is considered infinite [29]. 
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From a theoretical standpoint, for the finite constant flow 

solution, the flow rate (Q) in the transient flow equations and 

the semi-steady state flow equation remains the same. 

However, in practice, it is often difficult to maintain a constant 

flow rate from a well over an extended period. 

In this case, the flow rate in Eq. (20) is equal to the final 

flow rate, and the flow time is expressed as the effective flow 

time. The use of effective flow time, defined as the ratio of 

cumulative production to the final flow rate, is commonly 

applied in well pressure analysis in petroleum engineering [30]. 

To observe how the fluid flow in the layer changes 

depending on the distance "r" and the time "t," we consider the 

deposit of petroleum as a circular area, used by a central well 

with radius "rw" and "r".  

It is known that the pressure will drop at the same rate 

throughout the ring from "r" to "rw" [31]. Therefore, we can 

express the flow rate (Q) in the wellbore as the sum of the flow 

rate (Q(r)) entering the ring and the expansion of the oil within 

that ring [32]. 

To analyze this problem, we will examine the fluid flow 

progression over time at a specific distance from the well, as 

illustrated in (Figure 5). It appears that Q(r) increases slowly 

from zero and then tends towards "Q", when time increases the 

flow of the well is actually fed from more and more distant 

areas of the layer. So, the bottom hole is only a transitional 

area that practically no longer participates in production after 

a considerable time. 

For the analytical solution, we utilized the finite element 

method to visualize the pressure profiles over time (Figure 6). 

Typically, pressure analysis depends on various mathematical 

solutions to the linear diffusion equation, incorporating a priori 

assumptions regarding heterogeneity, fluid properties, and 

boundary conditions. However, in practical situations, these 

idealized constraints may not be present, which can render 

analytical solutions nearly impossible to obtain [33]. 

The numerical solution at the wellbore and the analytical 

solution are virtually indistinguishable, indicating a good 

agreement during the middle and late times. However, there is 

a significant discrepancy in the early time region due to a 

faulty assumption made in developing the analytical approach 

[34]. 

The analytical solution assumes that the well can be 

represented as a point, which may not hold true 

mathematically (Figure 7). Nevertheless, the model studied 

assumes that the radius is vanishingly small. This assumption 

is physically reasonable, given that the size of the wellbore is 

considerably smaller than the radius of the volume being 

drained [35]. 

 

 
 

Figure 5. The change of debit over time (by author) 

 
 

Figure 6. Pressure versus time for the analytical solution 

 

 
 

Figure 7. Comparison of the numerical model with the 

analytical solutions 

 

 

4. CONCLUSIONS 

 

This study highlights the effectiveness of using the radial 

diffusivity equation with constant finite flow to analyze oil 

wells. By utilizing pressure and flow rate data, reservoir 

properties and production decline rates can be accurately 

estimated.  

The analytical solution facilitates the optimization of 

production strategies, enabling the maximization of oil 

recovery while minimizing operational costs. This approach is 

particularly advantageous for existing wells, offering valuable 

insights for designing interventions aimed at enhancing 

productivity. Additionally, enhanced oil recovery (EOR) 

techniques, such as water or gas injection, can be effectively 

evaluated using this method, thereby improving their 

efficiency in extracting additional oil. 

The finite element technique provides a reliable way to 

visualize reservoir pressure profiles over time. The accuracy 

of the analytical solution is validated through comparison with 

numerical solutions, demonstrating its robustness. The 

applicability of the proposed procedure is further illustrated 

through its successful implementation on test wells in the 

Amonica oilfield. 

However, the analytical solutions have limitations when 

applied to fluid flow problems in non-uniform reservoirs, as 

they are sensitive to variations in parameters such as porosity, 

permeability, and fluid viscosity. Changes in porosity and 

0
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permeability within the reservoir can result in discontinuities 

in the properties of the porous media. Studies have observed 

that porosity tends to decrease as the distance from the 

wellbore center increases, while permeability is often 

considered uniform. 

The problem is further compounded when accounting for 

non-ideal effects in the wellbore. Moreover, heterogeneous 

reservoirs are inherently complex and cannot be easily 

analyzed using conventional methods developed for 

homogeneous reservoirs. 

In conclusion, while the proposed analytical solutions and 

methodologies are effective for homogeneous and isotropic 

reservoirs, further research and development are required to 

address the challenges posed by heterogeneous and anisotropic 

reservoirs, ensuring broader applicability in diverse field 

conditions. 

 

 

5. FUTURE RESEARCH DIRECTIONS 

 

Future research should focus on investigating the impact of 

varying fluid properties and multi-phase flow scenarios on the 

accuracy of the radial diffusivity equation, providing a 

comprehensive understanding of reservoir dynamics. 

Integrating advanced data analytics and machine learning 

techniques with the equation can enhance predictive 

capabilities and real-time decision-making. Exploring the 

integration of the radial diffusivity equation with other 

simulation methods will create holistic approaches to reservoir 

management. 
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NOMENCLATURE 

 

𝑘 permeability, mD 

𝑃 pressure, 𝑝𝑠𝑖 
𝑃𝑙  initial reservoir pressure, 𝑝𝑠𝑖 
𝑃𝑤𝑓 bottomhole flowing pressure, 𝑝𝑠𝑖 

𝑄 cumulative production, m3/day 

𝑟 reservoir radius, ft 

𝑟𝑐  contour radius, ft 

𝑟𝑤 wellbore radius, ft 

𝑡 time, hr 

𝑃0 atmospheric pressure, 𝑝𝑠𝑖 
𝑥 cartesian spatial coordinate vector 

ℎ thickness, 𝑓𝑡 

𝐶1 integration constant 

𝐶2 integration constant 

 

Greek symbols 

 

 elastic compression coefficient, 𝑝𝑠𝑖−1 

𝜒 diffusivity coefficient of the layer 

𝜌 fluid density, 𝑙𝑏/𝑓𝑡3, 1 𝑙𝑏 = 16.0815 𝑘𝑔 

𝜌𝑐 contour fluid density, 𝑙𝑏/𝑓𝑡3 

wellbore fluid density, 𝑙𝑏/𝑓𝑡3 

𝜌0 fluid density in atmospheric pressure, 𝑙𝑏/𝑓𝑡3 

 porosity, fraction 

µ fluid viscosity, cp 
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