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An essential component of human survival is agriculture. Global human welfare is 

guaranteed by accurate and effective agricultural control. Conventional agricultural 

production regulation techniques are time-consuming, labor-intensive, and challenging, 

while pressing agricultural concerns continue to exist. Agricultural systems are 

complicated, multivariate, and unpredictable which can be difficult to control using 

classical control technologies. Model predictive control (MPC) techniques enhance 

spinning efficiency in a constrained temporal domain, which increases precision, and 

can provide very accurate control actions with moderate complexity. This paper 

presents a differential drive robot trajectory tracking approach to achieve minimum 

error using a mathematical model that controls kinematics and dynamics without 

coordinate transformation. By taking into account the physics of the engine and frame, 

a linear state-space dynamic model is developed. The dynamic and kinematic models 

are enhanced to yield one single state-space linear equation. Constraints on manipulated 

and controlled variables of the drive motors supply voltage are considered in the control 

design. To show the performance of the controller, different kinds of trajectories were 

implemented including circular and eight shaped using MATLAB Simulink software. 

The findings are examined critically and analytically. Furthermore, investigation was 

conducted to assess the controller's efficiency both in the presence and absence of 

unforeseen external disruption along with interior parameter change using a number of 

key performance measures, which include rise time, settling time, integral time absolute 

error (ITAE), integral time square error (ITSE), and integral absolute error (IAE). This 

analysis shows that the suggested MPC regulator is more predictable and flexible to 

changes in internal parameters and outside influences for the investigated system. 
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1. INTRODUCTION

An essential component of human survival is agriculture. 

There are still difficult and urgent agricultural issues, and 

traditional methods of regulating agricultural output are labor- 

and time-intensive. Farming systems are intricate, 

multifaceted, and erratic. Classical control systems such as P, 

on/off, proportional integral (PI), and proportion-integration 

differentiation (PID) control are easy to implement, but they 

are not able to regulate time-delayed moving processes. 

Additionally, changing the controller takes a lot of effort and 

time [1]. 

Fuzzy logic (FL) control, hybrid models, non-mathematical 

extended scenarios, and predictable mathematical frameworks 

are also utilized in intelligent techniques such as artificial 

neural network (ANN) control. However, these techniques 

need thinking and picking up information from integrated or 

data-driven knowledge of experts [2]. 

Databases can be computationally costly, intricate, and 

difficult to use in real-world situations. Luckily, MPC 

performs better than older control and is simpler to employ 

than smart computing techniques. Excellent regulation 

precision can be achieved with MPC when the complexity 

level is appropriate. As such, precision agricultural yield meets 

the requirements for this sort of approach [3]. 

A particular kind of robot that has gained a lot of popularity 

is the differential drive mobile robot (DDMR), which is simple 

and easy to manage [4]. The following recent papers address 

robust and adaptive control of WMRs [5-7]. 

The most popular method for tracking a mobile robot's 

trajectory involves using sophisticated controllers to regulate 

its angular and linear velocities, and low-level controllers, 

such as PID controllers, to regulate its wheel speeds [8]. 

However, because of the limitations on inputs or naturally 
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occurring states, it is challenging to achieve high performance 

in realistic implementations. The earlier mentioned works 

have not considered those limitations. Model predictive 

control (MPC) methods offer a simple solution for this. This 

is a significant problem for a WMR since the robot's position 

can be limited to fall inside a safe operating area. Control 

actions that respect actuator limits can be developed by taking 

input constraints into account. 

Moreover, the dynamic system's coordinate transformations 

are no longer required, making the MPC's tuning parameter 

selection process more straightforward. MPC inherently 

generates a piecewise-continuous (non-smooth) control rule 

with respect to the nonholonomic properties of the WMR. 

Furthermore, the majority of DDMR-related article 

concentrates only on their kinematics models. But such a 

theory is only useful for low-speed, low-acceleration, light-

load operations. Therefore, dynamic modeling must be 

considered if mobile robots are to work quickly and with large 

loads. 

MPC is a system of control that uses optimization that 

utilizes the following elements: An objective function that 

articulates desired system behavior; a mathematical model of 

operational limits that must be satisfied; evaluations of the 

system's state at every step; and any data that is currently 

available about impending disturbances [9]. 

A WMR has a nonlinear model. Despite extensive 

development [10-12] the computational effort required for 

nonlinear model predictive control (NMPC) is significantly 

greater than that of the linear version. There is an online 

nonconvex nonlinear programming issue in NMPC. Since 

there are a numerous of selection factors, and obtaining a 

universal minimum is often not possible [13].  

Employing the sequential linearization technique, one can 

generate a linear, variable in time system that can be solved 

using linear MPC. A range of trajectories are used to evaluate 

the performance of the suggested controller. The MPC 

controller performs well in trajectory tracking of the DDMR 

system when there are disruptions. In addition, an analysis is 

conducted to compare the controllers' responses using several 

performance indicators, such as integral squared error (ISE), 

integral absolute error (IAE), and steady state error. 

This research's primary contribution is the construction of a 

linear time variant MPC for a pesticide spraying robot through 

the use of a successive linearization technique. The kinematics 

and dynamics of the robot are both augmented into a single 

state space model. By considering the mobile robot's complex 

kinematic and dynamic model, which takes the actuator and 

chassis dynamics into account, the accuracy of the model is 

significantly increased. 

The other elements of the paper are organized as follows: 

Section 2 presents prior studies in the area of mobile robotics. 

Section 3 describes the DDWMR's nonlinear mathematical 

modeling, while Section 4 presents the control design of the 

MPC. Section 5 discusses the computer simulation results, and 

Section 6 provides the conclusion. 

 

 
2. LITERATURE REVIEW 

 

Ding et al. [3] proposed a nonlinear PID controller to 

regulate the DDMR's trajectory. While trajectory tracking 

control and stability are achieved with the proposed nonlinear 

PID controller, the precision is not as good as it may be. It 

should be noted that the nonlinear PID Controller finds 

widespread application in various industries due to its 

simplicity and easy of design. Nevertheless, employing a PID 

controller to attain satisfactory performance in nonlinear 

systems is challenging. 

Lee et al. [14] compared PID controllers with fuzzy-PID 

controllers for DDMR path tracing. The authors conclude that 

the fuzzy-PID regulator is a good choice for path following 

control of DDMRs when compared to the PID controller. 

However, it should be noted that fuzzy-PID depends heavily 

on qualified expertise and that using fuzzy techniques does not 

necessarily guarantee reliability and robustness always 

ensured by the use of fuzzy approaches. 

On the other hand, in the study conducted by Phuc [15], an 

adaptive fuzzy sliding mode control (AFSMC) was presented 

in for the purpose of controlling the trajectory surveillance of 

a robot system. The effectiveness of the suggested AFSMC 

was shown by the Simulink findings, which displayed good 

resilience and the ability to manage issues like parameter 

change and system disruption while also getting rid of 

chattering. It is important to note, although, that the sole focus 

of this work was on creating a controller, which is not the best 

option for path following control of DDMRs. Furthermore, 

actuator function was overlooked, which might have resulted 

in a decrease in system performance. 

Similarly, Moudoud et al. [16] suggested an adaptive 

terminal integral sliding mode control (ATISMC) for a 

trajectory control of a wheeled mobile robot. It demonstrates 

quick convergence and robustness. But adding terminal sliding 

mode could make things more complicated, particularly for 

dynamic systems that are complicated like mobile robots. 

As reported by Thay et al. [17], SMC was proposed as a 

controller for the trajectory tracking control of a mobile robot 

system. They compared the efficiency of a PID to that of SMC 

controller. The controller based on SMC outperformed the PID 

controller, according to the numerical simulation findings. 

However, due to undesirable control input behavior, the 

chattering in conventional SMC hindered its practical 

application. 

Cáceres et al. [18] suggested an economical and periodic 

predictive controller. In order to maximize agricultural 

productivity, the controller seeks to determine the best 

irrigation method that minimizes energy and water usage 

while maintaining sufficient soil moisture levels for crops. To 

do this, a problem of optimization under constraints is 

formulated by the developed predictive controller using data 

on soil moisture at different depths. Nevertheless, the system 

was not integrated by the inventor with an autonomous robot. 

They solely take soil dynamics into account to maximize soil 

and water content. 

The majority of the article that is currently available focuses 

on controller design and system modeling, primarily using the 

more basic kinematics model. However, using the kinematics 

model alone could not give the best velocity tracking in 

situations requiring fast motion or the transfer of large loads. 

In our approach, we handle this problem by considering both 

kinematic and dynamic models without the need of coordinate 

transformation. More over constraints are applied both on the 

inputs as well as outputs since performance cannot be 

improved in real system implementation due to limitations on 

actuators or naturally occurring states. 
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3. SYSTEM MODEL DESIGN 

 

The paper provides three dynamic models of the robot. The 

kinematic model, the DC motor dynamics, and the chassis 

dynamics.  
 

3.1 Dynamics of the mobile robot 
 

Based on Figure 1, it appears that the differential drive 

mobile robot is supported appropriately by a castor wheel and 

has two wheels connected to two DC series motors. 
 

 
 

Figure 1. DC motor wiring of the robot 
 

Kirchhoff's law, which applies to voltage balancing, and 

moment balancing can be used to determine the dynamics of a 

series DC motor. Apply Kirchhoff's voltage law from Figure 1 

gives: 

 

𝑅𝑎𝑖𝐿(𝑡) + 𝑅𝑧𝑖𝐿(𝑡) + 𝑖𝑅(𝑡) + 𝐿𝑎
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑢𝐿𝑉𝑎(𝑡) −

𝐾𝑏𝜔𝐿(𝑡)  
(1) 

 

𝑅𝑎𝑖𝑅(𝑡) + 𝑅𝑧𝑖𝐿(𝑡) + 𝑖𝑅(𝑡) + 𝐿𝑎
𝑑𝑖𝑅(𝑡)

𝑑𝑡
= 𝑢𝑅𝑉𝑎(𝑡) −

𝐾𝑏𝜔𝑅(𝑡)  
(2) 

 

where, Kb is emf constant. ωR, ωL represent the right and left 

motor speeds.  

The control voltages for the left and right motors are, 

respectively, uR, uL. In Figure 1, every other parameter is 

assigned. 

Considering the balance of moments, we obtain: 
 

𝐽𝑚
𝑑𝜔𝐿

𝑑𝑡
+ 𝐾𝑟𝜔𝐿 + 𝑀𝐿 = 𝐾𝑏𝑖𝐿  (3) 

 

𝐽𝑚
𝑑𝜔𝑅

𝑑𝑡
+ 𝐾𝑟𝜔𝑅 + 𝑀𝑅 = 𝐾𝑏𝑖𝑅  (4) 

 

where, Kr is the rotating resistance coefficient. 

 

Table 1. DC motor parameters 

 
Symbol Amount Unit Meaning 

R 4 Ω Conductivity of windings 

L 0.024 Η Inductance of an engine 

K 0.1 Kgm2s-2A-1 Motor constant 

Rz 0.4 Ω Source resistance 

U0 24 𝜈 Source voltage 

J 0.0025 Kgm2 Inertia of rotor 

Kr 0.00005 Kgm2.s-1 Coefficient of resistance 

PG 25 - Gear box ration 

To verify the model's functionality, the motor parameters in 

Table 1 were used after several attempts using MATLAB 

simulation. 

 

3.2 Chassis dynamics 

 

The vector of angular velocity ωB, which is constant for all 

chassis locations, and the vector of linear velocity vB acting on 

a chassis reference point establish the dynamics of the chassis. 

The intersection of the axis connecting the wheels and the 

normal projection of the center of gravity is known as the 

chassis reference point B. Usually, it is positioned in the 

middle of the axis that connects the wheels and best explained 

by Sharma et al. [19]. 

Equilibrium of the loads and the current situation can be 

used to express the dynamics of the chassis. Applying the 

balance of forces yields Eq. (5). And the balance of moments 

yields Eq. (6) more explained by Dušek et al. [20]. 

 

𝑀𝐿 + 𝑀𝑅 − 𝑟𝐺𝐾𝑣𝑣𝐵 − 𝑟𝐺𝑚
𝑑𝑣𝐵
𝑑𝑡

= 0  (5) 

 

−𝑀𝐿𝐼𝐿 + 𝑀𝑅𝐼𝑅 − 𝐾𝜔𝜔𝐵 − 𝑟𝐺𝐽𝐵
𝑑𝜔𝐵

𝑑𝑡
= 0  (6) 

 

where, Kω is the factor of opposition to turning and PG is the 

gear box transmission ratio. 

The wheels' peripheral velocities (VL,VR) in relation to the 

angular velocity (ωB) and linear velocity (vB) at point B as: 

 

𝑣𝐵 =
𝑟𝐺

𝐼𝐿+𝐼𝑅
(𝐼𝑅𝜔𝐿 + 𝐼𝐿𝜔𝑅)  (7) 

 

𝜔𝐵 =
𝑟𝐺

𝐼𝐿+𝐼𝑅
(−𝜔𝐿 + 𝜔𝑅)  (8) 

 

Input variables are the control signals, uL and uR that 

regulate the motors' supply voltages. By introducing some 

variables, Eqs. (1)-(8) can be reduced to a single state space 

representation. 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 + 𝐷𝑢  (9) 

 

where, 𝑥 = [

𝑖𝐿
𝑖𝑅
𝜔𝐿

𝜔𝑅

] , 𝑢 = [
𝑢𝐿

𝑢𝑅
] , 𝐶 = [

𝑣𝐵

𝜔𝐵
] , 𝐷 = 0. 

 

with constant matrices A, B and C as: 
 

𝐴 =

[
 
 
 
 
 
 −(

𝑅𝑎+𝑅𝑧

𝐿𝑎
) −

𝑅𝑧

𝐿𝑎
−

𝑘𝑏

𝐿𝑎
0

−
𝑅𝑧

𝐿𝑎
−(

𝑅𝑎+𝑅𝑧

𝐿𝑎
) −

𝑘𝑏

𝐿𝑎
0

𝑘𝑏
𝑑𝑟+𝑏𝑟𝐿𝐿

𝑏𝑙𝑑𝑟+𝑏𝑟𝑑𝑙

𝑘𝑏
𝑑𝑙−𝑏𝑙𝐿𝐿

𝑏𝑙𝑑𝑟+𝑏𝑟𝑑𝑙

𝑘𝑏
𝑑𝑟−𝑏𝑟𝐿𝑅

𝑏𝑙𝑑𝑟+𝑏𝑟𝑑𝑙

𝑑𝑙+𝑏𝑙𝐿𝑅

𝑏𝑙𝑑𝑟+𝑏𝑟𝑑𝑙

−
𝑑𝑟𝑎𝑙+𝑏𝑟𝑐𝑙

𝑏𝑙𝑑𝑟+𝑏𝑟𝑑𝑙
−

𝑑𝑟𝑎𝑟−𝑏𝑟𝑐𝑟

𝑏𝑙𝑑𝑟+𝑏𝑟𝑑𝑙

−
𝑑𝑙𝑎𝑙−𝑏𝑙𝑐𝑙

𝑏𝑙𝑑𝑟+𝑏𝑟𝑑𝑙
−

𝑑𝑙𝑎𝑟+𝑏𝑙𝑐𝑟

𝑏𝑙𝑑𝑟+𝑏𝑟𝑑𝑙]
 
 
 
 
 
 

  

𝐵 =

[
 
 
 
 
𝑣𝑎

𝑙𝑎
0

0
0
0

𝑣𝑎

𝑙𝑎

0
0]
 
 
 
 

, 𝐶 = [
0 0 𝑟𝐺

𝐿𝑅

𝐿𝐿+𝐿𝑅
𝑟𝐺

𝐿𝑅

𝐿𝐿+𝐿𝑅

0 0
−𝑟𝐺

𝐿𝐿+𝐿𝑅

𝑟𝐺

𝐿𝐿+𝐿𝑅

] 

 

3.3 Kinematics of the mobile robot 

 

Let α represent the robot's orientation, vB and ωB its linear 
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and angular velocities, and (xB, yB) its global coordinates. Then 

the kinematic equations for the mobile robot with differential 

drive is given by Dušek et al. [21]: 

 
𝑑𝑥𝐵

𝑑𝑡
= 𝑣𝐵𝑐𝑜𝑠𝛼  (10) 

 
𝑑𝑦𝐵

𝑑𝑡
= 𝑣𝐵𝑠𝑖𝑛𝛼  (11) 

 
𝑑𝛼

𝑑𝑡
= 𝜔  (12) 

 

This can be expressed simply as: 

 
𝑑𝑥𝐵

𝑑𝑡
= 𝑓(𝑥𝐵 , 𝑢𝐵)  (13) 

 

where, state is 𝑥𝐵 = [𝑥𝐵  𝑦𝐵  𝛼]𝑇  and control inputs are 𝑢𝐵 =
[𝑣𝐵  𝜔𝐵]𝑇. 

Eqs. (9)-(11), a non-linear model with regard to the 

reference robot, can be used to derive a linear model (see 

Figure 2). Calculating an error model in relation to a reference 

car yields a linear model. To achieve this, think about the 

reference vehicle that Eq. (12) also describes. Thus, its 

trajectory xr and ur are related by: 

 
𝑑𝑥𝑟

𝑑𝑡
= 𝑓(𝑥𝑟 , 𝑢𝑟)  (14) 

 

 
 

Figure 2. Real robot and reference robot coordinate 

 

The parameters for reference are [xr, yr, αr, ωr]. From Eqs. 

(9)-(11) the reference robot's angular velocity, orientation 

angle, and linear velocity may be obtained as: 

 

𝑣𝑟 = √(𝑥̇𝑟)
2 + (𝑦̇𝑟)

2  (15) 

 

𝛼𝑟 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦̇𝑟 , 𝑥̇𝑟)  (16) 

 

𝜔𝑟 = 𝛼̇𝑟 =
𝑥̇𝑟𝑦̈𝑟−𝑦̇𝑟𝑥̈𝑟

√(ẋr)
2+(ẏr)

2
  (17) 

 

It follows that by extending the right side of Eqs. (9)-(11) in 

Taylor series around the point xr, ur and removing the high 

order terms gives: 

 

𝑥̇ = 𝑓(𝑥𝑟 , 𝑢𝑟) +
𝜕𝑓(𝑥,𝑢)

𝜕𝑥
(𝑥𝐵 − 𝑥𝑟) +

𝜕𝑓(𝑥,𝑢)

𝜕𝑥
(𝑢𝐵 − 𝑢𝑟)  (18) 

 

Subtracting Eq. (17) from Eq. (13) and approximate the 

result by the forward difference gives a discrete (LTV) state-

space model: 

 

𝑍(𝑘 + 1) = 𝐴(𝑘)𝑍(𝑘 + 1) + 𝐵(𝑘)𝑢(𝑘)  

𝑌(𝑘) = 𝐶(𝑘)𝑍(𝑘) 
(19) 

 

A discrete error model is created by linearizing the 

kinematic model. Additionally, in order to supplement with a 

kinematic model, the dynamic model must be transformed into 

a discrete error-based model. The error model is the same as 

that of the above representation model since the dynamic 

model is linearly time invariant, but it needs to be discretized.  

Model combination is more explained by Tilahun et al. [22].  

 

𝑥̇𝐷(k + 1) = 𝐴𝐷(𝑘)𝑥𝐷(𝑘) + 𝐵𝐷(𝑘)𝑢𝐷(𝑘) 

𝑦
𝐷
(𝑘) = 𝐶𝐷(𝑘)𝑥𝐷(𝑘) 

(20) 

 

A single mathematical representation with nine states 

(currents, wheel speeds, linear and angular velocities and 

coordinates), two control variables (motor voltage control 

input), and three outputs can be generated by augmenting the 

model, Eq. (19): 

 

𝑍(𝑘 + 1) = 𝐴(𝑘)𝑍(𝑘 + 1) + 𝐵(𝑘)𝑢(𝑘) 

𝑌(𝑘) = 𝐶(𝑘)𝑍(𝑘)  
(21) 

 

where, 

𝐴̅(𝐾) = [

𝐴̅𝐷(4𝑥4) 0(4𝑥5)

𝐶𝐷̅(2𝑥4) 0(2𝑥5)

0(3𝑥4) 𝐵̅𝐾(3𝑥2) 𝐴̅𝐾(3𝑥3)

], 

𝐵̅(𝐾) = [
𝐵̅𝐷(4𝑥2)

0(5𝑥2)
], 

𝐶(̅𝐾) = [0(3𝑥6) 𝐶𝐾̅(3𝑥3)],  

𝑥̅ = [𝑥̅𝐷 𝑢̅𝑘 𝑥̅𝑘], 𝑢̅ = 𝑢̅𝐷. 

 

There is no control over this enlarged state space. We need 

a controlled model for the design model predictive to transport 

the states to any desired location. Over the aforementioned 

state space, a minimal realization is employed. Next, the MPC 

is designed using the robot's controllable model. 

 

3.4 Disturbance Model affecting the DDWAR 

 

The robot's goal is to carry an herbicide tanker and spring it 

to protect the vegetables from harm. When the robot starts 

working, the mass of the liquid occasionally decreases because 

the total weight of the machine equals the weight of the liquid 

in the tank plus the weight of the robot's body. The system's 

operation is altered by a decline in mass. 

 

𝑚 = 𝑚ℎ + 𝑚𝑏  (22) 

 

where, mh is mass of the herbicide and mb is mass of the body 

of the designed robot m is total mass of the robot. Figure 3 

shows the flow of herbicide in very small pipe. 

 

 
 

Figure 3. Flow of herbicide in very small pipe 
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The mass flow rate of the herbicide in the tank can be 

derived from the following equation. 
 

𝑑𝑚ℎ = 𝜌𝑑𝑉;  𝑑𝑉 = 𝐴𝑑𝑥 

𝑑𝑚ℎ = 𝜌𝐴𝑑𝑥; 
𝑑𝑚ℎ

𝑑𝑡
=

𝜌𝐴𝑑𝑥

𝑑𝑡
= 𝜌𝐴𝑣 

(23) 

 

where, ρ=density of herbicide, 
𝑑𝑚ℎ

𝑑𝑡
=mass flow rate, v=velocity 

of herbicide flowing, V=volume of herbicide flowing, A=pipe 

cross sectional area. 

Prior to incorporating the disturbance into the dynamic 

equation, it is crucial to ascertain which specific state it is 

impacting. From Eq. (9) from the state space model recall: 

[
𝑑𝜔𝐿/𝑑𝑡
𝑑𝜔𝑅/𝑑𝑡

] =

[
 
 
 
 𝑘𝑏

𝑑𝑟 + 𝑏𝑟𝐿𝐿

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

𝑘𝑏

𝑑𝑟 − 𝑏𝑟𝐿𝑅

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

𝑑𝑟𝑎𝑙 + 𝑏𝑟𝑐𝑙

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

−𝑑𝑟𝑎𝑟 − 𝑏𝑟𝑐𝑟

𝑏𝑙𝑑𝑟 + 𝑏𝑟 ∗ 𝑑𝑙

𝑘𝑏

𝑑𝑙 − 𝑏𝑙𝐿𝐿

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

𝑑𝑙 + 𝑏𝑙𝐿𝑅

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

−𝑑𝑙𝑎𝑙 − 𝑏𝑙𝑐𝑙

𝑏𝑙𝑑𝑟 + 𝑏𝑟dl

−𝑑𝑙𝑎𝑟 + 𝑏𝑙𝑐𝑟

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙 ]
 
 
 
 

[

𝑖𝐿
𝑖𝑅
𝜔𝐿

𝜔𝑅

] (24) 

The total mass of the robot as the robot moves its mass 

decreases from time to time. This decrease in total mass does 

not affect the whole states or it does not affect the position and 

orientation of the designed robot. But as we already described 

in the state space model the variation of mass alters the angular 

velocity of the robot only. Therefore, due to variation in mass 

the above state space model can be modified into the following 

form: 

 

𝑏𝑙 = 𝐽𝑚 + (𝑚ℎ𝐿𝑅

𝑟2
𝐺

𝐿𝐿 + 𝐿𝑅

) + 𝑚𝑏𝐿𝑅

𝑟2
𝐺

𝐿𝐿 + 𝐿𝑅

 (25) 

 

𝑏𝑟 = 𝐽𝑚 + (𝑚ℎ𝐿𝐿

𝑟2
𝐺

𝐿𝐿 + 𝐿𝑅

) + 𝑚𝑏𝐿𝐿

𝑟2
𝐺

𝐿𝐿 + 𝐿𝑅

 (26) 

 

Since mb is the robot's mass, it is constant over time. Only 

the parameters that contain the mass of the herbicide is 

considered to be known disturbance and its effect is well 

explained in the simulation part. So the known disturbances 

are only 𝑚ℎ𝐿𝑅
𝑟2

𝐺

𝐿𝐿+𝐿𝑅
 and 𝑚ℎ𝐿𝐿

𝑟2
𝐺

𝐿𝐿+𝐿𝑅
 is considered as a 

disturbance. 

 

 

4. MODEL PREDICTIVE CONTROLLER (MPC) 

DESIGN 
 

Optimizing process outcome forecasts across a range of 

foreseeable inputs is the primary goal of the model forecasting 

regulator. This is accomplished by applying an algorithm 

model over the forecast timeline, within a limited time frame. 

Following that, utilizing the new method data and a shifted 

horizon, the issue is solved once more at the next sampling 

time. 

Internal Model Control (IMC) is the original source of 

evolution for the family of control systems known as Model 

Predictive Control (MPC). The processes sector widely 

employ MPC due to its ability to address limitations in an 

optimal way. Like the name suggests, maximum principle 

correction (MPC) relies on forecasts of the set point tracking 

conduct or refusal of disturbances derived from assessments 

of the two historical regulated and modified elements. A 

tuning method is utilized for each forecast to find the optimal 

source for the closed loop response that needs to satisfy 

predefined standards, such as the rate of output or profit 

function maximization [23]. 

MPC constitutes one of the widely prevalent techniques in 

the field of machine control. In actuality, it is one of the few 

cutting-edge control methods still offered by commercial 

industrial control systems today [24]. 

An optimization-based control technique that is ideal for 

meeting to forecast process outputs in the future within a given 

prediction horizon, it makes use of a process model, it, 

considering source and controlled variable restrictions as well 

as the process model, to identify the subsequent inputs for the 

process is called MPC [25]. MPC has been successful because 

it can tolerate MIMO control challenges naturally, handle 

limitations on the manipulated and controlled variables in a 

systematic way, is easy to tune, and is an entirely visible 

techniques relay on certain fundamental domains which permit 

for future extensions [26, 27]. 

In essence, model forecast control computations are carried 

out at every sample interval, which the control designer may 

also specify. Current measurements and forecasts of future 

output values serve as the foundation for these computations. 

An MPC controller primarily performs two sorts of 

computations: control analysis, that contain process 

limitations and other explicitly given variables, and set-point 

calculations. An MPC controller's primary responsibility is to 

ascertain the best course of action for controlling the 

manipulated variable in order to track the system to its set-

point [28, 29]. Figure 4 presents the MPC methodology. 
 

 
 

Figure 4. MPC methodology 
 

The model predictive controller optimizes a quadratic cost 

function to produce an ideal control sequence every time an 

observation interval is conducted. The event is subjected to the 

first control action in this sequence. The revised process 

inspections along with a changed perspective are used to solve 

the optimization issue once more at the subsequent sampling 

period. 

The formulation of the cost function is contingent upon the 

control requirements.  

The proposed forecasting regulator solves an optimization 

challenge to produce an ideal action series at every 

measurement period. The function of objective variables that 

needs to be reduced can be represented as a quadratic 

expression of the current state and the control components: 

 

Φ𝐴 = ∑𝑦̃𝑇
(𝐴+𝑖|𝐴)

𝑊𝑌̃(𝐴 + 𝑖|𝐴) + 𝑢̃𝑇
(𝐴+𝑖−1|𝐴)𝐿𝑢̃(𝐴 + 𝑖 − 1|𝐴)

𝑃

𝑖=1

  (27) 
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where, W≥0 and L>0 are the weighting function, and P is the 

forecasting horizon. 

P, the prediction horizon, is a crucial factor to consider in 

Model Predictive Control. P must change inversely with 

sample time (Ts) if one decides to retain the prediction horizon 

duration (the product P*Ts) constant. It is advised to start with 

the control interval duration (controller property Ts) when 

choosing sample time and to maintain it at that value while we 

adjust the other controller settings. We can edit Ts if the first 

selection was not the best one. We may then need to adjust 

other settings if we choose to do this. 

Choose P so that T ≅ P ∗ Ts  if the required closed-loop 

reaction time is T and the control interval is Ts. 

The control horizon (m) is a crucial element in the design of 

an MPC controller. The number of manipulated variable (MV) 

motions to be optimized at each control interval k is known as 

the control horizon, or m. Select m in the interval between one 

and the forecasting horizon P. The default number is with m = 

2. Every time, the control horizon (m<P) exceeds the 

prediction horizon. 

Keep m<P for the following reasons: Smaller m indicates 

fewer variables to compute in the quadratic programming 

solved at each control interval, resulting in faster 

computations. In the event that the plant incorporates delays, 

m < p is crucial. Thirdly, m encourages the development of an 

internally stable controller, but it does not ensure one.  

 

 
 

Figure 5. MPC design GUI 

 

The MPC controller can be designed using the MPC app, 

using the command line using Simulink graphical tool. 

The sample time and horizons can be changed while 

creating an MPC controller with the MPC app. This is done in 

the Tuning tab's horizon section. Figure 5 shows the MPC 

design GUI. 

We can use state-space matrices, transfer functions, or a 

combination of the two with MPC Toolbox. Delays are 

another option; these are a typical occurrence in industrial 

facilities. A Simulink block for that environment is provided 

by the MPC Toolbox if we choose to model the plant using 

Simulink® graphical tools. It is simple to linearize a nonlinear 

Simulink plant, construct an MPC Controller block using the 

linearized model, and assess the linearized model's control 

over the nonlinear plant. 

 

4.1 Constraints 

 

The controller of a long-range predictive control must 

anticipate constraint violations and adjust control actions 

accordingly. The boundaries on the input are: 

 

umin ≤ u(i) ≤ umax, i ∈ {k, k + N − 1} 
ymin ≤ y(i) ≤ ymax, i ∈ {k + 1, k + N} 

 

Enter the constraint values in the constraints dialog box. 

Click constraints on the tuning tab of the MPC APP to set the 

properties of the controller constraint. 

 

 

5. SIMULATION RESULT 

 

The next phase evaluates the efficiency of the proposed 

control strategy regardless of system perturbation and within 

variable modifications. We will take into account a constant 

state oversights, fluctuating replies, and efficiency indicators 

(like ITSE, IAE, ISE, and ITAE, which are carried out using 

MATLAB/Simulink, in order to determine the effectiveness of 

the proposed controller. Figure 6 depicts the default MPC 

controller structure, while Figure 7 shows a Simulink 

representation of the robotic vehicle with an MPC controller. 

In this paper the three important parameters to use for the 

simulation are prediction horizon P=10, control horizon m=5 

and a sample time of 0.1 s in the MATLAB software. The 

constraints to amplitude of the control variables are: vmin=-

1.2m⁄s, vmax=1.2 m⁄s wmin=-1.2 rad⁄s, wmax=1.2 rad⁄s. 

As previously mentioned, the MPC app allows one to 

import a plant from the MATLAB workspace or even a 

previously designed controller; the plant can be a linearized 

model that was obtained from a Simulink block diagram, or it 

can be a transfer function or state space model. Once a plant 

or controller has been imported, the user can set the properties 

of the input and output signals, including name, type of 

variable (manipulated, measured disturbance or unmeasured 

disturbance), description, physical units, and nominal value. 

In this paper, the Simulink block was used to transmit 

information to the MPC controller. The following diagram 

shows the structure of the MPC toolbox. 

In addition to other information, this window requests the 

number of MVs, measured outputs, and measured 

disturbances (for a feedforward technique). This initial section 

essentially checks if the block diagram's specified settings are 

correct and mostly describes the system. Once this tab has 

been completed, the controller parameters can be accessed. 

Through following the above appropriate procedures for the 

design requirement of MPC the simulation results can be 

analyzed and discussed in the following section. 

Figure 8 shows the simulation result of the linear and 

angular velocity. It is evident from Figure 6, that the control 

inputs fall within the bounds set by the constraints.  

As observed from the simulation result, the linear and 

angular velocity can perfectly track the desired value of 1 m/s 

and 1 rad/sec respectively. The linear velocity achieves the 

desired velocity within a rise time of 0.0723, a settling time of 

0.1892, and a peak time of 0.127 seconds. Likewise, the 

angular velocity achieves the desired velocity with a rise time 

of 0.0710, a settling time of 0.2797, and a peak time of 0.127 

seconds. In Table 2, different error performances are given to 
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show the controllers performance for linear and angular 

velocity. From the table, the average error (average IAE, 

average ISE, average ITSE and average ITAE) are 0.0069705, 

0.0043785, 0.0001321 and 0.00040355 are presented 

respectively. 

 

 
 

Figure 6. Default MPC controller structure 
 

 
 

Figure 7. Simplified Simulink model of the robot with MPC controller 
 

 
 

Figure 8. Angular and linear velocity of DDMR 

 
 

Figure 9. Angular and linear velocity error 
 

Table 2. Analysis of the MPC controller 
 

Controller Type State of Robot Dynamics IAE ISE ITSE ITAE 

Model Predictive Controller 
Linear Velocity 0.006463 0.004172 0.0001182 0.0003351 

Angular Velocity 0.007478 0.004585 0.0001461 0.000472 

 

Table 3. Performance of the controller at different error performance indices 
 

Controller Type State of Robot Dynamics IAE ISE ITSE ITAE 

Model Predictive Controller 

ex 0.01461 0.01151 0.0007337 0.00128 

ey 0.0201 0.01676 0.01516 0.002208 

eθ 0.01397 0.01086 0.0006601 0.001184 
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Figure 10. Position and orientation tracking error for MPC 

controller 

 

 
 

Figure 11. Circular trajectory tracking using MPC 

 

 
 

Figure 12. 8-shape trajectory tracking using MPC controller 

 

As shown in Figure 9, the maximum error for angular 

velocity is 0.162 and linear velocity maximum error is 0.1. 

Since the objective of the robot is to move between crops for 

pesticide spraying purpose this error is relatively very small. 

As presented in Table 3, the average error values which are 

(average IAE, average ISE, average ITSE and average ITAE) 

are respectively, 0.016226, 0.01304, 0.0055179, 0.001557 for 

the linear and angular velocity. 

The mobile robot's trajectory tracking performance with 

model predictive controllers is shown in Figure 10. With an 

astonishingly quick settling time of 0.3646, rise time 0.1020, 

and peak time 0.2414 seconds, the x-position tracking error 

asymptotically approaches zero from an initial error of 1. 

likewise, the y position achieves the desired trajectory which 

is 1 m with a rise time of 0.1482, a settling time of 0.3048, and 

a peak time of 0.3724 with an overshoot of 1.6027. In addition, 

the orientation angle alpha achieves the desired value with rise 

time of 0.1013, settling time of 0.3643, peak time of 0.2371 

seconds. 

To evaluate this research with prior research, the primary 

evaluation variables, such as equilibrium error, settlement 

time, location measuring error, and direction tracking error, 

had been acquired. 

As shown in Figure 10, the tracking errors (ey and eθ) reach 

at maximum value of 0.0825 and 0.15, before reduced to zero 

with a settling time of 0.3048 and 0.3643 respectively. 

In addition to tracking, it is better to show other simulations 

to check the validity of the designed robot performance. We 

have also included circular and eight shaped trajectories. The 

fundamental routine for the mobile machine is chosen to be for 

circular (xref=cos(2*t), yref=sin(2*t)) & 8-shaped (xref=cos(t), 

yref=sin(2*t)) in order to evaluate the tracking capabilities of 

the suggested controller in the simulation. Trajectory tracking 

simulation time for a circular reference trajectory is 10 

seconds, assuming the robot starts at origin (0, 0) and the 

reference trajectory starts at point (1, 0). 

The system's performance response for following the 

circular reference trajectory for the MPC controller is 

indicated in Figure 11. From the figures, we can see that, with 

higher performance, the actual trajectory follows or tracks the 

reference trajectory from the starting point to the end of the 

simulation period allocated.  

In addition, an 8-shape trajectory is generated and uploaded 

to the mobile robot system in order to keep track of its position 

in an appropriate way. The tracking results are shown in Figure 

12. 

 

5.1 Disturbance rejection and sensitivity to internal 

parameter variation 

 

As we explained earlier the mass change of the robot does 

not affect the position of the robot, the orientation of the robot 

and the linear and angular velocity of the robot. to check the 

validity of disturbance rejection capability of the controller we 

modify the parameter of the robot which is mass change of the 

robot and a disturbance is added to the block and we will 

explain its effect in detail. 

In parameter variation we change the variation of mass of 

the robot which is 0.5kg and the rest of the parameters are 

unchanged. This is because the objective of the designed robot 

is to carry an herbicide tanker and its mass changes constantly 

as the robot moves. As an external disturbance we apply a unit 

step signal at a simulation of 2 seconds. 

The linear and angular velocity does not be affected by mass 

change of the robot. but due to the application of external 

disturbance at a time of 2 seconds the error performance 

indices parameters slightly varied but this variation is not 

significant. This is graphically shown in Figure 13. 

The accuracy and efficacy of the controllers against random 

external disturbances were assessed using a variety of 

performance index measures, including integral square error 

(ISE), integral absolute error (IAE), integral time square error 

(ITSE), and integral time absolute error (ITAE). 

The results of the experiment demonstrate that, regardless 

of inner parameter modifications or external disruptions, the 

planned controller operates effectively all the time. The 
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average error performance measures (ISE, IAE, ITSE, and 

ITAE) only encounters a slight modification which is 

(0.004555, 0.008357, 0.0004868, and 0.003301, respectively). 

However, the time domain specification parameters are still 

the same. The settling time for linear motion is 0.1892, 

whereas for angular velocity it is 0.2797. This indicates how 

effectively the proposed controller model forecasting regulator 

(MPC) can manage changes in its internal parameters and 

function even when external influences are present, resulting 

in the lowest amount of tracking error. The performance index 

of the controller for various errors shows that, for ITAE, the 

maximum value of 0.008602 is obtained along Y with an 

external disturbance; for IAE, ITSE, and ISE, the 

corresponding values are 0.02426, 0.002927, and 0.01747. 

The IAE achieves the highest value (0.00282) along with θ and 

external disturbance, whereas ISE, ITSE, and ITAE achieve 

0.01129, 0.001555, and 0.007008. According to the results, the 

biggest error was obtained along the Y-axis with disturbance 

(0.01081) using ITAE, whereas the least error was reached 

along θ with external disturbance (0.001555) using ITSE. This 

is shown in Figure 14. 

 

 
 

Figure 13. Linear & angular velocity with disturbance 

 

 
 

Figure 14. Disturbance rejection using MPC controller 

 

The variation in mass still does not affect the performance 

of the controller but due to external added disturbance signal 

the different measurement error indices are slightly modified 

but not due to internal parameter variation. Agricultural robots 

encounter a number of disturbances. This could be due to 

parameter variation, due to external disturbances, due to soil 

content, due to sloppy and sticky conditions and so on. The 

designed robot is for pesticide spraying purpose. Since the 

mass of herbicide is decrease from time to time this is 

considered as a disturbance and this effect is clearly shown in 

the simulation.  

Better results have been found using the linear model 

predictive controller in comparison to trajectory tracking 

based studies. The results show that we can achieve a minimal 

rise time of 0.1013 and faster settling time of 0.3048 seconds 

using the model predictive controller. 

From the obtained result we can say that the proposed model 

predictive controller has a better disturbance rejection 

capability and internal parameter variation. This is one more 

advantage of using model predictive controller.in section one 

we have explained the unique advantage of model predictive 

controller which is handling of constraints. Due to naturally 

occurring states and actuator limitations it is difficult to 

implement the real system. This disadvantage can be easily 

reversed by using model predictive controller. The capacity of 

MPC to conform to constraints whether they are simple 

limitations on states or controls or more complicated ones sets 

it apart from other advanced control systems. This is especially 

important when the real system is operating close to its limits 

or in potentially collision-prone situations, such autonomous 

robotics. Not only does MPC guarantee safety and operational 

efficiency, but it also improves predictability and 

dependability in contexts that are uncertain and dynamic by 

directly integrating constraints into the control issue. By 

adjusting the limitations or the parameters of the cost function, 

MPC is also readily adjusted and changed. 

However, since having an exact model of the system is not 

always attainable, particularly for non-linear systems, MPC 

requires an accurate model of the system in order to provide 

suitable control inputs. This may not always be the case. Large 

unmodeled external disturbances have the potential to 

seriously impair the MPC controller's performance because 

they are not included in the system model. 

 

 

6. CONCLUSIONS 

 
In this paper, we proposed a differential type machine 

model that considers the dynamics of the actuator and chassis 

in addition to the impacts of kinematics. The model was 

validated by simulations involving real-time scenarios. A 

range of assessment criteria were utilized for performance 

comparison, such as equilibrium error and time domain 

specification parameters as well as error performance indices 

(ISE, IAE, ITSE, and ITAE). 

The suggested model predictive controller demonstrates a 

superior ability to improve trajectory tracking performance 

and robustness, as evidenced by the outcome results utilizing 

both circular and 8-shaped inputs, showing that tracking 

performance remains constant even in the face of uncertainty. 

Moreover, the suggested controller demonstrates flexibility 

with respect to different reference paths, making it an efficient 

choice for dynamic systems. It outperforms typical controllers 

in uncertain settings and generally has extraordinary 

robustness in handling uncertainty. These results confirm the 

suggested controller's viability and suitability for use in real-

world control systems. 

 

 

7. RECOMMENDATIONS 

 

In this work, MPC is suggested for motion control of the 
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differentially driven wheeled agricultural pesticide robot. 

State space representation was used to describe the model of 

the robot, and an augmented model was obtained and used in 

the simulation part. Error minimization is used as a 

performance index for the controller. The constraint only 

applies to the manipulated and controlled variables, but in 

subsequent studies, wheel speeds will also be subject to limits, 

and it is better to include slopy and sticky area of land and 

better to include the resistance effect of soil in the irrigation. 
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