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This research presents a novel approach to sleep stage classification using single-

channel EEG data and a Random Forest Classifier, integrating advanced feature 

extraction and SMOTE to address class imbalance. EEG data were preprocessed to 

extract power band features and time-domain characteristics, such as mean, variance, 

skewness, kurtosis, and entropy measures (Shannon entropy, permutation entropy, and 

sample entropy). The study leveraged data from the EEG Fpz-Cz channel to ensure 

high-quality signal processing, creating epochs and applying a Random Forest model 

to classify sleep stages into Wake, N1, N2, N3, and REM. SMOTE was used to 

resample the dataset, ensuring balanced training for the model. The results 

demonstrated strong performance, with a classification accuracy of 93.5% and a 

Cohen’s Kappa score of 0.92, indicating near-perfect agreement between predicted and 

actual sleep stages. This study introduces a robust method that simplifies sleep stage 

analysis by focusing on a single EEG channel, demonstrating its potential for efficient 

clinical and personal sleep monitoring. 
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1. INTRODUCTION

Sleep stage classification using EEG data has been a 

significant area of research due to its implications for 

understanding sleep patterns and diagnosing sleep disorders. 

This introduction reviews key studies and methodologies 

relevant to the classification of sleep stages, with a particular 

focus on EEG data, feature extraction techniques, and machine 

learning approaches. 

Electroencephalography (EEG) is a widely used method for 

sleep stage classification due to its ability to capture brain 

activity patterns associated with different sleep stages. 

Traditional methods for sleep stage scoring relied on manual 

annotation of EEG recordings by sleep experts, but recent 

advancements have shifted towards automated classification 

using machine learning techniques. Previous researches [1, 2] 

have shown the effectiveness of various machine learning 

algorithms, including Random Forests and Support Vector 

Machines, for automating sleep stage classification. The study 

highlighted that machine learning models, when trained on 

comprehensive EEG features, can achieve accuracy 

comparable to expert annotations [3, 4]. An efficient and 

scalable solution involves automatic classification of sleep 

stages using machine learning algorithms with a single EEG 

channel [5-9]. This approach not only simplifies data 

acquisition but also reduces computational complexity, 

making it more accessible for both clinical and home-based 

applications. 

Effective feature extraction is crucial for improving the 

performance of classification models. EEG data are typically 

analyzed in both time and frequency domains to extract 

relevant features. Power Spectrum Density (PSD) is a common 

frequency-domain feature used to capture oscillatory activities 

in EEG signals. Rechichi et al. [10] utilized PSD features to 

classify sleep stages and found that frequency-band analysis 

significantly enhances classification performance. 

Additionally, time-domain features such as mean, variance, 

skewness, and kurtosis have been shown to provide valuable 

information for distinguishing between sleep stages [11]. 

Entropy measures are another important feature extraction 

method. Entropy quantifies the complexity and irregularity of 

EEG signals, offering insights into the brain's functional state. 

Shannon entropy, permutation entropy, and sample entropy 

are frequently used in sleep stage classification. Tripathy et al. 

[12] demonstrated that incorporating entropy measures

improves classification accuracy by capturing the dynamic

changes in EEG signals associated with different sleep stages.

Class imbalance is a common issue in sleep stage 

classification, where certain sleep stages are underrepresented 

in the dataset. Synthetic Minority Over-sampling Technique 

(SMOTE) is an effective approach to address this imbalance 

by generating synthetic samples for minority classes. 

Salamatian and Khadem [13] applied SMOTE to EEG-based 

sleep stage classification and reported significant 

improvements in model performance, particularly for minority 

sleep stages. SMOTE helps ensure that the classifier is well-

trained on all sleep stages, leading to more balanced and 

accurate predictions. 
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Machine learning algorithms have proven instrumental 

across various life sciences applications, including sleep 

research. Techniques such as Random Forest [14], 

Convolutional Neural Networks (CNNs) [15], Neural 

Networks (NNs) [16], and fuzzy logic systems [17] are 

commonly employed to improve classification accuracy. 

Random Forests are a popular choice for sleep stage 

classification due to their robustness and ability to handle 

high-dimensional data. The Random Forest algorithm, as 

demonstrated by Sundararajan et al. [14], can effectively 

classify sleep stages by combining multiple decision trees to 

make predictions. Random Forests offer advantages such as 

reduced overfitting and high accuracy, making them suitable 

for complex classification tasks. 

In addition to Random Forests, other machine learning 

algorithms such as Neural Networks and Gradient Boosting 

have also been explored in sleep stage classification. For 

instance, a study by Satapathy et al. [18] compared various 

machine learning models and found that Gradient Boosting 

provided competitive performance with Random Forests. 

However, the choice of model often depends on the specific 

characteristics of the dataset and the features used. 

While previous studies have effectively utilized machine 

learning models like Random Forests and SVMs for multi-

channel EEG data [1, 2], they often involve complex setups, 

limiting accessibility for home-based or portable applications. 

Single-channel approaches, as explored by Zhou et al. [5] and 

Nguyen et al. [6], simplify data acquisition but require robust 

methodologies to maintain accuracy. Feature extraction 

methods such as PSD and time-domain metrics are well-

established for identifying oscillatory patterns [10]; however, 

these approaches may underperform in imbalanced datasets. 

Our study leverages SMOTE to address this limitation, as 

demonstrated by Salamatian and Khadem [13], where class 

balancing improved model performance significantly. By 

integrating entropy measures into feature extraction, our 

approach captures dynamic EEG signal complexities, a 

method less frequently addressed in prior works [12]. 

Despite progress in sleep stage classification, there remains 

a gap in achieving high accuracy with single-channel EEG 

data while addressing class imbalance effectively. This study 

addresses this gap by combining comprehensive feature 

extraction with SMOTE and Random Forest to answer the 

research question: Can single-channel EEG data with 

enhanced feature extraction and class balancing achieve 

comparable accuracy to multi-channel setups in sleep stage 

classification? 

The primary objective of this study is to demonstrate that a 

simplified, single-channel EEG framework can achieve high 

accuracy and reliability in sleep stage classification through 

advanced feature extraction and class balancing techniques, 

paving the way for accessible sleep analysis solutions. 

In this research, we focus on sleep stage classification using 

a single EEG channel, specifically the "EEG Fpz-Cz" channel, 

a common placement in sleep studies [5, 8, 9]. By leveraging 

the Random Forest Classifier, we aim to accurately classify the 

five key sleep stages: wake (W), non-rapid eye movement 

(NREM) stages N1, N2, N3, and rapid eye movement (REM) 

sleep. Random Forest (RF) was chosen as the model for sleep 

stage classification due to its inherent advantages in handling 

high-dimensional data, robustness against overfitting, and 

ability to capture complex patterns in EEG features. RF is 

particularly effective for datasets with mixed features, such as 

time-domain statistics, frequency-domain power bands, and 

entropy measures, as it can naturally handle heterogeneous 

input types. Its ensemble nature, where multiple decision trees 

are combined, increases its predictive stability and accuracy 

compared to single decision-tree classifiers. Compared to 

other classifiers like Support Vector Machines (SVMs) or 

neural networks, RF requires minimal tuning and is less 

sensitive to hyperparameters, making it a practical choice for 

an initial baseline model. Unlike neural networks, RF is less 

computationally intensive and does not require extensive 

preprocessing or scaling of features. 

To further enhance the classification accuracy, particularly 

in handling imbalanced data common in sleep studies, we 

apply Synthetic Minority Over-sampling Technique 

(SMOTE). SMOTE generates synthetic samples of under-

represented sleep stages, ensuring that the Random Forest 

model is trained on a more balanced dataset. Additionally, a 

combination of frequency and time-domain features, including 

EEG power bands and entropy measures, is extracted to 

provide the classifier with a comprehensive feature set. 

This research aims to demonstrate that a single-channel 

EEG, combined with advanced feature extraction techniques 

and a balanced dataset, can achieve high accuracy in sleep 

stage classification. The study also highlights the impact of 

SMOTE in mitigating the bias introduced by imbalanced sleep 

stage distributions. Through this work, we seek to contribute 

to the development of more accessible and efficient tools for 

sleep monitoring and analysis, with potential applications in 

both clinical and personal health contexts. 

 

 

2. METHODOLOGY 

 

The methodology of this research can be seen in Figure 1, 

involves several key steps to classify sleep stages using EEG 

data with a Random Forest Classifier, enhanced by feature 

extraction and SMOTE for balancing. 

 

 
 

Figure 1. Research methodology of RF-SMOTE 

3244



 

2.1 Data collection and preprocessing 
 

Data Collection: The dataset utilized in this work is the 

second adaptation of the PhysioNet Sleep-EDF dataset [19], 

which was developed in 2018 and includes 197 

polysomnograms (PSG) to assess the proposed model's 

performance for sleep stage assignment. The Sleep-EDF 

dataset includes two types of data: (1) those that assess the 

effects of age on sleep in healthy people, and (2) those that 

examine the effects of temazepam (sleeping pills) on sleep. 

Eight specific datasets, four from each type, are chosen. 

Professionals physically labeled the hypnograms using 

Rechtschaffen and Kales standards, assigning each to a 

separate class at each level. The American Academy of Sleep 

Medicine (AASM) defines these classes as W, REM, N1, N2, 

and N3 [20]. In the evaluations, EEG data from single 

channels of both versions were integrated for analysis. EEG 

data were collected from the Fpz-Cz channel of EEG 

recordings. Files containing both EEG data (PSG) and 

annotations (Hypnogram) were used. These files were loaded 

from a specified directory, and preprocessing was applied. 

Preprocessing: The raw EEG data were segmented into 

epochs based on annotated sleep stages. Epochs were created 

with a duration of 30 seconds, and the data were prepared for 

further analysis. The signal undergoes bandpass filtering 

between 0.5 Hz and 30 Hz to retain relevant sleep-related 

frequencies while removing noise and artifacts. 

 

2.2 Feature extraction 

 

Feature extraction involves calculating both frequency-

domain and time-domain features.  

Power Spectrum Density (PSD): The frequency-domain 

features include relative power for the delta (0.5–4.5 Hz), theta 

(4.5–8.5 Hz), alpha (8.5–11.5 Hz), sigma (11.5–15.5 Hz), and 

beta (15.5–30 Hz) bands, computed from the PSDs. These 

bands capture various oscillatory activities relevant to sleep 

stages. The Power Spectrum Density (PSD) is calculated as: 

 

𝑃𝑥(𝑓) =
|𝐹𝐹𝑇(𝑥(𝑡))|2

𝑁
  (1) 

 

where, 𝑁 is the window length and FFT is the Fast Fourier 

Transform.  

The power in each band was normalized to ensure 

comparability. 

Time-Domain Features: Features such as mean, variance, 

skewness, and kurtosis of the EEG signal were calculated for 

each epoch. 

Sleep stage classification using EEG data has been a 

significant area of research due to its implications for 

understanding sleep patterns and diagnosing sleep disorders. 

This literature review explores key studies and methodologies 

relevant to the classification of sleep stages, particularly 

focusing on the use of EEG data, feature extraction techniques, 

and machine learning approaches. 
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where, �̅� is the mean and σ is the standard deviation. 

Entropy Measures: Entropy features were extracted to 

capture the complexity of the EEG signal. This included 

Shannon entropy, permutation entropy, and sample entropy. 

These measures provide insights into the randomness and 

structure of the EEG data. Shannon entropy is calculated as: 

 

𝐻(𝑥) = − ∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔2𝑝(𝑥𝑖)
𝑛
𝑖=1   (6) 

 

where, p(xi) is the probability of the i-th state. 

Permutation entropy is calculated as: 

 

PE𝜏
𝐷(𝑋) = ∑

− 𝑝𝜏
𝐷(𝜋𝑖) ln(𝑝𝜏

𝐷(𝜋𝑖))

ln 𝐷!

𝐷!

𝑖=1
  (7) 

 

where, 𝑝𝜏
𝐷(𝜋𝑖)  is the probability distribution of the i-th 

permutation and D is the embedding dimension. 

Sample entropy (SampEn) is calculated as: 

 

𝑆𝑎𝑚𝑝𝐸𝑛 = − log (
(∑ 𝐴𝑖)

(∑ 𝐵𝑖)
) = −𝑙𝑜𝑔

𝐴

𝐵
  (8) 

 

where, A and B are the number of matches in two different 

datasets of length m. 

These features were chosen as they are highly informative 

for distinguishing sleep stages, with spectral features linked to 

physiological rhythms (e.g., alpha for wakefulness) and 

entropy capturing dynamic signal variations. The features 

from different domains are concatenated into a single feature 

vector for each epoch of data. 

 
2.3 Data balancing with SMOTE 

 

The dataset was balanced using Synthetic Minority Over-

sampling Technique (SMOTE) to address the issue of class 

imbalance [21]. SMOTE was applied after feature extraction 

but before splitting the dataset into training and testing sets. 

This ensured that synthetic samples were generated only from 

the training set to prevent data leakage. SMOTE generates 

synthetic samples by interpolating between existing minority 

class samples, preserving class characteristics and avoiding 

simple duplication of samples. Alternative techniques such as 

random oversampling risk overfitting, while undersampling 

can result in loss of valuable information from the majority 

class. 

 

Input: 

    Minority class samples X_min 

    Number of nearest neighbors k 

    Desired number of synthetic samples N 

For each sample x in X_min: 

    1. Find k-nearest neighbors of x in X_min 

    2. Randomly select a neighbor x_neighbor from the k-

nearest neighbors 

    3. Generate a new synthetic sample: 

       diff = x_neighbor - x 

       new_sample = x + r * diff, where r is a random number 

between 0 and 1 

    4. Add new_sample to the dataset 

Repeat until N synthetic samples are generated. 

Output: Augmented dataset with new synthetic minority 

class samples 
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2.4 Model training and testing 
 

Data Splitting: The train-test split was randomized, with 

20% of the data allocated for testing and 80% for training. 

Stratification was applied during the split to maintain the 

distribution of sleep stages across training and testing datasets, 

ensuring that minority classes were adequately represented in 

both sets. While no explicit cross-validation was performed in 

this experiment, future work could incorporate techniques like 

k-fold or stratified k-fold cross-validation to better assess 

model generalizability and reduce potential biases in the 

evaluation process. 

Random Forest Classifier: An ensemble Random Forest 

model, trained on the extracted features [22, 23], was used for 

classification. This model was chosen for its robustness and 

ability to handle complex data. 

 

Input:  

    Dataset D = {(x1, y1), (x2, y2), ..., (xn, yn)} 

    Number of trees T 

    Number of features to consider per split m 

 

For t = 1 to T do: 

    1. Draw a bootstrap sample from D 

    2. Grow a decision tree on this bootstrap sample: 

        For each node in the tree: 

            a. Randomly select m features from the total 

features 

            b. Split the node on the feature that results in the 

best split 

        Continue until the maximum depth is reached or no 

further split is possible 

 

End For 

 

For each new data point x: 

    1. Send x through each of the T trees to obtain predictions 

    2. Use majority voting to assign the final predicted class 

 

Output: Final prediction for all data points 

 

The Random Forest model was designed to optimize 

classification accuracy while minimizing overfitting. Key 

parameters were configured as follows: Number of Trees (𝑛 

estimators): 100, maximum Depth: None, split Criterion: Gini 

impurity and minimum Samples per Split: 2. 

 

2.5 Evaluation metrics 

 

Model performance was evaluated using accuracy and 

Cohen’s Kappa score [24]. Accuracy measures the proportion 

of correct predictions, while Cohen’s Kappa assesses the 

agreement between predicted and true labels, considering 

chance. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

∑ 𝐼(𝑦𝑖,−ý𝑖)𝑁
𝑖=1

𝑁
  

(9) 

 

𝜅(𝐶𝑜ℎ𝑒𝑛′𝑠 𝐾𝑎𝑝𝑝𝑎) =
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
  (10) 

 
where, Po is the observed agreement, which is the proportion 
of instances where both raters agree; Pe is the expected 

agreement by chance, calculated based on the marginal 
probabilities of each rater. 

Additional metrics such as F1 Score, precision, and 

sensitivity were calculated for each sleep stage to assess the 

model’s performance in identifying each stage accurately [25]. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (11) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
  (12) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
  (13) 

 

 

3. RESULT AND DISCUSSION 

 

In this research, we focus on sleep stage classification using 

a single EEG channel, specifically utilizing the Random Forest 

Classifier and SMOTE (RF-Smote). The single-channel EEG 

data provides an efficient and accessible alternative to multi-

channel systems, reducing complexity while maintaining 

accuracy. Random Forest, a robust ensemble learning 

algorithm, is employed to classify the five major sleep stages: 

wake (W), NREM stages N1, N2, N3, and REM sleep. 

SMOTE is applied to address the common issue of class 

imbalance in sleep datasets by generating synthetic samples 

for under-represented stages, thereby improving the model's 

performance and accuracy across all sleep stages. This 

combination aims to enhance classification accuracy while 

maintaining simplicity in data acquisition. 

Figure 2 highlights the dataset's class imbalance, with the 

Wake stage (W) significantly overrepresented compared to 

other stages. N1 has the fewest samples, while N2, N3, and 

REM (R) are moderately represented but still 

underrepresented relative to W. This imbalance can bias the 

model toward overpredicting the majority class (W) and 

underperforming on minority classes like N1 and N3, leading 

to misleading overall accuracy that does not reflect true 

performance across all sleep stages [26].  

After applying SMOTE, each sleep stage will have 8037 

data points, balancing the dataset to match the highest class 

count of stage W. Applying SMOTE will help balance the 

dataset by generating synthetic data for the minority classes, 

improving the model's ability to learn from all classes equally. 

 

 
 

Figure 2. Class distribution before SMOTE 
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Table 1. Performance of RF-SMOTE 

 
Metric R N3 N2 N1 W 

F1-score 0.926721 0.951479 0.898718 0.920895 0.974343 

Precision 0.9338 0.939252 0.91395 0.905766 0.980709 

Sensitivity 0.919749 0.964029 0.883985 0.936538 0.968059 

 

 
 

Figure 3. Confusion matrix of RF-SMOTE model 

 

 
 

Figure 4. RUC Curve of RF-SMOTE model 

 

The results from Table 1 demonstrate the RF-Smote model's 

strong performance, particularly for Wake and N3 stages. The 

model achieves the highest Precision for Wake at 0.981, 

indicating excellent accuracy in predicting this stage. N3 

follows with a Precision of 0.939. The F1-score for Wake is 

0.974, the highest among all stages, while N3 has an F1-score 

of 0.952, both reflecting well-balanced performance. REM has 

an F1-score of 0.927, and N1 scores 0.921, showing good but 

slightly lower performance. N2 has the lowest F1-score at 

0.899, indicating some difficulty in predicting this stage. 

Sensitivity is highest for N3 at 0.964, followed by Wake at 

0.968, showing strong detection capabilities for these stages. 

Sensitivity for REM and N1 are 0.920 and 0.937, respectively, 

while N2 has the lowest at 0.884, indicating more frequent 

misclassifications for Stage 2. 

Figure 3 shows the confusion matrix for the RF-Smote 

model, highlighting the key performance of the model in 

predicting sleep stages. The model excels in correctly 

identifying Wake, with 1576 accurate predictions, though it 

misclassified a few as Stage 1 (41), Stage 2 (3), and REM (8). 

For Stage 1 (N1), the model accurately predicted 1461 

instances but misclassified some as Wake (9), Stage 2 (23), 

and REM (67). Stage 2 (N2) was correctly predicted 1402 

times, but there were misclassifications, notably 102 as N3 and 

29 as REM. N3 was accurately predicted 1608 times, with 

minor misclassifications as Stage 1 (4) and Stage 2 (55). REM 

sleep (R) was correctly predicted 1467 times, but it was 

misclassified as Wake (18), Stage 1 (57), and Stage 2 (51). The 

model shows strong performance in predicting Wake and N3, 

with more confusion occurring between Stage 2 and other 

stages like Stage 1 and REM. 

Figure 4 display RUC curve that illustrates the performance 

of a classifier in distinguishing between different sleep stages. 

The curves show how well the classifier performs for each 

individual sleep stage, with each line corresponding to a 

different sleep stage, such as W, N1, N2, N3, and R. These 

curves plot the True Positive Rate (TPR) against the False 

Positive Rate (FPR) at various threshold values. 

Each sleep stage has an AUC (Area Under the Curve) close 

to or equal to 1.00, indicating that the classifier performs 

excellently across all stages. AUC values close to 1.00 signify 

that the model does a great job of correctly classifying sleep 

stages with very few errors. 

The dashed pink line represents the micro-average ROC 

curve, which aggregates the contributions of all sleep stages 

into a single curve. The AUC of the micro-average curve is 

also 1.00, further suggesting that the overall classification 

performance is highly accurate. 

The blue dashed diagonal line represents the baseline of 

random guessing, where a random classifier would perform. 

Since the actual ROC curves for each sleep stage are far above 

this baseline, it shows that the classifier is doing much better 

than random guessing. 

Figure 5 compares the true and predicted hypnograms, 

showing the model's ability to accurately predict sleep stages 

based on EEG features. A close match between the true and 

predicted hypnograms indicates strong model performance, as 

it demonstrates correct transitions between stages like Wake, 

REM, and different NREM stages. The true hypnogram 

represents the actual sleep stages labeled in the dataset, 

providing the ground truth for evaluation. The predicted 

hypnogram displays the stages as the model predicts them, 

ideally mirroring the true hypnogram. Small differences 

between the hypnograms suggest the model is mostly accurate 

in predicting sleep stages, though it may struggle to distinguish 

between stages with similar EEG patterns, such as N1 and N2. 

 

 
 

Figure 5. Comparison between hypnogram of true and 

predicted results 
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Table 2. Performance comparison with difference 

classification method 

 
Model Accuracy Cohen Kappa 

NN 0.85234 0.758344 

GB 0.860271 0.825307 

SVM 0.877719 0.801346 

RF 0.899802 0.838389 

RF Smote 0.934926 0.918645 

 

Table 2 highlights the performance of five classification 

models—Neural Network (NN), Gradient Boosting (GB), 

Support Vector Machine (SVM), Random Forest (RF), and 

Random Forest with SMOTE (RF Smote)—in terms of 

Accuracy and Cohen’s Kappa, key metrics for evaluating 

classification effectiveness. 

The RF Smote model stands out with the highest Accuracy 

(93.5%) and Cohen’s Kappa (0.918), demonstrating excellent 

performance and the ability to handle class imbalance 

effectively. This approach ensures consistent and reliable 

predictions across all sleep stages. The standard RF model 

follows with an Accuracy of 90% and a Cohen’s Kappa of 

0.838, indicating robust predictive capabilities and strong 

agreement with true labels. SVM achieves an Accuracy of 

87.8%, slightly outperforming GB (86%) and NN (85.2%). 

However, its Cohen’s Kappa of 0.801 is lower than GB’s 

0.825, suggesting that while SVM has high accuracy, GB 

offers better agreement when accounting for chance. NN lags 

behind, with the lowest Accuracy (85.2%) and Cohen’s Kappa 

(0.758), reflecting relatively weaker performance in this 

context. 

Overall, the RF Smote model delivers the most reliable and 

accurate classification, setting a benchmark for handling 

imbalanced datasets effectively. 

The performance of the model for sleep stage classification 

demonstrates promising results but also highlights areas for 

improvement. The model's high F1-scores for Wake (W) and 

N3, with values of 0.974 and 0.952, respectively, suggest that 

these stages, which exhibit distinctive EEG patterns, are well-

suited to classification by machine learning algorithms. These 

findings are consistent with previous work by Wen [1], who 

also observed high accuracy in detecting Wake and N3 stages 

using EEG data. The clear EEG signatures during these stages, 

such as mixed-frequency activity in wakefulness and delta 

waves in, make them easier for the model to identify. Figure 1 

shows the model’s performance for these stages, where the 

classifier demonstrates a clear separation between the two 

based on EEG features. 

On the other hand, the model showed some difficulty with 

Stage 2 (N2) classification, where the F1-score was 0.899. 

Misclassifications in N2 were primarily between N2 and Stage 

1 (N1), reflecting the similarity in their low-frequency 

components. This issue is well documented in the literature, 

where the transition between N1 and N2 often results in 

confusion, especially when the sleep cycle is disturbed or there 

is artifact noise in the signal [2]. Figure 2 illustrates this 

problem, showing the confusion between N1 and N2, where a 

large portion of N2 samples were incorrectly labeled as N1. 

This misclassification can be particularly problematic in 

clinical settings where accurate staging of light sleep is 

essential for diagnosing sleep disorders. A similar challenge 

was noted by Zhuang et al. [3], who found that automated 

sleep stage classification systems often struggle with the N1-

N2 boundary. 

The misclassification of REM (R) sleep was also notable, 

with many R stages being incorrectly classified as N2 or N1. 

This issue can be attributed to the similarities in the frequency 

bands during REM and light sleep stages, where both can 

exhibit mixed-frequency activity, as discussed by Zhou et al. 

[5]. Figure 3 demonstrates the confusion matrix for REM, 

showing that it is frequently confused with N2. The underlying 

cause is likely due to the shared characteristics of these stages, 

which may need more specific features to distinguish them 

effectively. 

The model’s performance could be improved by 

incorporating more advanced features that better capture the 

temporal and spectral nuances of these stages. As suggested 

by Nguyen et al. [6], multi-scale entropy or wavelet transforms 

could offer better resolution in detecting subtle transitions 

between sleep stages, particularly in light sleep and REM 

stages. These methods are known to enhance classification 

accuracy by focusing on different time scales, which could 

help differentiate between stages like N1, N2, and REM, 

which share similar EEG patterns. 

Despite the promising results, several limitations should be 

acknowledged. The use of SMOTE for class balancing helped 

address some of the class imbalances, but misclassifications in 

the minority stages (N1, N2, and REM) still occurred. This 

reflects the inherent difficulty of classifying these stages 

accurately in the presence of noise or subtle signal transitions. 

Further exploration of advanced synthetic data generation 

techniques, such as Generative Adversarial Networks (GANs), 

could help create more representative samples of 

underrepresented stages [21]. 

Although single-channel EEG data is useful for practical 

applications, it provides limited spatial information compared 

to multi-channel EEG. As seen in previous studies [7], multi-

channel data allows for the extraction of more detailed features 

related to brain activity during sleep. Future research should 

consider multi-channel systems, as they could significantly 

enhance classification performance, particularly for more 

difficult stages like N1 and N2.  

The model’s feature set could be expanded to include more 

advanced spectral analysis methods, such as wavelet 

transforms or time-frequency representations, which have 

been shown to improve classification accuracy for sleep 

staging tasks [12]. Additionally, integrating multi-modal 

signals, such as ECG or respiration data, could help improve 

the robustness of the classifier, especially for distinguishing 

between stages like N1, N2, and REM [6]. 

While Random Forest was effective, exploring more 

complex models, such as deep learning approaches (e.g., 

CNNs or LSTMs), could further improve classification 

accuracy. These models have shown success in other sleep 

stage classification tasks due to their ability to capture 

temporal dependencies in EEG signals [13]. Investigating 

these models could help improve performance, especially for 

more challenging sleep stages like REM. 

 

 

4. CONCLUSIONS 

 

The study demonstrates high accuracy in sleep stage 

classification, with a model achieving 93.5% accuracy and a 

Cohen’s Kappa score of 0.92, indicating solid prediction 

performance. The use of SMOTE to address class imbalance 

effectively improved the model's ability to learn from all 

classes, enhancing its performance on minority classes like N3 

and REM. The comprehensive EEG feature extraction, which 
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includes power spectrum, time-domain statistics, and entropy 

measures, provides a deep understanding of EEG signal 

characteristics, contributing to accurate classification. 

Additionally, the use of a single EEG channel simplifies data 

collection and analysis, reducing costs and complexity 

compared to multiple channels. 

However, the study also has some limitations. The model 

shows lower performance in classifying lighter sleep stages, 

especially N2, with reduced F1-score and sensitivity. This 

indicates that the model struggles to distinguish this stage from 

others. The reliance on a single EEG channel, while reducing 

complexity, may not capture all relevant features of the EEG 

signal compared to using multiple channels. Although 

SMOTE helps manage class imbalance, the original data still 

exhibits uneven class distribution, which can impact the 

model's performance if not properly addressed. Finally, while 

the model performs well on the current dataset, it may not 

generalize easily to other datasets or different populations 

without further validation. 

Overall, while the research presents a strong foundation for 

sleep stage classification, there are areas for improvement and 

considerations for broader application. 

 

 

ACKNOWLEDGMENT 

 

I would like to express my deepest gratitude to my advisors 

and mentors for their invaluable guidance, encouragement, 

and constructive feedback throughout this research. I am also 

thankful to my colleagues and peers for their support and 

collaboration, which greatly enriched this work. 

 

 

REFERENCES  

 

[1] Wen, W. (2021). Sleep quality detection based on EEG 

signals using transfer support vector machine algorithm. 

Frontiers in Neuroscience, 15: 670745. 

https://doi.org/10.3389/fnins.2021.670745 

[2] Liu, J., Wu, D., Wang, Z., Jin, X., Dong, F., Jiang, L., 

Cai, C. (2020). Automatic sleep staging algorithm based 

on random forest and hidden Markov model. Computer 

Modeling in Engineering & Sciences, 123(1): 401-426. 

https://doi.org/10.32604/cmes.2020.08731 

[3] Zhuang, D., Rao, I., Ibrahim, A.K. (2022). A machine 

learning approach to automatic classification of eight 

sleep disorders. arXiv preprint arXiv:2204.06997. 

https://doi.org/10.48550/arXiv.2204.06997 

[4] Houssein, E.H., Hammad, A., Ali, A.A. (2022). Human 

emotion recognition from EEG-based brain–computer 

interface using machine learning: A comprehensive 

review. Neural Computing and Applications, 34(15): 

12527-12557. https://doi.org/10.1007/s00521-022-

07292-4 

[5] Zhou, D., Wang, J., Hu, G., Zhang, J., Li, F., Yan, R., 

Kettunen, L., Chang, Z., Xu, Q., Cong, F. (2022). 

SingleChannelNet: A model for automatic sleep stage 

classification with raw single-channel EEG. Biomedical 

Signal Processing and Control, 75: 103592. 

https://doi.org/10.1101/2020.09.21.306597 

[6] Nguyen, A.T., Nguyen, T., Le, H.K., Pham, H.H., Do, C. 

(2022). A novel deep learning-based approach for sleep 

apnea detection using single-lead ECG signals. In 2022 

Asia-Pacific Signal and Information Processing 

Association Annual Summit and Conference (APSIPA 

ASC), pp. 2046-2052. 

https://doi.org/10.23919/APSIPAASC55919.2022.9979

890 

[7] Permana, K.E., Okamoto, T., Iramina, K. (2018). Single 

channel electroencephalogram measurement with multi-

scale entropy analysis for evaluating day time sleep. In 

6th International Conference on the Development of 

Biomedical Engineering in Vietnam (BME6), pp. 431-

435. https://doi.org/10.1007/978-981-10-4361-1_73 

[8] Berthomier, C., Drouot, X., Herman-Stoïca, M., 

Berthomier, P., Prado, J., Bokar-Thire, D., Benoit, O., 

Mattout, J., d'Ortho, M.P. (2007). Automatic analysis of 

single-channel sleep EEG: Validation in healthy 

individuals. Sleep, 30(11): 1587-1595. 

https://doi.org/10.1093/sleep/30.11.1587 

[9] Zhao, S., Long, F., Wei, X., Ni, X., Wang, H., Wei, B. 

(2022). Evaluation of a single-channel EEG-based sleep 

staging algorithm. International Journal of 

Environmental Research and Public Health, 19(5): 2845. 

https://doi.org/10.3390/ijerph19052845 

[10] Rechichi, I., Zibetti, M., Borzì, L., Olmo, G., Lopiano, L. 

(2021). Single‐channel EEG classification of sleep stages 

based on REM microstructure. Healthcare Technology 

Letters, 8(3): 58-65. https://doi.org/10.1049/htl2.12007 

[11] Jia, Z., Lin, Y., Wang, J., Ning, X., He, Y., Zhou, R., 

Zhou, Y., Lehman, L.W.H. (2021). Multi-view spatial-

temporal graph convolutional networks with domain 

generalization for sleep stage classification. IEEE 

Transactions on Neural Systems and Rehabilitation 

Engineering, 29: 1977-1986. 

https://doi.org/10.1109/TNSRE.2021.3110665 

[12] Tripathy, R.K., Ghosh, S.K., Gajbhiye, P., Acharya, U.R. 

(2020). Development of automated sleep stage 

classification system using multivariate projection-based 

fixed boundary empirical wavelet transform and entropy 

features extracted from multichannel EEG signals. 

Entropy, 22(10): 1141. 

https://doi.org/10.3390/e22101141 

[13] Salamatian, A., Khadem, A. (2020). Automatic sleep 

stage classification using 1D convolutional neural 

network. Frontiers in Biomedical Technologies, 7(3): 

142-150. https://doi.org/10.18502/fbt.v7i3.4616 

[14] Sundararajan, K., Georgievska, S., Te Lindert, B.H., 

Gehrman, P.R., Ramautar, J., Mazzotti, D.R., Sabia, S., 

Weedon, M.N., van Someren, E.J.W., Ridder, L., Wamg, 

J., van Hees, V.T. (2021). Sleep classification from wrist-

worn accelerometer data using random forests. Scientific 

Reports, 11(1): 24. https://doi.org/10.1038/s41598-020-

79217-x 

[15] Hamdi, M., Inan, T. (2023). Enhanced emotion 

recognition through the integration of gated recurrent 

unit and convolutional neural networks using MindWave 

mobile EEG device. Mathematical Modelling of 

Engineering Problems, 10(5): 1643-1656. 

https://doi.org/10.18280/mmep.100514 

[16] Ramdass, P., Ganesan, G. (2023). Leveraging 

neighbourhood component analysis for optimizing 

multilayer feed-forward neural networks in heart disease 

prediction. Mathematical Modelling of Engineering 

Problems, 10(4): 1317-1323. 

https://doi.org/10.18280/mmep.100425 

[17] Mahdi, H.A., Shujaa, M.I., Zghair, E.M. (2023). 

Diagnosis of medical images using Fuzzy Convolutional 

3249



 

Neural Networks. Mathematical Modelling of 

Engineering Problems, 10(4): 1345-1351. 

https://doi.org/10.18280/mmep.100428 

[18] Satapathy, S.K., Bhoi, A.K., Loganathan, D., 

Khandelwal, B., Barsocchi, P. (2021). Machine learning 

with ensemble stacking model for automated sleep 

staging using dual-channel EEG signal. Biomedical 

Signal Processing and Control, 69: 102898. 

https://doi.org/10.1016/j.bspc.2021.102898 

[19] Sundar, G.N., Narmadha, D., Jone, A.A.A., Sagayam, 

K.M., Dang, H., Pomplun, M. (2021). Automated sleep 

stage classification in sleep Apnoea using convolutional 

neural networks. Informatics in Medicine Unlocked, 26: 

100724. https://doi.org/10.1016/j.imu.2021.100724 

[20] Berry, R.B., Gamaldo, C.E., Harding, S.M., Brooks, R., 

Lloyd, R.M., Vaughn, B.V., Marcus, C.L. (2015). 

AASM scoring manual version 2.2 updates: New 

chapters for scoring infant sleep staging and home sleep 

apnea testing. Journal of Clinical Sleep Medicine, 

11(11): 1253-1254. 

[21] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, 

W.P. (2002). SMOTE: Synthetic minority over-sampling 

technique. Journal of Artificial Intelligence Research, 16: 

321-357. https://doi.org/10.1613/jair.953 

[22] Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-

Olmo, M., Rigol-Sanchez, J.P. (2012). An assessment of 

the effectiveness of a Random Forest Classifier for land-

cover classification. ISPRS Journal of Photogrammetry 

and Remote Sensing, 67: 93-104. 

https://doi.org/10.1016/j.isprsjprs.2011.11.002. 

[23] Smith, A., Anand, H., Milosavljevic, S., Rentschler, 

K.M., Pocivavsek, A., Valafar, H. (2021). Application of 

machine learning to sleep stage classification. In 2021 

International Conference on Computational Science and 

Computational Intelligence (CSCI), pp. 349-354. 

https://doi.org/10.1109/CSCI54926.2021.00130 

[24] Lee, Y.J., Lee, J.Y., Cho, J.H., Choi, J.H. (2022). 

Interrater reliability of sleep stage scoring: A meta-

analysis. Journal of Clinical Sleep Medicine, 18(1): 193-

202. https://doi.org/10.5664/jcsm.9538 

[25] Perslev, M., Darkner, S., Kempfner, L., Nikolic, M., 

Jennum, P.J., Igel, C. (2021). U-Sleep: Resilient high-

frequency sleep staging. NPJ Digital Medicine, 4(1): 72. 

https://doi.org/10.1038/s41746-021-00440-5 

[26] Elreedy, D., Atiya, A.F., Kamalov, F. (2024). A 

theoretical distribution analysis of synthetic minority 

oversampling technique (SMOTE) for imbalanced 

learning. Machine Learning, 113(7): 4903-4923. 

https://doi.org/10.1007/s10994-022-06296-4 

 

3250




