
The Use of Discrete-Deterministic Models in the Development of Software for Controlling

Autonomous Electric Power Plants

Mahmoud M.S. Al-Suod1,2 , Mohammad S. Zannon3* , Oleksandr Ushkarenko4 , Olha Dorohan4

1 Electrical Engineering Department, Al-Ahliyya Amman University, Amman 19328, Jordan
2 Electrical and Mechatronics Engineering Department, Tafila Technical University, At-Tafilah 66110, Jordan
3 Department of Mathematics, Tafila Technical University, At-Tafilah 66110, Jordan
4 Electrical Engineering Department, Admiral Makarov National University of Shipbuilding, Mykolaiv 54050, Ukraine

Corresponding Author Email: zanno1ms@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.111220 ABSTRACT

Received: 7 August 2024

Revised: 13 October 2024

Accepted: 20 October 2024

Available online: 31 December 2024

The paper presents an analysis of tasks performed by the software for automated control

systems of autonomous electric power plants, leading to the identification of functional

requirements. This analysis establishes operational modes, such as scheme designer

mode and autonomous electric power plant monitoring and control mode, defines the

component library, and outlines requirements for each component. The use of discrete-

deterministic models in the form of digital automata, the research formalizes the

problem of analyzing and synthesizing control algorithms. The novelty of this

methodology lies in integrating digital automata with UML diagrams to develop

adaptive software. By linking UML state diagrams directly with digital automata

models, the system ensures consistency between conceptual design and code

implementation. The research contributes to best practices in software engineering for

complex, distributed control systems. The approach, proposed in the paper, allows

developers to conceptualize the user interface of automated operator workstations as

interconnected systems with defined relationships and communication types.

Keywords:

software development, electric power station,

digital automata, UML diagrams

1. INTRODUCTION

At present, there is a tendency to move from centralized

control systems of power plants to distributed control systems,

which reflect a growing need for enhanced flexibility,

scalability, and reliability of the systems that have a few

hierarchical levels. Existing software frameworks for power

plant automation, such as Supervisory Control and Data

Acquisition (SCADA) systems, have limitations when applied

to Autonomous Electric Power Plants (AEPPs). While

SCADA provides reliable monitoring and remote control

capabilities, it lacks the adaptability needed to support

dynamic structural changes within AEPPs. Furthermore, most

existing control frameworks struggle to provide effective

solutions for real-time synchronization of diesel-generator

units (DGUs) and the efficient distribution of active and

reactive loads. Traditional algorithms for generator

synchronization and load management are often hardware-

dependent and difficult to modify, which limits their

applicability in distributed power networks. This lack of

adaptability is particularly problematic for AEPPs, where

multiple generators operate in parallel and require constant

monitoring and reconfiguration based on network conditions.

 Although papers [1, 2] emphasize the importance of

distributed systems in modern automation, the specific

challenges related to AEPPs (e.g., real-time synchronization

of DGUs, load sharing, and adaptability to dynamic

configurations) are not addressed. Additionally, the works

lacks a formalized framework for transitioning from design

models to executable software. In the context of AEPPs,

distributed control systems minimize hierarchical layers while

improving system responsiveness. However, the adoption of

these systems presents several critical challenges. Specifically,

developing software for automated control systems (ACS) that

can reliably monitor, manage, and synchronize complex

generator networks in real-time remains a key issue. This is

particularly important given that AEPPs often feature multiple

DGUs with varying load demands and power distribution

structures, which must be reconfigured dynamically during

operation. One of the most difficult stages in the

implementation of automated control systems (ACS) is the

development of software that not only controls the operational

parameters but also adapts to the power plant’s structural

changes [3, 4]. These papers explore predictive control for

microgrid systems, analyzing key factors like reliability and

controllability. It provides insights into load balancing and

control under uncertain conditions, which align with some of

the challenges in AEPPs. However, microgrids and AEPPs

differ in their operational structure, particularly in the

synchronization of multiple generators and dynamic load

sharing. Those papers do not cover modular software

verification or real-time control algorithm synthesis.

Operators require precise, real-time information about both

plant parameters and system structure, typically visualized

Mathematical Modelling of Engineering Problems
Vol. 11, No. 12, December, 2024, pp. 3420-3430

Journal homepage: http://iieta.org/journals/mmep

3420

https://orcid.org/0000-0002-2025-9816
https://orcid.org/0000-0003-1103-4081
https://orcid.org/0000-0002-3159-330X
https://orcid.org/0009-0003-0483-0458
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.111220&domain=pdf

through mnemonic diagrams. These diagrams, which use

visual metaphors to represent key components, facilitate

intuitive control and monitoring. The core challenges this

study addresses is the lack of formalized methods for

designing ACS software that ensures both adaptability to

structural changes and long-term reliability under AEPP-

specific conditions.

In the study conducted by Kabbara et al. [5], several

advances and future directions for virtualized control in power

systems were considered, but it emphasized the need for

research into scalable architectures that can handle diverse

power system components without performance degradation.

Existing methods, described by Kabbara et al. [5], don't

sufficiently cover the real-time interaction between virtual

components and hardware, leading to uncertainty in

operational performance under stress conditions.

A critical review of related work highlighted additional

limitations. SCADA systems, traditionally used for top-level

control [6, 7] offer reliable monitoring and control but are not

designed to support dynamic structural changes in AEPPs.

With regard to the AEPP, the ACS should be able to

automatically or remotely start and stop DGUs, synchronize

the diesel-generators (DGs) with the buses of the main

switchboard (MSB), share the active and reactive load

between the parallel operating DGs, monitor the status of the

AEPP main equipment and others. However, existing

solutions for automating DGUs, such as synchronizing them

with MSB and balancing active/reactive loads [8, 9] often lack

the flexibility needed for the dynamic nature of AEPP

operations.

Some researches explored IoT technologies for automating

ship operations [10] and vessel maintenance [10], but he

application of such technologies in AEPPs remains

underexplored. The study of Kamolov and Park [10] is

relevant as it demonstrates the potential of IoT to enhance

automation. To analyze the reliability of IoT the technique

described in the study [11] can be used. However, it leaves

open questions about how these technologies can be integrated

into AEPP ACS software to support real-time control and

monitoring. This study aims to fill that gap by exploring how

advanced software design approaches, informed by IoT

frameworks, can improve AEPP automation.

As reported by Bayer et al. [12] and Koc et al. [13], Unified

Modeling Language (UML) diagrams are widely used in the

software engineering to visualize system interactions, but their

use in AEPP automation software is under-researched. UML

diagrams provide a structured way to model software

components, but their application in AEPPs presents unique

challenges, such as the need to adapt to evolving plant

structures in real-time. However, Koc et al. [13] demonstrated

that the application of UML to real-time control systems like

AEPPs is not covered. In this case UML, which is a visual

language to define and document a system [13, 14], can be

used to describe scenarios that express how users use a system,

and how different parts of the system interact with each other.

Due to the fact that software development for ACS AEPP is a

complex process, and there are a number of methods for

assessing software complexity [15]. Every aspect of a system

or application should be determined to develop software.

Existing publications [16-18], highlight the use of UML in

various industries, from electromechanical control systems to

railway diagnostics, but do not address AEPP-specific

requirements. UML also offers cost-saving advantages in

software development [19]. But existing researches lacks

practical frameworks for using UML in conjunction with

discrete-deterministic models to handle the specific

requirements of AEPPs. This paper addresses these gaps by

proposing a systematic methodology that integrates both tools,

offering a more formalized approach to designing reliable,

adaptive ACS software.

Worku et al. [20] focused on power management and

synchronization strategies in microgrids using real-time

control methods. It provides insights into the importance of

maintaining voltage stability and load balancing to ensure

system reliability. But it does not provide a comprehensive

modular software framework or formalized verification

process for control systems. This can be addressed by

introducing UML diagrams and discrete-deterministic models

to develop and verify AEPP software components. A

hierarchical control system for reconfigurable solar power

plants was considered by Debnath et al. [21]. The issues how

power systems can self-adjust to changing operational

conditions, aligning with the goals of AEPPs, were discussed.

At the same time, that paper primarily focused on solar-based

plants and lacks detailed software engineering approaches

such as formal verification with UML models.

When developing software for specialized systems like

AEPPs, it is crucial to use modeling approaches that facilitate

the formalization and quality assurance of software

components. As reported by Al-Suod et al. [22], the theory of

digital automata offers a robust framework for defining

discrete-deterministic software models. UML state diagrams,

in particular, can represent the finite state behavior of software

components. Then the software being developed will be a

network of interacting digital state machines, obtained by

composing individual discrete-deterministic models, which

lends itself well to formalizing the description of the software

operation process. Also, this deterministic modeling approach

ensures that AEPP software can be implemented reliably in an

object-oriented programming environment.

Existing scientific publications provide useful insights into

distributed control, automation frameworks, and modeling

techniques, but significant gaps remain regarding their

application to AEPPs. In particular, there is limited research

on software tools and methods that support the real-time,

remote control of DGUs while accounting for AEPP-specific

complexities. Currently, the issues of the processes of

substantiating, evaluating, and selecting options for

developing ACS for specialized purposes lack formalization

and hinder the comprehensive consideration of several

significant parameters when choosing solutions, as was stated

by Lyaskovskiy et al. [23] and Garcia et al. [24], remain

unresolved. Therefore, further underscoring the need for

systematic, adaptable software design approaches.

The analysis of publications showed that the problems of

creating specialized software for automated remote control of

DGUs in real time, taking into account the specifics of work

in AEPP conditions, are not sufficiently covered. UML is

typically used for static design and documentation, and its

integration with digital automata for real-time software

implementation remains unexplored. Given the fact that

information technologies are developing extremely rapidly,

publications of other scientists 5-10 years ago on this issue can

be considered to have lost their relevance and do not meet

modern challenges.

The aim of this research is to address these gaps by

developing a structured method for designing ACS software

that meets the unique demands of AEPPs. The research

3421

focuses on using UML diagrams and discrete-deterministic

models to create a software architecture that can adapt to

changing AEPP structures. UML state diagrams are used to

graphically represent the behavior of each software

component. They formalize how components respond to

various events and how transitions between states occur. By

leveraging these tools, the aim is to enable the seamless

transition from conceptual models to code implementation

while ensuring software reliability, quality, and cost-

efficiency. The results will contribute to the development of

more advanced, adaptive automation systems for AEPPs,

enhancing the controllability and resilience of power

generation processes.

2. SOFTWARE REQUIREMENTS AND COMPONENT

LIBRARY COMPOSITION

The primary function of the top-level software is to

remotely monitor parameters and control the AEPP. To

develop the necessary functionality, the software must have

tools for creating a diagram of an electric power plant, real-

time monitoring and controlling of the AEPP, analyzing the

modes of operation of DGs and the software.

Requirements for the software used to monitor parameters

and control the AEPP can be categorized into three groups that

are described in Table 1 based on the roles of the users

involved.

Table 1. The roles of the users

Operator Key Responsibilities

System Setup

Operator

Creates mnemonic diagrams, displays

the processes at several levels,

configures component properties, and

establishes connections between

components (e.g., resizing, moving, or

rotating elements).

Power Plant

Control Operator

Monitors real-time processes,

starts/stops DGUs, synchronizes DGUs

with the main switchboard, and manages

load distribution across units, DGUs

protection, monitors the power quality.

Analyst

Analyzes data exchange packets,

monitors communication channel loads,

and evaluates DGU operation to

optimize performance through iterative

configuration and analysis, forecasts the

changes in the AEPP load.

Below, the precedents are described in more detail.

– Graphic display of processes at several levels: display of

the power plant block diagram; display of electrical

parameters and states of discrete signals.

– Starts/stops DGUs requires the presence of a Button

component (latched or pulsed).

– DGU protection is a general concept and consists of

protection against reverse power, loss of excitation,

maximum current flow, voltage changes beyond

permissible limits, frequency changes beyond

permissible limits, overload and insufficient or maximum

output power.

– Synchronization system of the DGU with the MSB

should be represented by a separate component, which

contains means for initiating the process of automatic

precise synchronization of the running DGU with the

network at the hardware level, displaying the current

values of voltages (RMS) and frequencies of the DGU

and the network, the phase angle shift between the

voltages, the possibility of changing synchronization

settings and parameters of discrete signals for controlling

generator excitation systems and diesel revolutions

period.

– Changing the state of the load consists of connecting or

disconnecting it from the main switchboard buses and can

be done by changing the state of the Circuit Breaker

component.

– A number of requirements are put forward for the

distribution of loads (active and reactive) between

parallel operating DGUs: dividing the DGU sets into

separate independent sections; availability of means for

specifying the distribution scheme and time of the

transient process of load redistribution for each of the

sections.

– To monitor the quality of electricity, a separate

component can be created that will inform the Operator

when the power quality indicators exceed normal and

maximum permissible values, and also be able to monitor

the state of the electric power plants in detail in a separate

dialog box.

– Forecasting the results of connecting the load is a means

of information support for the operator.

By analyzing the requirements associated with the

performance of actions by the Power Plant Control Operator,

it is possible to compile a list of components that should be in

the software library. Using the software involves a three-stage

iterative process – creating or modifying a mnemonic diagram

of the power plant and configuring its components, operating

the software in its primary mode, and analyzing system

performance. The first and the third stages appear visually

similar to the user, so the software usage can be categorized

into two modes: the first one is the design mode of the

mnemonic diagram (i.e., AEPP scheme), and the second one

is the monitoring and control mode of AEPP.

3. DEVELOPMENT OF THE SOFTWARE

STRUCTURE

A key challenge in developing ACS software is ensuring

that all software components behave predictably under varying

operational conditions. To address this, this research adopts

discrete-deterministic models, which represent the behavior of

each software component as a finite set of states. Each state

encapsulates a specific operational condition of the

component, while state transitions occur in response to events,

such as power fluctuations or load adjustments. This modeling

approach ensures that the system can respond deterministically

– meaning that every input leads to a predictable output,

crucial for AEPP reliability. To formalize these models, UML

state diagrams are used. UML state diagrams are visual tools

that depict the different states a system or component can

occupy and define the transitions between them. In this

research, each state diagram corresponds to a specific software

module within the AEPP ACS.

The first step in the software development is to decide on

the circuit components. Components are understood as graphic

symbols and designations corresponding to physical (for

example, a generator) or virtual (for example, a text field for

displaying generator parameters) elements of the AEPP.

3422

Components can be divided into three groups:

– Components that have a connection with other

components (“Circuit Breaker”, “Transformer”, “Diesel”,

“Generator”, “Induction motor” etc. for drawing up a

block diagram).

– A component for communication (“Bus”).

– Components that have no connection with other

components.

Figure 1 is a UML class diagram that shows the

relationships between core software classes, such as the DGU

class, synchronization class, and control buttons, the key

interactions between the system’s components, data flows

between modules and how commands propagate throughout

the system. The software architecture for the AEPP control

system follows a modular, layered design to ensure flexibility,

scalability, and maintainability.

In Table 2, the symbols used in Figure 1 and the classes

designed to perform the functions of monitoring parameters

and controlling the AEPP are described. The relationships

between classes are inheritance and aggregation. Each

component plays a defined role, and their interactions are

modeled using UML diagrams to maintain consistency

between design and implementation. Each block in the UML

class diagram encapsulates a digital state machine whose

behavior is determined by its functional purpose. Transitions

between the states of the components are triggered by real-

time data inputs from equipment sensors and control

commands from the operator interface. By using discrete-

deterministic models, the software ensures that each DGU

follows a precise sequence of operations, minimizing the risk

of misoperation.

The DGU class (K2.1.1), and other classes, inherits basic

functions from a basic linkable class (K2.1), while the

synchronization class aggregates real-time input data from

DGUs and the MSB. The Control Button class (K2.2.2) sends

commands to DGUs, initiating synchronization or load

sharing. For example, when the Power Plant Control Operator

triggers a synchronization request through the Control Button,

the synchronization class retrieves real-time voltage and

frequency values from the DGU and MSB (K2.4, K2.5). If the

conditions match, the synchronization process completes, and

the DGU transitions to the “Active” state.

Figure 1. Basic class diagram

The interaction between objects in the system is carried out

through messages, among which the following groups can be

distinguished:

– messages between the work area and components

regarding graphic actions (denoted conditionally as a set

of actions 𝑊 = {𝑤1,  𝑤2… } ; these actions are

implemented using base classes, so the message group

applies only to base classes and workspace.

– messages between the work area and components

regarding data exchange (multiple actions 𝐷 =
{𝑑1,  𝑑2}); these messages refer to components that

provide data exchange with automation controllers in

network mode ("Diesel-generator", "Generator",

"Automatic switch", "Control button", "LEDs").

– messages between components (set of actions 𝑉 =
{𝑣1,  𝑣2}); a group of messages refers to changing the

color of the buses and related components when the

Automatic switch state changes and displaying the

parameters of the generator received during the data

exchange.

In Table 2 the correspondence of markings in Figure 1 to

components and classes is presented. The purpose of DGU is

to generate electricity and maintains power levels during

AEPP operation. The DGU component (K2.1.1) interacts with

the synchronization component to connect to the main

switchboard. The parameters of DGU are voltage

(230V/400V), frequency (50/60 Hz), and active power output

(100-500 kW). Synchronization system synchronizes DGUs

with the MSB by matching frequency and phase angles. The

component is represented by the Synchronization button

(Control button, K2.2.2) on the user interface, settings panel

(dialog box, K2.4, K2.5), and automated synchronization

hardware.

Table 2. Correspondence of block names on the diagram to

components and classes

Component Block Name Class Name Basic Class

Working field Work area CTestView CView

A basic linkable

class
K 2.1 CStaticNoRsz CStatic

DGU K 2.1.1 Cd_gEx CStaticNoRsz

Diesel K 2.1.2 CD CStaticNoRsz

Generator K 2.1.3 CG CStaticNoRsz

Induction motor 1 K 2.1.4 CAD CStaticNoRsz

Induction motor 2 K 2.1.5 CADEx CStaticNoRsz

Automatic switch K 2.1.6 CSwitch CStaticNoRsz

Transformer K 2.1.7 CTrans CStaticNoRsz

A scalable base

class
K 2.2 CStaticEx CStatic

Text field K 2.2.1 CEditEx CEdit

Control button,

system button
K 2.2.2 CButtonEx CButton

Progress bar K 2.2.3 CProgressEx CProgressBar

LED 1 K 2.2.4 CLedRound CStaticEx

LED 2 K 2.2.5 CLedSquare CStaticEx

Arrow indicator K 2.2.6 CIndicatorArrow CStaticEx

Bus K 2.3 BUS STRUCT

Generator

parameters

measurement

dialog

K 2.4 CVoltCurDlg CDialog

Diesel parameters

measurement

dialog

K2.5 CDieseIDlg CDialog

Data exchange

process display

dialog

K2.6
CCommunication

DIg
CDialog

3423

Figure 2. Interaction between elements of the software

The dialog boxes may contain various indicators (K2.2.3 –

K2.2.6) are used to show the measured parameters in a user-

friendly manner. The software displays parameter updates

with a latency of ≤1 second. Updates include generator status,

load conditions, and synchronization processes. Control

Button (K2.2.2) components, which can be latched (holds state

after activation) and non-latched (momentary action), initiates

DGUs and induction motors (K2.1.4, K2.1.5) start/stop

commands, synchronizations, and DGUs load sharing

adjustments. The software should redistribute loads within 2

seconds following the disconnection of a generator,

maintaining a load balance error below ±2%. Bus component

(K2.3) and Automatic switch (K2.1.6) facilitates

communication between DGUs, transformers (K2.1.7),

induction motors and the MSB. The Bus component includes

multiple color-coded connections to represent different states

of communication and power flow.

Figure 2 shows the communication flow and state

transitions among components.

The Work Area initiates requests to automation hardware

via a communication bus. Data from the DGUs (e.g., power

output and frequency) is transmitted to the Load Sharing

System and visualized in the operator interface. Upon

detecting anomalies (e.g., voltage fluctuations), the Load

Sharing System sends corrective commands to the DGUs to

redistribute the load dynamically. The system waits for real-

time input from DGUs. If a DGU goes offline (“Inactive”

state), the system initiates a load redistribution process through

the Load Sharing System. Once load sharing is complete, the

system returns to normal monitoring mode.

4. SOFTWARE OPERATING MODES

The designed software is a system with complex behavior,

so it is advisable to use an object-oriented programming

language for its implementation. The software contains a main

window, consisting of two components – a frame and a work

area. Since the designed software must have an additional

menu (for switching program operating modes, setting

connection parameters, etc.), support working with documents

(save/restore mnemonic diagrams and settings), and at any

time interaction can be carried out with only one mnemonic

diagram, the SDI (single dialog interface) software was chosen

as the base one.

The scheme designer mode combines two submodes of

working with software: creating (or editing) a AEPP

mnemonic scheme, setting the properties of its components

and software environment; analysis of AEPP operation and

software.

The actions of the User with the dialog windows are

common to all scheme elements (components and

Workspace). In the scheme designer mode, the requirement for

the class is to encapsulate the processes of moving the

component and creating a connection with it (creating the

object itself is a task of the Workspace). The logic of the class

in this mode can be represented as a Mealy state machine𝐴1 =
{𝑄, 𝑋, 𝑌, 𝑓, 𝑔} where 𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6} - the set

of states of the state machine: q0 – initial state (the object was

created); q1 – the element is in focus and marked; q2 –

movement of an object; the state is complex (the logic of

behavior in this state is shown in Figure 3; the shift is the

difference between the last remembered point and the

coordinates of the cursor’s current position, half of the cell is

a distance equal to half of the grid step in any of the Оx, Оy

directions or both at once); q3 – the link with the bus is

possible; q4 – the starting of linking process with the bus; q5

– the finishing of linking process with the bus; q6 – the object

was deleted, indicating the final state.

Figure 3. The behavior of the state machine in the state q2

The valid input actions set is:

 2,1,4,2.3,1.3,2,4.1,3.1,2.1,1.1 wwxxxxxxxxX =

where, x1.1 – moving the cursor over the object; x1.2 – moving

the cursor over the object in the area of possible link; x1.3 –

moving the cursor over the object outside the area of possible

link; x1.4 – moving the captured cursor; x2 – a click of the left

mouse button; x3.1– the left mouse button released; x3.2 – the

left mouse button released in the possible link area; x4 –

pressing the Delete key; w1– "Remove focus" message; w2 –

"Change bus" message.

The set of initial actions:

𝑌 = {𝑤1,  𝑤3,  𝑤4.1,  𝑤4.2,  𝑤4.3,  𝑤5,  𝑤6}

where, w1 – "Remove focus" message; w3 – the message

"Beginning of bus creation"; w4.1 – the message "Beginning

3424

to move the object"; w4.2 – the message "Moving the object

by one cell"; w4.3 – the message “End of object movement”;

w5 – the message "End of bus creation"; w6 – "Delete object"

message; functions f and g show states and output symbols, as

depicted in Figure 4 [25].

Next, for each class, an automaton (final state machine) is

designed that must implement the behavior of the

corresponding component. The input and output actions for

these automats will be receiving/sending messages from/to the

listed sets.

Figure 4. The state diagram of the class behavior

5. DISCRETE-DETERMINISTIC MODELS OF THE

SOFTWARE COMPONENTS

In the mode of control and AEPP parameters monitoring,

the software must perform several tasks:

– Data exchange with automation equipment includes

transmitting operator commands and reading, displaying, and

processing discrete and analog values captured by the

hardware;

– Accumulation of statistical data on the load of the

communication channel – the amount of bytes transmitted and

received per unit of time;

– Accumulation of data about the diesel-generator units

operating modes: the average values of the power they

generate to the overall load during a specific period.

A unit of data exchange is a transaction comprising a

request and its corresponding response – sending and

receiving data packets using a serial port. The input influences

associated with messages from the operating system during

operator interaction with the software, the operation of timers

and actions with the serial port, are marked as е1 − switching

the software to the mode of power plant control; е2 −

switching the software to the mode of the scheme design; е3 −

the data packet received; е4 − place the cursor within the

component area; е5 − the change in the structure of the power

plant; е6 − the timer event; е7 − the load on at least one DGU

exceeds permissible ranges; е8 − the synchronization window

was opened; е9 − setting values received; е10 − the status of

the generator circuit breaker was updated; е11 − the RMS of

voltages, frequencies and phase difference between voltages

were gained; е12 − changing reference point values; е13 − the

control parameters were changed; е14 − the data packet was

received; е15 − error when opening serial port; е16 − the

synchronization dialog window was closed; е17 − the start of

the synchronization process; е18 − the component received the

data; е19 − mouse left button click; the input variables

corresponding to the result of performing certain actions, as х1

− error in data packet; х2 − the error has been resolved; х3 −

the error cannot be corrected without substituting the

hardware; х4 − the connection is active: х4.1 − with the at least

one display components, х4.2 − with one of the DGU

protection components; х5 − the data has been generated; х6 −

the request queue contains items; х7 − the data was forwarded

to the component; х8 − the timer is active; х9 − for DGU

protection, the data acquired by the Load Sharing System is in

use; х10 − the data measured independently is used for DGU

protection; х11 − the direct condition is met; х12 − the opposite

condition is met; х13 − the DGU operates in parallel with other

DGUs; х14 − the generator circuit breaker is in the close

position; х15 − there are no items in the queue; х16 − database

entry is permitted; х17 − displaying of the data packet contents

is permitted; х18 − the database connection error; х19 −

database connection error fixed; х20 − the system for

correcting the diesel revolutions and/or the generator

excitation is turned on, and the resulting operations that occur

when specific combinations of input factors and variables

marked as z1 − add request packets to the queue: z1.1 −

Generator parameters (RMS values of voltage and current,

frequency, and the power factor); z1.2 − the indicators needed

to ensure the functions of DGU protection; z1.3 − close the

discrete output; z1.4 − open the discrete output; z1.5 − sync

parameters and control configurations; z1.6 − the data about

the generator circuit breaker state; z1.7 − the current values of

frequencies, voltages, and the phase shift angle between the

voltage vectors of the MSB bus and the operating DGU; z1.8

− change synchronization configurations; z1.9 − change

control configurations; z1.10 − the state of the section's

generator circuit breakers; z1.11 − the data required to

calculate the power generated by DGUs operating in parallel;

z1.12 − enable corrective measures for frequency and voltage

control; z1.13 − disable corrective actions for frequency and

voltage regulation; z1.14 − activate the circuit breaker/relay;

z1.15 − deactivate the circuit breaker/relay; z2 − queue request

removal; z3 − data transfer to the component; z4 − the timer

activated; z5 − the data displaying; z6 − the timer disabled; z7

− create a queue for data exchange; z8 − alter the bus color; z9

− dispatch the request data packet to the automation hardware;

z10 − send data to a state that initiates the data exchange

process; z11 − extract the request from the stack; z12 − initiate

a permanent queue for requests; z13 − open the serial port; z14

− close the serial port; z15 − remove the request; z16 − save

data about the state of loads and loads of the DGU; z17 − show

the data packets content, then the explained behavior of the

Work area class in the mode of the power plant control can

thus be modeled by the finite state machine 𝐴8 =
{𝑄, 𝑋, 𝐸,  𝑍, 𝑓, 𝑔}, where 𝑄 = {𝑞0  −  𝑞8} − automaton states

set: q0 − initial condition; q1 − awaiting the initiation of the

data exchange cycle; q2 − pending a reply to the request; q3 −

pending the database entry; q4 − database entry; q5 − database

connection error; q6 − waiting for synchronization of the

diesel generator with the main switchboard buses; q7 −

synchronization of the diesel generator with the main

switchboard buses; q8 − waiting for control actions to be

turned off for frequency and/or voltage control systems; X, E,

Z − groups of permissible input influences, input parameters

and resulting actions, described above; f and g − state functions

and output symbols, presented as a UML state diagram in

Figure 5 [25].

The Generator component behavior can be described as a

3425

final state machine 𝐴9 = {𝑄, 𝑋, 𝐸,  𝑍, 𝑓, 𝑔} , where 𝑄 =
{𝑞0  −  𝑞7} denotes the collection of automaton states: q0 –

the initial condition; q1 – awaiting a response to a request; q2

– data packet check; q3 – there is no connection with

automation tools; q4 – transferring data to the DGU protection

component; q5 – transmission of data to display components;

q6 – waiting for generator parameter values to be displayed;

q7 – display of generator parameter values; f and g are state

functions and output symbols, presented in the form of a UML

state diagram in Figure 6.

Figure 5. State diagram of the work area class in the AEPP

parameters monitoring and control

Figure 6. UML state diagram of the generator class

Figure 7. State diagram of the Load Sharing class

Figure 8. State diagram of the synchronization system class

in the monitoring and control mode of AEPP parameters

In the initial state (q0) the component waits for the software

to enter the power plant monitoring and control mode. When

this event occurs, the parallel execution of several processes

begins: data exchange with automation tools (states q1 – q3);

simultaneous transfer of Generator parameters obtained during

successful data exchange to the indication components (q4)

and, if the information flow minimization mode is enabled, to

the Protection component of this DGU (q5); displaying

Generator parameters in the tooltip window when moving the

cursor over the component (q6 – q7).

The behavior of the Load Sharing System component can

be described in the form of an automaton 𝐴10 =
{𝑄, 𝑋, 𝐸,  𝑍, 𝑓, 𝑔}, where 𝑄 = {𝑞0  −  𝑞11}, denotes the states

of the automaton. The UML state diagram is shown in Figure

7.

In Figure 7 the states are: q0 – the initial state; q1 – pending

a response to a request; q2 – data packet check; q3 – no

connection to automation equipment; q4 – checking the

section structure; q5 – waiting for the DGU workload to be

checked; q6 – waiting to receive the power values generated

by each DGU to the total load of the section; q7 – data packet

check; q8 – calculation of deviations of real values of DGU

loads from ideal ones; q9 – waiting for a response to the

command to enable control actions; q10 – data packet check;

q11 – no connection to automation equipment; f and g are state

functions and output symbols.

When the software switches to the scheme designer mode,

the Work area sends a relevant message to the Load Sharing

System. When it is received, the component checks for the

presence of enabled control actions and, if they are present,

sends a command to disable them.

The synchronization system component is a control button

and associated dialog box that is displayed when the user

clicks it in the AEPP parameters monitoring and control

operational mode. The UML state diagram of the

synchronization system class presented in Figure 8.

3426

As stated above, due to the peculiarities of the hardware

implementation of the synchronization device, when opening

a dialog box, information exchange with other automation

tools must be temporarily blocked. Then the algorithm of the

synchronization system can be represented as an automaton:

𝐴15 = {𝑄,𝑋, 𝐸,  𝑍, 𝑓, 𝑔} , where 𝑄 = {𝑞0  −  𝑞9} , represents

the states of the automaton: q0 – initial state; q1 – waiting for

data; q2 – data packet check; q3 – no connection with

automation equipment; q4 – checking the condition of the

generator circuit breaker; q5 – synchronization completed; q6

– waiting to receive values of voltages, frequencies and phase

angles; q7 – data packet check; q8 – waiting for the feedback

from the generator switch to operate; q9 – no connection with

automation equipment; q10 – waiting for synchronization

settings to change; q11 – waiting for data about the result of

changing the settings; q12 – checking the data packet with the

result of executing the command to change the

synchronization settings; q13 – waiting for changes in control

action parameters; q14 – waiting for data about the result of

changing parameters; q15 – checking a data packet with the

result of executing a command to change the parameters of

control actions; q16 – no connection with automation

equipment; q17 – waiting for process of data exchange; q18 –

pending a response to a request; functions f and g define states

and output symbols.

When the dialog box opens, the state machine goes into

states q1 – q3, corresponding to polling the values of the

synchronization settings, parameters of control actions for

correcting the diesel revolutions period and excitation of the

generator. Next, in state q4, the state of the generator switch is

polled: if it is closed (the DGU is switched on for parallel

operation with the main switchboard buses), the

synchronization system displays this situation and goes to state

q5, awaiting further user actions. Alternatively, the user can

initiate the synchronization process at the hardware level by

clicking the appropriate button in the dialog box, after which

the processes in the synchronization system are divided into

three components: data exchange with hardware (q17 – q18),

changing synchronization settings or control action parameters

(q10 – q16), generation of queries and display of current

values of frequency and voltage differences, phase difference

between the main switchboard bus voltage vectors and the

generator (q6 – q8).

6. SOFTWARE IMPLEMENTATION AND

VERIFICATION RESULTS

In Figure 9, the main window of the developed software to

monitor the parameters and control the AEPP is shown.

Software for automated control systems of AEPP is developed

using modern tools and technologies for monitoring the

parameters of power units, power quality and effective

automated control of AEPP and the process of generating

electricity. The AEPP control software was implemented

using C++ programming language and object-oriented

programming principles, with each software component

mapped directly to UML classes. The development process

followed a modular approach, ensuring that components like

DGUs, load sharing systems, and synchronization modules

could be independently developed and tested. UML State

Diagrams described above were used for defining the behavior

of software modules. Digital automata framework ensures

discrete-deterministic control by assigning predictable state

transitions to all modules.

The first stage before real-time AEPP control involves

developing the power plant mnemonic diagram and

configuring its components. To perform these tasks, the

system setup operator can interact with the component library,

using drag and drop technology to transfer components from

the library to the workspace. Critical user interface elements,

such as the synchronization button (Sync. 1 and Sync. 2), are

accessible within 1 click from the main window. In case of

communication failure, the developed software logs the error

within 5 seconds and notifies the operator with visual and

audible alarms.

Figure 9. The main window of the software for AEPP control

3427

One of the most important stages is software verification

(testing). Software quality requirements [26, 27] is regulated

by the square software quality model, based on ISO/IEC

(25000-25099) standards. Functional testing is typically

conducted in multiple stages, including unit, integration, and

system testing. The testing process follows a structured

sequence of actions: first, the criteria for test coverage are

defined; next, a comprehensive set of test scenarios is

developed; finally, a report is prepared documenting the test

results. Unit testing is focused on verifying the individual

behavior of components (e.g., DGU start/stop commands).

Each unit was modeled as a finite-state machine, and its

functionality was tested by simulating all possible state

transitions. During the integration testing it was verified that

modules interacted correctly (e.g., DGU integration with the

synchronization system). Testing was conducted under both

normal and failure scenarios to ensure robustness, such as

communication failure recovery. System testing serves to

verify the tools required by the Analysts to perform tasks such

as analyzing data exchange packets, monitoring traffic

statistics of communication channels, and reviewing the

operational schedules of power units and electrical loads. This

verification can only be conducted after the software has been

in operation for a certain period in the power system control

mode. Test metrics such as latency (response time),

synchronization time, and load sharing efficiency were

measured. Suitability is the sole functional attribute that can

be assessed through this stage of testing.

The user interface shown in Figure 9 was tested for

usability. The methods for evaluating practicality metrics are

outlined by Hanaa et al. [28], with testing, peer review, and

surveys identified as the most commonly used approaches. For

the software responsible for monitoring parameters and

controlling AEPPs, the survey method was selected as the

primary tool for assessing usability. The survey involved 10

users to assess practicality indicators. Using the collected data,

the normalized average values of these indicators were

calculated through the method of summarizing and grouping

the results from statistical observations [22]:

mk
S

m

i

ji

j


== 11


(1)

where, k – normalization coefficient (maximum value is 10);

Sij – evaluation of the j-th indicator by the i-th user; mj –

number of surveyed users. The attribute values are then

calculated by applying weighting coefficients of importance

and performing additive convolution [22]:

()()


=

=

=
j

j

m

i

n
jijim

i

ji

j pS

p

A
1

1

1

(2)

where, 𝑝𝑖 𝑗
(𝑛)

– the weight coefficient of the i-th indicator of the

j-th attribute; Sij – normalized average statistical value of the

i-th indicator of the j-th attribute; mj – the number of indicators

of the j-th attribute. The quantitative software quality

characteristics obtained using Eq. (1) and Eq. (2) are presented

in Table 3.

Table 3. The software quality characteristics

Characteristics Value

Suitability 0.91

Interoperability 0.86

Accuracy 0.81

Overall functionality score 0.86

Ergonomics 0.84

Clarity 0.89

Learning efficiency 0.83

Overall usability score 0.86

Table 4. Additional test metrics

Test Metric Result

DGUs synchronization time ≤10 seconds

Load sharing time
≤2 seconds after DGU

connection/disconnection

Parameters monitoring

latency
≤1 second

Accuracy of load sharing ±2% error

The results of the developed software testing and

verification carried out by Al-Suod et al. [22]. The developed

software was also implemented at the enterprise LLC NVP

"Inter Electro" (Mykolaiv, Ukraine), and in the specialized

laboratory of the Admiral Makarov National University of

Shipbuilding. Additional test metrics obtained experimentally

during the use of the software are shown in Table 4.

The results confirm that the developed software met its

design aims for real-time control, accuracy, and modularity.

The modular verification methodology, using UML-based

state modeling and digital automata, ensured the predictability

of operations under dynamic conditions. The used testing

approach validated both the discrete-deterministic models and

the software’s ability to meet the functional requirements of

AEPP control. The quantitative results demonstrate the

system’s reliability, adaptability, and performance, addressing

key gaps in existing solutions and contributing to the

development of more advanced automation frameworks for

AEPPs.

7. CONCLUSIONS

This research contributes to the development of adaptive

ACS software for AEPPs by combining UML diagrams with

discrete-deterministic models. The proposed methodology

ensures predictable software behavior, smooth design-to-code

transitions, and adaptability to changing system

configurations.

Based on the analysis of the tasks solved by the ACS AEPP

software, the requirements for its functionality were described,

which made it possible to determine the operating modes of

the software (scheme designer mode and the AEPP monitoring

and control mode), the composition of the component library

and the requirements for each component. The discrete-

deterministic models of ACS AEPP software components

were developed using the concept of digital automata. These

models enabled the formalization of the analysis and synthesis

of control algorithms, ensuring that the behavior of each

software component is predictable and systematically defined.

The adoption of UML state diagrams as a specification

language facilitated a seamless and formal transition from

system requirements to algorithmic behavior and

3428

corresponding program code, ensuring consistency throughout

the development process.

The scientific novelty of this research lies in the integration

of discrete-deterministic models with UML state diagrams for

AEPP control software. While previous studies have

employed these methods individually, their combined

application to formalize both algorithm synthesis and software

verification in the context of AEPP automation is novel. This

approach not only ensures a more reliable transition from

design to code but also introduces a methodology for

hierarchical and modular software verification, significantly

improving the efficiency and accuracy of testing processes for

complex, distributed systems. The resulting framework

provides a robust, scalable solution that aligns with the latest

advancements in control theory and automation, addressing

critical challenges in the development of ACS for AEPPs. By

addressing the challenges of software reliability, modularity,

and real-time control, this study lays the foundation for more

advanced automation solutions in AEPPs, meeting the

demands of modern power generation. The methodology

proposed in this work goes beyond AEPPs and has the

potential to influence other domains that require adaptive

control systems, such as microgrids, industrial automation,

and smart grids. By demonstrating the practical use of UML

in tandem with digital automata, this research contributes to

best practices in software engineering for complex, distributed

control systems.

ACKNOWLEDGMENT

This research supported by the Ukrainian Ministry of

Education and Science and was carried out within the

scientific and technical development project “Development of

energy-efficient systems for generating and converting electric

power for demagnetization systems of small ships” (Grant

number: 0124U001522), stage 2 “Development of scientific

and technical provisions for the organization of an automated

control system and software for managing the processes of

generation and conversion of electric power of the

autonomous power plant to ensure the operation of

demagnetization systems of small ships”.

REFERENCES

[1] Tkacik, M., Jadlovsky, J., Jadlovska, S., Jadlovska, A.,

Tkacik, T. (2023). Modeling and analysis of distributed

control systems: Proposal of a methodology. Processes,

12(1): 5. https://doi.org/10.3390/pr12010005

[2] Adebayo, D., Chinedu, U. (2022). An overview of

distributed generation in power plants. International

Journal of Frontline Research in Engineering and

Technology, 1: 027-033.

https://doi.org/10.56355/ijfret.2022.1.1.0001

[3] Romashkin, M., Vlasov, V., Moshev, E. (2024).

Development of software for the management of the

maintenance of equipment of thermal power plants.

Applied Mathematics and Control Sciences, 3: 95-108.

https://doi.org/10.15593/2499-9873/2023.3.07

[4] Han, F., Zio, E. (2018). Modeling an electric power

microgrid by model predictive control for analyzing its

characteristics from reliability, controllability and

topological perspectives. Proceedings of the Institution

of Mechanical Engineers, Part O: Journal of Risk and

Reliability, 232: 216-224.

https://doi.org/10.1177/1748006X17744382

[5] Kabbara, N., Mohand, O., Nait, B., Gibescu, M.,

Camargo, L.R., et al. (2022). Towards software-defined

protection, automation, and control in power systems:

Concepts, state of the art, and future challenges.

Energies, 15(24): 9362.

https://doi.org/10.3390/en15249362

[6] Narmania, D., Seturidze, R., Machitidze, M., Davitaia,

S., Maghradze, M. (2023). The improvement ways of

SCADA system management in power energy.

Economics and Business, 15(3): 152-171.

https://dspace.tsu.ge/handle/123456789/2460

[7] Sayed, K., Abo-Khalil, A.G., Eltamaly, A.M. (2021).

Wind power plants control systems based on SCADA

system. Control and Operation of Grid-Connected Wind

Energy Systems, 109-151. https://doi.org/10.1007/978-

3-030-64336-2_6

[8] Al-Suod, M.M.S., Alexander, U., Dorogan, O. (2014).

Monitoring and automatic control for ship power plants

based logical algorithms. International Journal of

Advanced Computer Research, 4(4): 966-972.

[9] Kindjock, J. (2021). Design technique for load-sharing

and monitoring of a power plant using an intelligent

control technique. International Journal for Research in

Applied Science and Engineering Technology, 9: 1687-

1698. https://doi.org/10.22214/ijraset.2021.39057

[10] Kamolov, A., Park, S. (2018). An IoT based smart

berthing (parking) system for vessels and ports. In

Proceedings of the International Conference on Mobile

and Wireless Technology (ICMWT 2018), pp. 129-139.

https://doi.org/10.1007/978-981-13-1059-1_13

[11] Singh, K., Singh, Y., Barak, D., Yadav, M., Özen, E.

(2023). Parametric evaluation techniques for reliability

of Internet of Things (IoT). International Journal of

Computational Methods and Experimental

Measurements, 11(2): 123-134.

https://doi.org/10.18280/ijcmem.110207

[12] Bayer, D., Aydin, Ö., Celik, M. (2021). An ICOR

approach towards ship maintenance software

development. International Journal of Maritime

Engineering, 160(A1).

https://doi.org/10.5750/ijme.v160iA1.1044

[13] Koc, H., Erdoğan, A., Barjakly, Y., Peker, S. (2021).

UML diagrams in software engineering research: A

systematic literature review. Proceedings, 74(13): 1-5.

https://doi.org/10.3390/proceedings2021074013

[14] Al Rababah, A. (2024). Assessing the effectiveness of

UML models in software system development.

International Journal of Applied Science and Research,

7(1): 13-24. https://doi.org/10.56293/IJASR.2024.5703

[15] Kazimov, T., Bayramova, T. (2022). Development of a

hybrid method for calculation of software complexity.

System Research and Information Technologies, 2: 32-

44. https://doi.org/10.20535/SRIT.2308-8893.2022.2.02

[16] Nowakowski, W., Ciszewski, T. (2023). The

development of software solutions for diagnosis railway

control systems. In Proceedings of the 27th International

Scientific Conference Transport Means 2023, Palanga,

Lithuania, pp. 4-6.

[17] Polyuschenkov, I.S. (2022). Development of electric

drive software for coordinated control in

electromechanical system. Vestnik IGEU, 53-63.

3429

https://doi.org/10.17588/2072-2672.2022.4.053-063

[18] Yegül, U. (2023). Development of an embedded software

and control kit to be used in soilless agriculture

production systems. Sensors, 23(7): 3706.

https://doi.org/10.3390/s23073706

[19] Altaher, A. (2021). Unified Modelling Language (UML)

effect on the total cost of ownership (TCO) for a software

development. Iraqi Journal of Science, 207-209.

https://doi.org/10.24996/ijs.2021.SI.1.29

[20] Worku, M.Y., Hassan, M.A., Abido, M.A. (2021). Power

management, voltage control and grid synchronization of

microgrids in real time. Arabian Journal for Science and

Engineering, 46: 1411-1429.

https://doi.org/10.1007/s13369-020-05062-9

[21] Debnath, S., Xia, Q., Dong, Z., Marthi, P., Marti, S.,

Kondabathini, A., Chakraborty, S., Saeedifard, M., Pan,

J., Arifujjaman, M. (2023). Control system of multi-port

autonomous reconfigurable solar power plant (MARS) &

HIL platforms for design. IEEE Transactions on

Sustainable Energy, 15(3): 1423-1434.

https://doi.org/10.1109/TSTE.2023.3346313

[22] Al-Suod, M.M.S., Ushkarenko, O., Dorohan, O.,

Abdullah Eial, A., Awwad, A., Al-Quteimat. (2023).

Software quality assessment technique for the

autonomous power plants automated control systems.

Journal Européen des Systèmes Automatisés, 56(6):

1043-1051. https://doi.org/10.18280/jesa.560614

[23] Lyaskovskiy, V.L., Bresler, I.B., Alasheev, M.A. (2021).

Methodological and software tools for selecting solutions

for the creation (development) of automated control

systems. H&ES Research, 13: 48-59.

https://doi.org/10.36724/2409-5419-2021-13-3-48-59

[24] García, F.J.B., Sierra, J.R.A., Blanco, J.G., Lázaro, A.C.

(2022). The importance of self-generation of electricity

through controlled recycling: A case study in West Sub-

Saharan African regions. International Journal of Energy

Production and Management, 7(4): 338-350.

https://doi.org/10.2495/EQ-V7-N4-338-350

[25] Al-Suod, M.M., Ushkarenko, A., Dorogan, O. (2019).

Power planet control and monitoring using state space

diagram and multi-αgent environment. WSEAS

Transactions on Computer Research, 7: 85-93.

[26] Dhivya, D., Nirmala, K. (2018). Study on integration

testing and system testing. International Journal of

Creative Research Thoughts, 6(2): 794-798.

[27] Lotfi, Z., Khalifi, H., Ouardi, F. (2023). Efficient

algebraic method for testing the invertibility of finite

state machines. Computation, 11: 125.

https://doi.org/10.3390/computation11070125

[28] Hanaa, B., Noura, A.S., Hesham, H., Khaled, W. (2022).

Application-based usability evaluation metrics.

International Journal of Advanced Computer Science and

Applications, 13(7): 84-91.

https://doi.org/10.14569/IJACSA.2022.0130712

3430

