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The paper presents an analysis of tasks performed by the software for automated control 

systems of autonomous electric power plants, leading to the identification of functional 

requirements. This analysis establishes operational modes, such as scheme designer 

mode and autonomous electric power plant monitoring and control mode, defines the 

component library, and outlines requirements for each component. The use of discrete-

deterministic models in the form of digital automata, the research formalizes the 

problem of analyzing and synthesizing control algorithms. The novelty of this 

methodology lies in integrating digital automata with UML diagrams to develop 

adaptive software. By linking UML state diagrams directly with digital automata 

models, the system ensures consistency between conceptual design and code 

implementation. The research contributes to best practices in software engineering for 

complex, distributed control systems. The approach, proposed in the paper, allows 

developers to conceptualize the user interface of automated operator workstations as 

interconnected systems with defined relationships and communication types. 
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1. INTRODUCTION

At present, there is a tendency to move from centralized 

control systems of power plants to distributed control systems, 

which reflect a growing need for enhanced flexibility, 

scalability, and reliability of the systems that have a few 

hierarchical levels. Existing software frameworks for power 

plant automation, such as Supervisory Control and Data 

Acquisition (SCADA) systems, have limitations when applied 

to Autonomous Electric Power Plants (AEPPs). While 

SCADA provides reliable monitoring and remote control 

capabilities, it lacks the adaptability needed to support 

dynamic structural changes within AEPPs. Furthermore, most 

existing control frameworks struggle to provide effective 

solutions for real-time synchronization of diesel-generator 

units (DGUs) and the efficient distribution of active and 

reactive loads. Traditional algorithms for generator 

synchronization and load management are often hardware-

dependent and difficult to modify, which limits their 

applicability in distributed power networks. This lack of 

adaptability is particularly problematic for AEPPs, where 

multiple generators operate in parallel and require constant 

monitoring and reconfiguration based on network conditions. 

 Although papers [1, 2] emphasize the importance of 

distributed systems in modern automation, the specific 

challenges related to AEPPs (e.g., real-time synchronization 

of DGUs, load sharing, and adaptability to dynamic 

configurations) are not addressed. Additionally, the works 

lacks a formalized framework for transitioning from design 

models to executable software. In the context of AEPPs, 

distributed control systems minimize hierarchical layers while 

improving system responsiveness. However, the adoption of 

these systems presents several critical challenges. Specifically, 

developing software for automated control systems (ACS) that 

can reliably monitor, manage, and synchronize complex 

generator networks in real-time remains a key issue. This is 

particularly important given that AEPPs often feature multiple 

DGUs with varying load demands and power distribution 

structures, which must be reconfigured dynamically during 

operation. One of the most difficult stages in the 

implementation of automated control systems (ACS) is the 

development of software that not only controls the operational 

parameters but also adapts to the power plant’s structural 

changes [3, 4]. These papers explore predictive control for 

microgrid systems, analyzing key factors like reliability and 

controllability. It provides insights into load balancing and 

control under uncertain conditions, which align with some of 

the challenges in AEPPs. However, microgrids and AEPPs 

differ in their operational structure, particularly in the 

synchronization of multiple generators and dynamic load 

sharing. Those papers do not cover modular software 

verification or real-time control algorithm synthesis. 

Operators require precise, real-time information about both 

plant parameters and system structure, typically visualized 

Mathematical Modelling of Engineering Problems 
Vol. 11, No. 12, December, 2024, pp. 3420-3430 

Journal homepage: http://iieta.org/journals/mmep 

3420

https://orcid.org/0000-0002-2025-9816
https://orcid.org/0000-0003-1103-4081
https://orcid.org/0000-0002-3159-330X
https://orcid.org/0009-0003-0483-0458
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.111220&domain=pdf


 

through mnemonic diagrams. These diagrams, which use 

visual metaphors to represent key components, facilitate 

intuitive control and monitoring. The core challenges this 

study addresses is the lack of formalized methods for 

designing ACS software that ensures both adaptability to 

structural changes and long-term reliability under AEPP-

specific conditions. 

In the study conducted by Kabbara et al. [5], several 

advances and future directions for virtualized control in power 

systems were considered, but it emphasized the need for 

research into scalable architectures that can handle diverse 

power system components without performance degradation. 

Existing methods, described by Kabbara et al. [5], don't 

sufficiently cover the real-time interaction between virtual 

components and hardware, leading to uncertainty in 

operational performance under stress conditions. 

A critical review of related work highlighted additional 

limitations. SCADA systems, traditionally used for top-level 

control [6, 7] offer reliable monitoring and control but are not 

designed to support dynamic structural changes in AEPPs. 

With regard to the AEPP, the ACS should be able to 

automatically or remotely start and stop DGUs, synchronize 

the diesel-generators (DGs) with the buses of the main 

switchboard (MSB), share the active and reactive load 

between the parallel operating DGs, monitor the status of the 

AEPP main equipment and others. However, existing 

solutions for automating DGUs, such as synchronizing them 

with MSB and balancing active/reactive loads [8, 9] often lack 

the flexibility needed for the dynamic nature of AEPP 

operations.  

Some researches explored IoT technologies for automating 

ship operations [10] and vessel maintenance [10], but he 

application of such technologies in AEPPs remains 

underexplored. The study of Kamolov and Park [10] is 

relevant as it demonstrates the potential of IoT to enhance 

automation. To analyze the reliability of IoT the technique 

described in the study [11] can be used. However, it leaves 

open questions about how these technologies can be integrated 

into AEPP ACS software to support real-time control and 

monitoring. This study aims to fill that gap by exploring how 

advanced software design approaches, informed by IoT 

frameworks, can improve AEPP automation. 

As reported by Bayer et al. [12] and Koc et al. [13], Unified 

Modeling Language (UML) diagrams are widely used in the 

software engineering to visualize system interactions, but their 

use in AEPP automation software is under-researched. UML 

diagrams provide a structured way to model software 

components, but their application in AEPPs presents unique 

challenges, such as the need to adapt to evolving plant 

structures in real-time. However, Koc et al. [13] demonstrated 

that the application of UML to real-time control systems like 

AEPPs is not covered. In this case UML, which is a visual 

language to define and document a system [13, 14], can be 

used to describe scenarios that express how users use a system, 

and how different parts of the system interact with each other. 

Due to the fact that software development for ACS AEPP is a 

complex process, and there are a number of methods for 

assessing software complexity [15]. Every aspect of a system 

or application should be determined to develop software. 

Existing publications [16-18], highlight the use of UML in 

various industries, from electromechanical control systems to 

railway diagnostics, but do not address AEPP-specific 

requirements. UML also offers cost-saving advantages in 

software development [19]. But existing researches lacks 

practical frameworks for using UML in conjunction with 

discrete-deterministic models to handle the specific 

requirements of AEPPs. This paper addresses these gaps by 

proposing a systematic methodology that integrates both tools, 

offering a more formalized approach to designing reliable, 

adaptive ACS software. 

Worku et al. [20] focused on power management and 

synchronization strategies in microgrids using real-time 

control methods. It provides insights into the importance of 

maintaining voltage stability and load balancing to ensure 

system reliability. But it does not provide a comprehensive 

modular software framework or formalized verification 

process for control systems. This can be addressed by 

introducing UML diagrams and discrete-deterministic models 

to develop and verify AEPP software components. A 

hierarchical control system for reconfigurable solar power 

plants was considered by Debnath et al. [21]. The issues how 

power systems can self-adjust to changing operational 

conditions, aligning with the goals of AEPPs, were discussed. 

At the same time, that paper primarily focused on solar-based 

plants and lacks detailed software engineering approaches 

such as formal verification with UML models. 

When developing software for specialized systems like 

AEPPs, it is crucial to use modeling approaches that facilitate 

the formalization and quality assurance of software 

components. As reported by Al-Suod et al. [22], the theory of 

digital automata offers a robust framework for defining 

discrete-deterministic software models. UML state diagrams, 

in particular, can represent the finite state behavior of software 

components. Then the software being developed will be a 

network of interacting digital state machines, obtained by 

composing individual discrete-deterministic models, which 

lends itself well to formalizing the description of the software 

operation process. Also, this deterministic modeling approach 

ensures that AEPP software can be implemented reliably in an 

object-oriented programming environment. 

Existing scientific publications provide useful insights into 

distributed control, automation frameworks, and modeling 

techniques, but significant gaps remain regarding their 

application to AEPPs. In particular, there is limited research 

on software tools and methods that support the real-time, 

remote control of DGUs while accounting for AEPP-specific 

complexities. Currently, the issues of the processes of 

substantiating, evaluating, and selecting options for 

developing ACS for specialized purposes lack formalization 

and hinder the comprehensive consideration of several 

significant parameters when choosing solutions, as was stated 

by Lyaskovskiy et al. [23] and Garcia et al. [24], remain 

unresolved. Therefore, further underscoring the need for 

systematic, adaptable software design approaches. 

The analysis of publications showed that the problems of 

creating specialized software for automated remote control of 

DGUs in real time, taking into account the specifics of work 

in AEPP conditions, are not sufficiently covered. UML is 

typically used for static design and documentation, and its 

integration with digital automata for real-time software 

implementation remains unexplored. Given the fact that 

information technologies are developing extremely rapidly, 

publications of other scientists 5-10 years ago on this issue can 

be considered to have lost their relevance and do not meet 

modern challenges.  

The aim of this research is to address these gaps by 

developing a structured method for designing ACS software 

that meets the unique demands of AEPPs. The research 
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focuses on using UML diagrams and discrete-deterministic 

models to create a software architecture that can adapt to 

changing AEPP structures. UML state diagrams are used to 

graphically represent the behavior of each software 

component. They formalize how components respond to 

various events and how transitions between states occur. By 

leveraging these tools, the aim is to enable the seamless 

transition from conceptual models to code implementation 

while ensuring software reliability, quality, and cost-

efficiency. The results will contribute to the development of 

more advanced, adaptive automation systems for AEPPs, 

enhancing the controllability and resilience of power 

generation processes. 

 

 

2. SOFTWARE REQUIREMENTS AND COMPONENT 

LIBRARY COMPOSITION 

 

The primary function of the top-level software is to 

remotely monitor parameters and control the AEPP. To 

develop the necessary functionality, the software must have 

tools for creating a diagram of an electric power plant, real-

time monitoring and controlling of the AEPP, analyzing the 

modes of operation of DGs and the software. 

Requirements for the software used to monitor parameters 

and control the AEPP can be categorized into three groups that 

are described in Table 1 based on the roles of the users 

involved. 

 

Table 1. The roles of the users 

 
Operator Key Responsibilities 

System Setup 

Operator 

Creates mnemonic diagrams, displays 

the processes at several levels, 

configures component properties, and 

establishes connections between 

components (e.g., resizing, moving, or 

rotating elements). 

Power Plant 

Control Operator 

Monitors real-time processes, 

starts/stops DGUs, synchronizes DGUs 

with the main switchboard, and manages 

load distribution across units, DGUs 

protection, monitors the power quality. 

Analyst 

Analyzes data exchange packets, 

monitors communication channel loads, 

and evaluates DGU operation to 

optimize performance through iterative 

configuration and analysis, forecasts the 

changes in the AEPP load. 

 

Below, the precedents are described in more detail. 

– Graphic display of processes at several levels: display of 

the power plant block diagram; display of electrical 

parameters and states of discrete signals. 

– Starts/stops DGUs requires the presence of a Button 

component (latched or pulsed). 

– DGU protection is a general concept and consists of 

protection against reverse power, loss of excitation, 

maximum current flow, voltage changes beyond 

permissible limits, frequency changes beyond 

permissible limits, overload and insufficient or maximum 

output power. 

– Synchronization system of the DGU with the MSB 

should be represented by a separate component, which 

contains means for initiating the process of automatic 

precise synchronization of the running DGU with the 

network at the hardware level, displaying the current 

values of voltages (RMS) and frequencies of the DGU 

and the network, the phase angle shift between the 

voltages, the possibility of changing synchronization 

settings and parameters of discrete signals for controlling 

generator excitation systems and diesel revolutions 

period. 

– Changing the state of the load consists of connecting or 

disconnecting it from the main switchboard buses and can 

be done by changing the state of the Circuit Breaker 

component. 

– A number of requirements are put forward for the 

distribution of loads (active and reactive) between 

parallel operating DGUs: dividing the DGU sets into 

separate independent sections; availability of means for 

specifying the distribution scheme and time of the 

transient process of load redistribution for each of the 

sections. 

– To monitor the quality of electricity, a separate 

component can be created that will inform the Operator 

when the power quality indicators exceed normal and 

maximum permissible values, and also be able to monitor 

the state of the electric power plants in detail in a separate 

dialog box. 

– Forecasting the results of connecting the load is a means 

of information support for the operator. 

By analyzing the requirements associated with the 

performance of actions by the Power Plant Control Operator, 

it is possible to compile a list of components that should be in 

the software library. Using the software involves a three-stage 

iterative process – creating or modifying a mnemonic diagram 

of the power plant and configuring its components, operating 

the software in its primary mode, and analyzing system 

performance. The first and the third stages appear visually 

similar to the user, so the software usage can be categorized 

into two modes: the first one is the design mode of the 

mnemonic diagram (i.e., AEPP scheme), and the second one 

is the monitoring and control mode of AEPP. 

 

 

3. DEVELOPMENT OF THE SOFTWARE 

STRUCTURE 

 

A key challenge in developing ACS software is ensuring 

that all software components behave predictably under varying 

operational conditions. To address this, this research adopts 

discrete-deterministic models, which represent the behavior of 

each software component as a finite set of states. Each state 

encapsulates a specific operational condition of the 

component, while state transitions occur in response to events, 

such as power fluctuations or load adjustments. This modeling 

approach ensures that the system can respond deterministically 

– meaning that every input leads to a predictable output, 

crucial for AEPP reliability. To formalize these models, UML 

state diagrams are used. UML state diagrams are visual tools 

that depict the different states a system or component can 

occupy and define the transitions between them. In this 

research, each state diagram corresponds to a specific software 

module within the AEPP ACS. 

The first step in the software development is to decide on 

the circuit components. Components are understood as graphic 

symbols and designations corresponding to physical (for 

example, a generator) or virtual (for example, a text field for 

displaying generator parameters) elements of the AEPP. 
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Components can be divided into three groups: 

– Components that have a connection with other 

components (“Circuit Breaker”, “Transformer”, “Diesel”, 

“Generator”, “Induction motor” etc. for drawing up a 

block diagram). 

– A component for communication (“Bus”). 

– Components that have no connection with other 

components. 

Figure 1 is a UML class diagram that shows the 

relationships between core software classes, such as the DGU 

class, synchronization class, and control buttons, the key 

interactions between the system’s components, data flows 

between modules and how commands propagate throughout 

the system. The software architecture for the AEPP control 

system follows a modular, layered design to ensure flexibility, 

scalability, and maintainability. 

In Table 2, the symbols used in Figure 1 and the classes 

designed to perform the functions of monitoring parameters 

and controlling the AEPP are described. The relationships 

between classes are inheritance and aggregation. Each 

component plays a defined role, and their interactions are 

modeled using UML diagrams to maintain consistency 

between design and implementation. Each block in the UML 

class diagram encapsulates a digital state machine whose 

behavior is determined by its functional purpose. Transitions 

between the states of the components are triggered by real-

time data inputs from equipment sensors and control 

commands from the operator interface. By using discrete-

deterministic models, the software ensures that each DGU 

follows a precise sequence of operations, minimizing the risk 

of misoperation. 

The DGU class (K2.1.1), and other classes, inherits basic 

functions from a basic linkable class (K2.1), while the 

synchronization class aggregates real-time input data from 

DGUs and the MSB. The Control Button class (K2.2.2) sends 

commands to DGUs, initiating synchronization or load 

sharing. For example, when the Power Plant Control Operator 

triggers a synchronization request through the Control Button, 

the synchronization class retrieves real-time voltage and 

frequency values from the DGU and MSB (K2.4, K2.5). If the 

conditions match, the synchronization process completes, and 

the DGU transitions to the “Active” state. 

 

 
 

Figure 1. Basic class diagram 

 

The interaction between objects in the system is carried out 

through messages, among which the following groups can be 

distinguished: 

– messages between the work area and components 

regarding graphic actions (denoted conditionally as a set 

of actions 𝑊 = {𝑤1,  𝑤2… } ; these actions are 

implemented using base classes, so the message group 

applies only to base classes and workspace. 

– messages between the work area and components 

regarding data exchange (multiple actions 𝐷 =
{𝑑1,  𝑑2} ); these messages refer to components that 

provide data exchange with automation controllers in 

network mode ("Diesel-generator", "Generator", 

"Automatic switch", "Control button", "LEDs"). 

– messages between components (set of actions 𝑉 =
{𝑣1,  𝑣2}); a group of messages refers to changing the 

color of the buses and related components when the 

Automatic switch state changes and displaying the 

parameters of the generator received during the data 

exchange. 

In Table 2 the correspondence of markings in Figure 1 to 

components and classes is presented. The purpose of DGU is 

to generate electricity and maintains power levels during 

AEPP operation. The DGU component (K2.1.1) interacts with 

the synchronization component to connect to the main 

switchboard. The parameters of DGU are voltage 

(230V/400V), frequency (50/60 Hz), and active power output 

(100-500 kW). Synchronization system synchronizes DGUs 

with the MSB by matching frequency and phase angles. The 

component is represented by the Synchronization button 

(Control button, K2.2.2) on the user interface, settings panel 

(dialog box, K2.4, K2.5), and automated synchronization 

hardware. 
 

Table 2. Correspondence of block names on the diagram to 

components and classes 
 

Component Block Name Class Name Basic Class 

Working field Work area CTestView CView 

A basic linkable 

class 
K 2.1 CStaticNoRsz CStatic 

DGU K 2.1.1 Cd_gEx CStaticNoRsz 

Diesel K 2.1.2 CD CStaticNoRsz 

Generator K 2.1.3 CG CStaticNoRsz 

Induction motor 1 K 2.1.4 CAD CStaticNoRsz 

Induction motor 2 K 2.1.5 CADEx CStaticNoRsz 

Automatic switch K 2.1.6 CSwitch CStaticNoRsz 

Transformer K 2.1.7 CTrans CStaticNoRsz 

A scalable base 

class 
K 2.2 CStaticEx CStatic 

Text field K 2.2.1 CEditEx CEdit 

Control button, 

system button 
K 2.2.2 CButtonEx CButton 

Progress bar K 2.2.3 CProgressEx CProgressBar 

LED 1 K 2.2.4 CLedRound CStaticEx 

LED 2 K 2.2.5 CLedSquare CStaticEx 

Arrow indicator K 2.2.6 CIndicatorArrow CStaticEx 

Bus K 2.3 BUS STRUCT  

Generator 

parameters 

measurement 

dialog 

K 2.4 CVoltCurDlg CDialog 

Diesel parameters 

measurement 

dialog 

K2.5 CDieseIDlg CDialog 

Data exchange 

process display 

dialog 

K2.6 
CCommunication

DIg 
CDialog 
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Figure 2. Interaction between elements of the software 

 

The dialog boxes may contain various indicators (K2.2.3 – 

K2.2.6) are used to show the measured parameters in a user-

friendly manner. The software displays parameter updates 

with a latency of ≤1 second. Updates include generator status, 

load conditions, and synchronization processes. Control 

Button (K2.2.2) components, which can be latched (holds state 

after activation) and non-latched (momentary action), initiates 

DGUs and induction motors (K2.1.4, K2.1.5) start/stop 

commands, synchronizations, and DGUs load sharing 

adjustments. The software should redistribute loads within 2 

seconds following the disconnection of a generator, 

maintaining a load balance error below ±2%. Bus component 

(K2.3) and Automatic switch (K2.1.6) facilitates 

communication between DGUs, transformers (K2.1.7), 

induction motors and the MSB. The Bus component includes 

multiple color-coded connections to represent different states 

of communication and power flow. 

Figure 2 shows the communication flow and state 

transitions among components. 

The Work Area initiates requests to automation hardware 

via a communication bus. Data from the DGUs (e.g., power 

output and frequency) is transmitted to the Load Sharing 

System and visualized in the operator interface. Upon 

detecting anomalies (e.g., voltage fluctuations), the Load 

Sharing System sends corrective commands to the DGUs to 

redistribute the load dynamically. The system waits for real-

time input from DGUs. If a DGU goes offline (“Inactive” 

state), the system initiates a load redistribution process through 

the Load Sharing System. Once load sharing is complete, the 

system returns to normal monitoring mode. 

 

 

4. SOFTWARE OPERATING MODES 

 

The designed software is a system with complex behavior, 

so it is advisable to use an object-oriented programming 

language for its implementation. The software contains a main 

window, consisting of two components – a frame and a work 

area. Since the designed software must have an additional 

menu (for switching program operating modes, setting 

connection parameters, etc.), support working with documents 

(save/restore mnemonic diagrams and settings), and at any 

time interaction can be carried out with only one mnemonic 

diagram, the SDI (single dialog interface) software was chosen 

as the base one. 

The scheme designer mode combines two submodes of 

working with software: creating (or editing) a AEPP 

mnemonic scheme, setting the properties of its components 

and software environment; analysis of AEPP operation and 

software. 

The actions of the User with the dialog windows are 

common to all scheme elements (components and 

Workspace). In the scheme designer mode, the requirement for 

the class is to encapsulate the processes of moving the 

component and creating a connection with it (creating the 

object itself is a task of the Workspace). The logic of the class 

in this mode can be represented as a Mealy state machine𝐴1 =
{𝑄, 𝑋, 𝑌, 𝑓, 𝑔} where 𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6} - the set 

of states of the state machine: q0 – initial state (the object was 

created); q1 – the element is in focus and marked; q2 – 

movement of an object; the state is complex (the logic of 

behavior in this state is shown in Figure 3; the shift is the 

difference between the last remembered point and the 

coordinates of the cursor’s current position, half of the cell is 

a distance equal to half of the grid step in any of the Оx, Оy 

directions or both at once); q3 – the link with the bus is 

possible; q4 – the starting of linking process with the bus; q5 

– the finishing of linking process with the bus; q6 – the object 

was deleted, indicating the final state. 

 

 
 

Figure 3. The behavior of the state machine in the state q2 

 

The valid input actions set is: 

 

 2,1,4,2.3,1.3,2,4.1,3.1,2.1,1.1 wwxxxxxxxxX =
 

 

where, x1.1 – moving the cursor over the object; x1.2 – moving 

the cursor over the object in the area of possible link; x1.3 – 

moving the cursor over the object outside the area of possible 

link; x1.4 – moving the captured cursor; x2 – a click of the left 

mouse button; x3.1– the left mouse button released; x3.2 – the 

left mouse button released in the possible link area; x4 – 

pressing the Delete key; w1– "Remove focus" message; w2 – 

"Change bus" message. 

The set of initial actions: 

 

𝑌 = {𝑤1,  𝑤3,  𝑤4.1,  𝑤4.2,  𝑤4.3,  𝑤5,  𝑤6} 
 

where, w1 – "Remove focus" message; w3 – the message 

"Beginning of bus creation"; w4.1 – the message "Beginning 
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to move the object"; w4.2 – the message "Moving the object 

by one cell"; w4.3 – the message “End of object movement”; 

w5 – the message "End of bus creation"; w6 – "Delete object" 

message; functions f and g show states and output symbols, as 

depicted in Figure 4 [25]. 

Next, for each class, an automaton (final state machine) is 

designed that must implement the behavior of the 

corresponding component. The input and output actions for 

these automats will be receiving/sending messages from/to the 

listed sets. 

 

 
 

Figure 4. The state diagram of the class behavior 
 

 

5. DISCRETE-DETERMINISTIC MODELS OF THE 

SOFTWARE COMPONENTS 

 

In the mode of control and AEPP parameters monitoring, 

the software must perform several tasks: 

– Data exchange with automation equipment includes 

transmitting operator commands and reading, displaying, and 

processing discrete and analog values captured by the 

hardware; 

– Accumulation of statistical data on the load of the 

communication channel – the amount of bytes transmitted and 

received per unit of time; 

– Accumulation of data about the diesel-generator units 

operating modes: the average values of the power they 

generate to the overall load during a specific period. 

A unit of data exchange is a transaction comprising a 

request and its corresponding response – sending and 

receiving data packets using a serial port. The input influences 

associated with messages from the operating system during 

operator interaction with the software, the operation of timers 

and actions with the serial port, are marked as е1 − switching 

the software to the mode of power plant control; е2 − 

switching the software to the mode of the scheme design; е3 − 

the data packet received; е4 − place the cursor within the 

component area; е5 − the change in the structure of the power 

plant; е6 − the timer event; е7 − the load on at least one DGU 

exceeds permissible ranges; е8 − the synchronization window 

was opened; е9 − setting values received; е10 − the status of 

the generator circuit breaker was updated; е11 − the RMS of 

voltages, frequencies and phase difference between voltages 

were gained; е12 − changing reference point values; е13 − the 

control parameters were changed; е14 − the data packet was 

received; е15 − error when opening serial port; е16 − the 

synchronization dialog window was closed; е17 − the start of 

the synchronization process; е18 − the component received the 

data; е19 − mouse left button click; the input variables 

corresponding to the result of performing certain actions, as х1 

− error in data packet; х2 − the error has been resolved; х3 − 

the error cannot be corrected without substituting the 

hardware; х4 − the connection is active: х4.1 − with the at least 

one display components, х4.2 − with one of the DGU 

protection components; х5 − the data has been generated; х6 − 

the request queue contains items; х7 − the data was forwarded 

to the component; х8 − the timer is active; х9 − for DGU 

protection, the data acquired by the Load Sharing System is in 

use; х10 − the data measured independently is used for DGU 

protection; х11 − the direct condition is met; х12 − the opposite 

condition is met; х13 − the DGU operates in parallel with other 

DGUs; х14 − the generator circuit breaker is in the close 

position; х15 − there are no items in the queue; х16 − database 

entry is permitted; х17 − displaying of the data packet contents 

is permitted; х18 − the database connection error; х19 − 

database connection error fixed; х20 − the system for 

correcting the diesel revolutions and/or the generator 

excitation is turned on, and the resulting operations that occur 

when specific combinations of input factors and variables 

marked as z1 − add request packets to the queue: z1.1 − 

Generator parameters (RMS values of voltage and current, 

frequency, and the power factor); z1.2 − the indicators needed 

to ensure the functions of DGU protection; z1.3 − close the 

discrete output; z1.4 − open the discrete output; z1.5 − sync 

parameters and control configurations; z1.6 − the data about 

the generator circuit breaker state; z1.7 − the current values of 

frequencies, voltages, and the phase shift angle between the 

voltage vectors of the MSB bus and the operating DGU; z1.8 

− change synchronization configurations; z1.9 − change 

control configurations; z1.10 − the state of the section's 

generator circuit breakers; z1.11 − the data required to 

calculate the power generated by DGUs operating in parallel; 

z1.12 − enable corrective measures for frequency and voltage 

control; z1.13 − disable corrective actions for frequency and 

voltage regulation; z1.14 − activate the circuit breaker/relay; 

z1.15 − deactivate the circuit breaker/relay; z2 − queue request 

removal; z3 − data transfer to the component; z4 − the timer 

activated; z5 − the data displaying; z6 − the timer disabled; z7 

− create a queue for data exchange; z8 − alter the bus color; z9 

− dispatch the request data packet to the automation hardware; 

z10 − send data to a state that initiates the data exchange 

process; z11 − extract the request from the stack; z12 − initiate 

a permanent queue for requests; z13 − open the serial port; z14 

− close the serial port; z15 − remove the request; z16 − save 

data about the state of loads and loads of the DGU; z17 − show 

the data packets content, then the explained behavior of the 

Work area class in the mode of the power plant control can 

thus be modeled by the finite state machine 𝐴8 =
{𝑄, 𝑋, 𝐸,  𝑍, 𝑓, 𝑔}, where 𝑄 = {𝑞0  −  𝑞8} − automaton states 

set: q0 − initial condition; q1 − awaiting the initiation of the 

data exchange cycle; q2 − pending a reply to the request; q3 − 

pending the database entry; q4 − database entry; q5 − database 

connection error; q6 − waiting for synchronization of the 

diesel generator with the main switchboard buses; q7 − 

synchronization of the diesel generator with the main 

switchboard buses; q8 − waiting for control actions to be 

turned off for frequency and/or voltage control systems; X, E, 

Z − groups of permissible input influences, input parameters 

and resulting actions, described above; f and g − state functions 

and output symbols, presented as a UML state diagram in 

Figure 5 [25]. 

The Generator component behavior can be described as a 
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final state machine 𝐴9 = {𝑄, 𝑋, 𝐸,  𝑍, 𝑓, 𝑔} , where 𝑄 =
{𝑞0  −  𝑞7} denotes the collection of automaton states: q0 – 

the initial condition; q1 – awaiting a response to a request; q2 

– data packet check; q3 – there is no connection with 

automation tools; q4 – transferring data to the DGU protection 

component; q5 – transmission of data to display components; 

q6 – waiting for generator parameter values to be displayed; 

q7 – display of generator parameter values; f and g are state 

functions and output symbols, presented in the form of a UML 

state diagram in Figure 6. 

 

 
 

Figure 5. State diagram of the work area class in the AEPP 

parameters monitoring and control 

 

 
 

Figure 6. UML state diagram of the generator class 
 

 
 

Figure 7. State diagram of the Load Sharing class 

 
 

Figure 8. State diagram of the synchronization system class 

in the monitoring and control mode of AEPP parameters 

 

In the initial state (q0) the component waits for the software 

to enter the power plant monitoring and control mode. When 

this event occurs, the parallel execution of several processes 

begins: data exchange with automation tools (states q1 – q3); 

simultaneous transfer of Generator parameters obtained during 

successful data exchange to the indication components (q4) 

and, if the information flow minimization mode is enabled, to 

the Protection component of this DGU (q5); displaying 

Generator parameters in the tooltip window when moving the 

cursor over the component (q6 – q7). 

The behavior of the Load Sharing System component can 

be described in the form of an automaton 𝐴10 =
{𝑄, 𝑋, 𝐸,  𝑍, 𝑓, 𝑔}, where 𝑄 = {𝑞0  −  𝑞11}, denotes the states 

of the automaton. The UML state diagram is shown in Figure 

7. 

In Figure 7 the states are: q0 – the initial state; q1 – pending 

a response to a request; q2 – data packet check; q3 – no 

connection to automation equipment; q4 – checking the 

section structure; q5 – waiting for the DGU workload to be 

checked; q6 – waiting to receive the power values generated 

by each DGU to the total load of the section; q7 – data packet 

check; q8 – calculation of deviations of real values of DGU 

loads from ideal ones; q9 – waiting for a response to the 

command to enable control actions; q10 – data packet check; 

q11 – no connection to automation equipment; f and g are state 

functions and output symbols. 

When the software switches to the scheme designer mode, 

the Work area sends a relevant message to the Load Sharing 

System. When it is received, the component checks for the 

presence of enabled control actions and, if they are present, 

sends a command to disable them. 

The synchronization system component is a control button 

and associated dialog box that is displayed when the user 

clicks it in the AEPP parameters monitoring and control 

operational mode. The UML state diagram of the 

synchronization system class presented in Figure 8. 
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As stated above, due to the peculiarities of the hardware 

implementation of the synchronization device, when opening 

a dialog box, information exchange with other automation 

tools must be temporarily blocked. Then the algorithm of the 

synchronization system can be represented as an automaton: 

𝐴15 = {𝑄,𝑋, 𝐸,  𝑍, 𝑓, 𝑔} , where 𝑄 = {𝑞0  −  𝑞9} , represents 

the states of the automaton: q0 – initial state; q1 – waiting for 

data; q2 – data packet check; q3 – no connection with 

automation equipment; q4 – checking the condition of the 

generator circuit breaker; q5 – synchronization completed; q6 

– waiting to receive values of voltages, frequencies and phase 

angles; q7 – data packet check; q8 – waiting for the feedback 

from the generator switch to operate; q9 – no connection with 

automation equipment; q10 – waiting for synchronization 

settings to change; q11 – waiting for data about the result of 

changing the settings; q12 – checking the data packet with the 

result of executing the command to change the 

synchronization settings; q13 – waiting for changes in control 

action parameters; q14 – waiting for data about the result of 

changing parameters; q15 – checking a data packet with the 

result of executing a command to change the parameters of 

control actions; q16 – no connection with automation 

equipment; q17 – waiting for process of data exchange; q18 –

pending a response to a request; functions f and g define states 

and output symbols. 

When the dialog box opens, the state machine goes into 

states q1 – q3, corresponding to polling the values of the 

synchronization settings, parameters of control actions for 

correcting the diesel revolutions period and excitation of the 

generator. Next, in state q4, the state of the generator switch is 

polled: if it is closed (the DGU is switched on for parallel 

operation with the main switchboard buses), the 

synchronization system displays this situation and goes to state 

q5, awaiting further user actions. Alternatively, the user can 

initiate the synchronization process at the hardware level by 

clicking the appropriate button in the dialog box, after which 

the processes in the synchronization system are divided into 

three components: data exchange with hardware (q17 – q18), 

changing synchronization settings or control action parameters 

(q10 – q16), generation of queries and display of current 

values of frequency and voltage differences, phase difference 

between the main switchboard bus voltage vectors and the 

generator (q6 – q8). 
 

 

6. SOFTWARE IMPLEMENTATION AND 

VERIFICATION RESULTS 

 

In Figure 9, the main window of the developed software to 

monitor the parameters and control the AEPP is shown. 

Software for automated control systems of AEPP is developed 

using modern tools and technologies for monitoring the 

parameters of power units, power quality and effective 

automated control of AEPP and the process of generating 

electricity. The AEPP control software was implemented 

using C++ programming language and object-oriented 

programming principles, with each software component 

mapped directly to UML classes. The development process 

followed a modular approach, ensuring that components like 

DGUs, load sharing systems, and synchronization modules 

could be independently developed and tested. UML State 

Diagrams described above were used for defining the behavior 

of software modules. Digital automata framework ensures 

discrete-deterministic control by assigning predictable state 

transitions to all modules. 

The first stage before real-time AEPP control involves 

developing the power plant mnemonic diagram and 

configuring its components. To perform these tasks, the 

system setup operator can interact with the component library, 

using drag and drop technology to transfer components from 

the library to the workspace. Critical user interface elements, 

such as the synchronization button (Sync. 1 and Sync. 2), are 

accessible within 1 click from the main window. In case of 

communication failure, the developed software logs the error 

within 5 seconds and notifies the operator with visual and 

audible alarms. 

 

 
 

Figure 9. The main window of the software for AEPP control 
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One of the most important stages is software verification 

(testing). Software quality requirements [26, 27] is regulated 

by the square software quality model, based on ISO/IEC 

(25000-25099) standards. Functional testing is typically 

conducted in multiple stages, including unit, integration, and 

system testing. The testing process follows a structured 

sequence of actions: first, the criteria for test coverage are 

defined; next, a comprehensive set of test scenarios is 

developed; finally, a report is prepared documenting the test 

results. Unit testing is focused on verifying the individual 

behavior of components (e.g., DGU start/stop commands). 

Each unit was modeled as a finite-state machine, and its 

functionality was tested by simulating all possible state 

transitions. During the integration testing it was verified that 

modules interacted correctly (e.g., DGU integration with the 

synchronization system). Testing was conducted under both 

normal and failure scenarios to ensure robustness, such as 

communication failure recovery. System testing serves to 

verify the tools required by the Analysts to perform tasks such 

as analyzing data exchange packets, monitoring traffic 

statistics of communication channels, and reviewing the 

operational schedules of power units and electrical loads. This 

verification can only be conducted after the software has been 

in operation for a certain period in the power system control 

mode. Test metrics such as latency (response time), 

synchronization time, and load sharing efficiency were 

measured. Suitability is the sole functional attribute that can 

be assessed through this stage of testing. 

The user interface shown in Figure 9 was tested for 

usability. The methods for evaluating practicality metrics are 

outlined by Hanaa et al. [28], with testing, peer review, and 

surveys identified as the most commonly used approaches. For 

the software responsible for monitoring parameters and 

controlling AEPPs, the survey method was selected as the 

primary tool for assessing usability. The survey involved 10 

users to assess practicality indicators. Using the collected data, 

the normalized average values of these indicators were 

calculated through the method of summarizing and grouping 

the results from statistical observations [22]: 
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where, k – normalization coefficient (maximum value is 10); 

Sij – evaluation of the j-th indicator by the i-th user; mj – 

number of surveyed users. The attribute values are then 

calculated by applying weighting coefficients of importance 

and performing additive convolution [22]: 
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where, 𝑝𝑖 𝑗
(𝑛)

– the weight coefficient of the i-th indicator of the 

j-th attribute; Sij – normalized average statistical value of the 

i-th indicator of the j-th attribute; mj – the number of indicators 

of the j-th attribute. The quantitative software quality 

characteristics obtained using Eq. (1) and Eq. (2) are presented 

in Table 3. 

 

Table 3. The software quality characteristics 

 
Characteristics Value 

Suitability 0.91 

Interoperability 0.86 

Accuracy 0.81 

Overall functionality score 0.86 

Ergonomics 0.84 

Clarity 0.89 

Learning efficiency 0.83 

Overall usability score 0.86 

 

Table 4. Additional test metrics 

 
Test Metric Result 

DGUs synchronization time ≤10 seconds 

Load sharing time 
≤2 seconds after DGU 

connection/disconnection 

Parameters monitoring 

latency 
≤1 second 

Accuracy of load sharing ±2% error 

 

The results of the developed software testing and 

verification carried out by Al-Suod et al. [22]. The developed 

software was also implemented at the enterprise LLC NVP 

"Inter Electro" (Mykolaiv, Ukraine), and in the specialized 

laboratory of the Admiral Makarov National University of 

Shipbuilding. Additional test metrics obtained experimentally 

during the use of the software are shown in Table 4. 

The results confirm that the developed software met its 

design aims for real-time control, accuracy, and modularity. 

The modular verification methodology, using UML-based 

state modeling and digital automata, ensured the predictability 

of operations under dynamic conditions. The used testing 

approach validated both the discrete-deterministic models and 

the software’s ability to meet the functional requirements of 

AEPP control. The quantitative results demonstrate the 

system’s reliability, adaptability, and performance, addressing 

key gaps in existing solutions and contributing to the 

development of more advanced automation frameworks for 

AEPPs. 

 

 

7. CONCLUSIONS 

 

This research contributes to the development of adaptive 

ACS software for AEPPs by combining UML diagrams with 

discrete-deterministic models. The proposed methodology 

ensures predictable software behavior, smooth design-to-code 

transitions, and adaptability to changing system 

configurations. 

Based on the analysis of the tasks solved by the ACS AEPP 

software, the requirements for its functionality were described, 

which made it possible to determine the operating modes of 

the software (scheme designer mode and the AEPP monitoring 

and control mode), the composition of the component library 

and the requirements for each component. The discrete-

deterministic models of ACS AEPP software components 

were developed using the concept of digital automata. These 

models enabled the formalization of the analysis and synthesis 

of control algorithms, ensuring that the behavior of each 

software component is predictable and systematically defined. 

The adoption of UML state diagrams as a specification 

language facilitated a seamless and formal transition from 

system requirements to algorithmic behavior and 
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corresponding program code, ensuring consistency throughout 

the development process. 

The scientific novelty of this research lies in the integration 

of discrete-deterministic models with UML state diagrams for 

AEPP control software. While previous studies have 

employed these methods individually, their combined 

application to formalize both algorithm synthesis and software 

verification in the context of AEPP automation is novel. This 

approach not only ensures a more reliable transition from 

design to code but also introduces a methodology for 

hierarchical and modular software verification, significantly 

improving the efficiency and accuracy of testing processes for 

complex, distributed systems. The resulting framework 

provides a robust, scalable solution that aligns with the latest 

advancements in control theory and automation, addressing 

critical challenges in the development of ACS for AEPPs. By 

addressing the challenges of software reliability, modularity, 

and real-time control, this study lays the foundation for more 

advanced automation solutions in AEPPs, meeting the 

demands of modern power generation. The methodology 

proposed in this work goes beyond AEPPs and has the 

potential to influence other domains that require adaptive 

control systems, such as microgrids, industrial automation, 

and smart grids. By demonstrating the practical use of UML 

in tandem with digital automata, this research contributes to 

best practices in software engineering for complex, distributed 

control systems. 
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