
Mathematical Modelling of Geophysical Fluid Flow: The Condition for Deep Water 

Stratification 

Nnamani Nicholas Topman* , G.C.E. Mbah

Department of Mathematics, University of Nigeria Nsukka (UNN), Nsukka 410001, Nigeria 

Corresponding Author Email: topmanvision@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.111229 ABSTRACT 

Received: 11 August 2024 

Revised:18 October 2024 

Accepted: 24 October 2024 

Available online: 31 December 2024 

Fluid dynamics in stratified deep water is a complex and intriguing field that plays a 

vital role in understanding various natural and engineered systems. The deep water 

stratification occurs when the vertical amplitude is equal to the horizontal amplitude of 

surface waves though not in the same direction. The variation in density and pressure 

owing to salinity, temperature, and other factors significantly affects fluid behavior. 

This often leads to stratification which is further simplified when subjected to 

conditions at boundary, which can occur in extreme natural settings or through 

controlled experimental conditions. The interplay between these factors results in 

unique and often counterintuitive fluid dynamics, necessitating a thorough examination 

to predict and interpret the behavior of such systems accurately. This study aims to 

delve into the mathematical modeling of geophysical fluid flow in stratified deep water, 

specifically focusing on the boundary condition necessary for the establishment of 

stratified deep water regime. The boundary condition can influence the stratification 

and the dynamics of fluid flow, leading to novel phenomena that are not observed under 

normal shallow water conditions. By understanding these interactions at boundary 

condition, this research can provide valuable insights with significant implications for 

fields such as climate science, oceanography and engineering applications involving 

fluid dynamics. The primary focus of this research is to show how vertical amplitude of 

a surface wave is equal to the horizontal amplitude and its effect on deep water 

stratification. 
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1. INTRODUCTION

Our work sufficiently established a very strong relationship 

between the vertical amplitude and the horizontal amplitude of 

deep water waves under stratified condition with effect of 

gravity modification, area relatively new and research 

promising with understanding of impact of deep water 

stratification [1]. By studying the condition for equality of 

amplitude of deep water stratification we gain insights into 

how these factor influences the propagation of waves and how 

energy is transferred within the ocean [2]. Analysis of current 

shear indicate that the downward flux is supported by tidal 

mixing while the upwards flux is dominated by wind driven 

near-inertial shear [3]. Unlike other models that have 

discussed stratification in deep water none has sufficiently 

explained the important of amplitude regime nor incorporated 

the concept of reduced gravity into their model; in view of this 

research gap, one of the main reasons and goals of this work 

is to develop a very accurate model and numerical simulations 

that can predict the behavior of waves in deep water with 

understanding of the amplitude regime and its variation effect 

[4]. Overall, our model incorporating amplitude is aimed to 

advance our understanding of the complex interaction between 

waves, the seafloor [5, 6] and the ocean as a whole with deep 

understanding of deep water formulation [7], and it can 

contribute to the development of new technologies and a 

robust strategy for offshore engineering [8], with its 

environmental assessment, thereby improving deep water 

ventilation [9]. With the numerical values of both amplitudes 

being equal, we extended the equations of shallow water to 

deep water and developed condition for deep water 

stratification within the thermocline regime. Geophysical fluid 

flow is governed by the laws of fluid dynamics [3] but needs 

to equally account for the additional effects of the earth’s 

rotation and density stratification within the medium [10]. The 

derivation of the equations for stratified geophysical flow 

involves the application of the principles of fluid mechanics, 

thermodynamics, and conservation laws to the specific 

conditions of stratified flows in the Earth's atmosphere and 

oceans [11]. 

The equations that describe such flows are known as the 

primitive equations, and they are derived from the 

fundamental equations of fluid dynamics, namely the Navier-

Stokes equations and the first law of thermodynamics [12]. 

The result is interesting as confirm in tidal simulation of open 

channel [13]. 

The conservation of mass for a fluid element in a stratified 

flow leads to the equation of continuity, which represents the 
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conservation of mass within the fluid. In a non-divergent flow 

(incompressible flow), the equation of continuity simplifies to 

∇(ρv) = 0, where ρ is the fluid density and the density varies 

in each layer of the fluid parcel, v is the velocity vector, and ∇ 

stands for divergence operator [14]. 

The conservation of momentum for a fluid element in a 

stratified flow leads to the Navier-Stokes equations [2], which 

describe the motion of the fluid. In the context of geophysical 

flows, the Coriolis force due to the Earth's rotation and the 

pressure gradient force are important factors [15]. Deep Water 

Stratification and its effects with gravity modification [7]. The 

impact of deep water stratification on ocean currents [16] and 

the patterns of circulation with density changes owing to 

modified gravity [17].  

When the flow is stratified, buoyancy forces due to 

variations in density also play a crucial role [11]. By 

combining the equations of continuity, momentum, and 

energy, while considering the specific characteristics of 

stratified geophysical flows, a set of primitive equations is 

derived [18]. 

These equations typically include the momentum equations 

in terms of velocity components [19], the thermodynamic 

equation for temperature, and the equation for the evolution of 

density or buoyancy [20-22]. Finite Volume Methods for 

Hyperbolic Problems [1] highlight the importance of noting 

that the derivation and formulation of the primitive equations 

for stratified geophysical flow is a complex process involving 

a comprehensive understanding of fluid dynamics [23, 24], 

thermodynamics, and geophysical phenomena. 

The resulting equations provide a fundamental framework 

for modeling and understanding the behavior of stratified 

flows in deep water and effect of modified gravity on it [25, 

26]. 

 

 

2. ASSUMPTIONS OF THE MODEL 

 

We wish to formulate some basic and necessary 

assumptions to aid the mathematical formulation of our model. 

The following are the assumptions for the model: 

The fluid is incompressible with continuous density 

stratification. 

In classical geophysical flows the depth of deep water is 

infinite, so the vertical length scale (ℎ) and the horizontal 

length scale (L) guarantee deep water regime when 

 
𝐿

ℎ
≪ 1 (𝑑𝑒𝑒𝑝 𝑤𝑎𝑡𝑒𝑟 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) but fails when 

𝐿

ℎ
≫ 1 

 

On a large scale this implies that the flow is predominantly 

horizontal with the vertical acceleration. This means that the 

horizontal length scale, which is typically measured as the 

distance between wave crests or troughs, is generally smaller 

than the vertical length scale, which is the depth of the water 

affected by the wave. 

In deep water, the motion of water particles becomes 

circular when the vertical amplitude is equal to the horizontal 

amplitude of the surface wave.  

The cartesian coordinates x, y and z will be used, in 

Cartesian coordinates for deep water waves, the z-axis 

typically measures the vertical direction, the x-axis is the 

horizontal direction, the y-axis represents another horizontal 

direction and the z-axis represents the vertical direction up-

down. 

The velocity components in the directions of increasing x, y 

and z will be denoted by 𝑢, 𝑣 and 𝑤. 

Take the (x, y) horizontal plane as being parallel to the 

surface of the still water, and the depth of the water at a given 

point as ℎ =(𝑥, 𝑦, 𝑡)>0. 

We denoted depth-average velocity in the x direction as 

U=𝑢(𝑥, 𝑦, 𝑡) and the depth-average velocity in the y- direction 

as 𝑣 = 𝑣 ( 𝑥; 𝑦; 𝑡 ). While the plane (z=0) can be chosen 

arbitrarily, it is usually positioned at mean water level. 

Measuring down from this plane to the transition zone 

which is the thermocline, the point where the circular orbit of 

the deep water particles decrease at depth 𝑧 = −𝜁(𝑥, 𝑦). The 

equation 𝑧 = −𝜁(𝑥, 𝑦) is the equation for the bottom surface 

at which the diameter of the orbital path is zero at any instant. 

The interaction of deep water flow at this thermocline regime 

which at this instant serves as the bottom condition is the layer 

of the ocean where the temperature changes most rapidly with 

varying depth. 

 

 

3. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

 

The deep water stratification can be formulated using 

various physical and mathematical principles. A common 

approach is to use the concept of density variation or potential 

temperature to describe the stratification of the water column. 

Now for a model formulation for deep water stratification: 

The conservation of momentum equation can be used to 

describe the vertical movement of water masses in response to 

density differences. This equation can be quite complex and is 

often solved using a numerical model. 

 

 
 

Figure 1. Exponential decay in circular motion of deep water 

 

Figure 1 shows the exponential decay of circular trajectory 

of deep water at the point the vertical amplitude is equal to the 

horizontal amplitude thereby guaranteeing deep water 

condition. 

 

 
 

Figure 2. Geometry of the flow problem in deep water with 

infinite depth at the thermocline regime 

 

Figure 2 illustrates the zone where the circular orbit 

dissipates and shows 𝜂 = 𝜂(𝑥, 𝑦) representing the progressive 

surface wave in deep water, with 𝜁 = 𝜁(𝑥, 𝑦) defined as the 

bottom boundary condition. 

Consider perturbing the deep water’s surface of amplitude 

𝜂(𝑥, 𝑦, 𝑡). So 𝑧 = 𝜂(𝑥, 𝑦, 𝑡) is the instantaneous positon of the 
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actual water surface measured from the plane (𝑧 = 0). Where 

𝜂 is the surface elevation of the deep water. 

 

3.1 The fluid satisfies Laplacian equation 𝜵𝟐∅ = 𝟎  and 

continuity equation 

 

∇. �⃗� = 0 (1) 

 

There are two boundary condition that will define the 

regime of deep water stratification and they are free surface 

and bottom surface. The free surface boundary condition 

include: Kinematic condition and dynamic condition and the 

bottom surface condition is at the thermocline regime. Eq. (1) 

is for momentum conservation which account for the body of 

deep water and the continuity equation that account for the 

mass of the deep water. 

On the free surface: 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝑝𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑝𝑎𝑡𝑚 

Applying Bernoulli’s equation of motion 

 
𝜕𝜙

𝜕𝑡
+ 1

2⁄ (𝜙𝑥
2 + 𝜙𝑦

2) +
𝑃

𝜌
+ 𝑔𝑦 = 𝑐𝑜𝑛𝑠𝑡 = 0(𝑊. 𝐿. 𝐺) (2) 

 

𝛾 = 𝑝𝑎𝑡𝑚  at 𝑦 = 𝜂(𝑥, 𝑡) 
𝜕𝜙

𝜕𝑡
+ 1

2⁄ (𝜙𝑥
2 + 𝜙𝑦

2) + 𝑔ℎ =
−𝑝𝑎𝑡𝑚

𝜌
 

 

Dynamic free surface condition 

 

𝑦 = 𝜂(𝑥, 𝑡) 

 

Kinematic condition 

 
𝐷

𝐷𝑡
(𝑦 − 𝜂(𝑥. 𝑡)) = 0, on 𝑦 = 𝜂(𝑥, 𝑡) 

 

The equation then simplifies to 

 
𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
 

 
𝐷

𝐷𝑡
(𝑦 − 𝜂), 𝜂 = 𝜂(𝑥, 𝑡) ⟹

𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
= 𝑣 (3) 

 

𝑦 = 𝜂(𝑥, 𝑡) and 𝑢 = 𝜙𝑥, 𝑣 = 𝜙𝑦 (4) 

 
𝜕𝜙

𝜕𝑦
=

𝜕𝜂

𝜕𝑡
+ 𝜙𝑥

𝜕𝜂

𝜕𝑥
 

 

Kinetic free surface condition  

 

𝑦 = 𝜂(𝑥, 𝑡) 
 

where, 𝜙𝑥
2, 𝜙𝑦

2, 𝜙𝑥,
𝜕𝜂

𝜕𝑥
, 𝜙(𝑥, 𝑦, 𝑡)  and 𝜙(𝑥, 𝜂, 𝑡)  are the two 

boundary conditions non-linear for 2-dimension. 

 

3.2 Bottom boundary conditions at thermocline regime 

 

In deep water, the thermocline regime as indicated in Figure 

2 is associated with the distribution of temperature vertically 

with depth. So, thermocline is the depth interval where there 

is a significant change in water temperature, salinity, and other 

deep water properties. Hence, bottom boundary condition 

plays very significant role in determining the thermocline 

regime in a stratified deep water under modified gravity, 

where, 𝜂 is the free surface elevation and 𝜙 is the surface flux 

for the flow. 

In Figure 2, h is the depth of the water column. Then the 

substantive derivative or material derivative at the boundary 

can be expressed as: 

𝑦 = ℎ(𝑥, 𝑡),
𝐷

𝐷𝑡
(𝑦 − 𝜂(𝑥, 𝑡)) = 0 

⟹ −𝜙𝑦 = ℎ𝑥  𝜙𝑛 + ℎ𝑡 , ℎ(𝑥, 𝑡) = 𝑐𝑜𝑛𝑠𝑡 

 

𝜙𝑦 = 0 on 𝑦 = −ℎ, this is the bottom boundary conditions 

at thermocline regime where gravitational force is different 

from that on earth giving rise to modified gravity. 

The impact of this modified gravity is what our model has 

sufficiently captured. 

Assume that 𝜂  is small, the quantity associated with 𝜙  is 

equally small 

 

𝜙𝑥 𝑦 = 𝜂 = 𝜙𝑥 𝑦⁄ = 0⁄ + 𝜂
∂𝜙𝑥

𝜕𝑥
𝑦⁄ = 0 +

𝜂2

2!

𝜕2𝜙𝑥

𝜕𝑥
2 + ⋯ (5) 

 

Similarly, 

 

𝜙𝑦 𝑦 = 𝜂 = 𝜙𝑦 𝑦⁄ = 0⁄ + 𝜂.
𝜕𝜙𝑦

𝜕𝑦
+

𝜂2

2!

𝜕2

𝜕𝑦
2
(𝜙𝑦) + ⋯ (6) 

 

Substitute for 𝜙𝑥 , 𝜙𝑦 at 𝑦 = 𝜂 as in Eq. (4) in both dynamic 

and kinematic conditions and neglect the product/higher 

power terms, which yields: 

 

𝜙𝑥
2

𝑦
= 0,

𝜙𝑦
2

𝑦
= 0, 𝜂.

𝜙𝑥

𝑦
= 0, 𝜂2𝜙𝑥 … (7) 

 

If the higher power terms are negligible, then the result from 

the dynamic condition and kinematic condition Eq. (7) become 

linearized boundary conditions 

 

Dynamic⟶ 𝜙𝑡 + 𝑔𝜂 = 0 on 𝑦 = 0 (8) 

 

Condition 

 

Kinematic⟶ 𝜂𝑡 = 𝜙𝑦 on 𝑦 = 0 (9) 

 

Now from the above kinematic conditions Eqs. (8) and (9), 

we obtain 

 

𝜙𝑡𝑡 + 𝑔𝜂𝑡 = 0 on 𝑦 = 0 (10) 

 

𝜙𝑡𝑡 + 𝑔𝜙𝑦 = 0 on 𝑦 = 0 (11) 

 

Free surface boundary condition which is the combination 

of dynamic condition and kinematic condition. 

Eq. (3) necessitate the flow and Eq. (1) which is Laplacian 

equation is the equation that govern the body of stratified deep 

water at the thermocline regime. 

 

3.3 Vertical and horizontal amplitude of stratified deep 

water  

 

At the surface, the vertical displacement 𝛿𝑧  must 

correspond to a traveling wave 

 

𝛿𝑧 = 𝐴𝑐𝑜𝑠(k𝑥- 𝜔t) 
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Because vertical displacement of deep water corresponds to 

the traveling wave due to the principles of wave propagation. 

In deep water, the wave’s motion is primarily vertical, and this 

shows that water particles move up and down as this wave 

passes through. The amount of vertical displacement depends 

on the wave’s amplitude, which is the maximum distance the 

water particles move from their resting position. 

 

𝛿𝑧 = 𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) (12) 

 

𝛿𝑧 = −𝐴𝑥sin (𝑘𝑥 − 𝜔𝑡) (13) 

 

𝜔 =
𝑑

𝑑𝑡
(𝛿𝑧) = 𝐴𝑧𝜔sin (𝑘𝑥 − 𝜔𝑡) (14) 

 

𝑢 =
𝑑

𝑑𝑡
(𝛿𝑥) = 𝐴𝑥𝜔cos (𝑘𝑥 − 𝜔𝑡) (15) 

 

But the condition that the velocity field is non-divergent and 

Irrotational arises from conservation of mass in absence of 

viscosity; hence, Eqs. (16) and (17): 

 
𝑑𝑢

𝑑𝑥
+

𝑑𝜔

𝑑𝑧
= 0 (16) 

 
𝑑𝜔

𝑑𝑥
−

𝑑𝑢

𝑑𝑧
= 0 (17) 

 

Applying Eq. (14) into Eq. (16) gives 

 

−𝐴𝑧𝑘𝜔𝑠𝑖𝑛 (𝑘𝑥 − 𝜔𝑡) +
𝑑

𝑑𝑧
𝐴𝑧𝜔 sin(𝑘𝑥 − 𝜔𝑡) = 0 (18) 

 

−𝑘𝐴𝑧 +
𝑑

𝑑𝑧
𝐴𝑧 = 0 (19) 

 

Using Eq. (15) in Eq. (17), we have 

 

𝐴𝑧𝑘𝜔 cos(𝑘𝑥 − 𝜔𝑡) −
𝑑

𝑑𝑧
𝐴𝑥𝜔 cos(𝑘𝑥 − 𝜔𝑡) = 0 (20) 

 

Differentiating Eq. (19) further gives 

 

𝑑2𝐴𝑧

𝑑𝑧2
− 𝑘2𝐴𝑧 (21) 

 

Eq. (21) is a second order differential equation and the 

solution becomes 

 

𝐴𝑧 = 𝛼𝑒𝑘𝑧 + 𝛽𝑒−𝑘𝑧 (22) 

 

where, 𝛼 and 𝛽 are unknown arbitrary constants and when z =
0, 

 

⇒ 𝐴𝑧 = 𝛼 + 𝛽 = 𝐴 (23) 

 

When, 𝑧 = ℎ , the bottom condition which is at the 

thermocline regime where there is no vertical displacement, 

therefore 

 

𝛿𝑧(−ℎ)= 0 = 𝛼𝑒−𝑘ℎ + 𝛽𝑒𝑘ℎ (24) 

 

𝐴𝑍 = 𝛼 −
𝛼𝑒−𝑘ℎ

𝑒𝑘ℎ
= 𝛼 (

𝑒𝑘ℎ − 𝑒−𝑘ℎ

𝑒𝑘ℎ
) 

Likewise 

 

𝐴𝑍 = 𝛽 −
𝛽𝑒𝑘ℎ

𝑒−𝑘ℎ
= 𝛽 (

𝑒−𝑘ℎ − 𝑒𝑘ℎ

𝑒−𝑘ℎ
) (25) 

 

or 𝛼 = 𝐴 
𝑒𝑘ℎ

𝑒𝑘ℎ − 𝑒−𝑘ℎ
, 𝛽 =

−𝐴 𝑒−𝑘ℎ

𝑒𝑘ℎ − 𝑒−𝑘ℎ
 (26) 

 

So, 

 

𝐴𝑍 = 𝛼𝑒𝑘𝑧 + 𝛽𝑒𝑘𝑧 =
𝐴

𝑒𝑘ℎ − 𝑒−𝑘ℎ
(𝑒𝑘ℎ𝑒𝑘𝑧 − 𝑒−𝑘ℎ𝑒−𝑘𝑧)

=
𝐴𝑒𝑘(ℎ+𝑧) − 𝑒−𝑘(ℎ+𝑧)

𝑒𝑘ℎ − 𝑒−𝑘ℎ  

(27) 

 

𝐴𝑍 = 𝐴
sin ℎ(𝑘(ℎ + 𝑧))

sin ℎ(𝑘ℎ)
 (28) 

 

Eq. (28) is the vertical amplitude which stands for the 

vertical movement or oscillation of water particles in deep 

water. It helps to determine the wave energy and potential 

impact on coastal structures and marine environment. 

Applying Eq. (28) to obtain the horizontal amplitude 𝐴𝑥, by 

substituting solution for 𝐴𝑍,  back into Eq. (27), −𝐾𝐴 +
𝑑

𝑑𝑧
𝐴𝑍 = 0, gives 

 

−𝐾𝐴𝑥 +
𝑑

𝑑𝑧
(
𝐴𝑒𝑘(ℎ+𝑧) − 𝑒−𝑘(ℎ+𝑧)

𝑒𝑘ℎ − 𝑒−𝑘ℎ
) = 0, 

then, 𝐾𝐴𝑥 = 𝐴𝐾 (
𝐴𝑒𝑘(ℎ+𝑧) + 𝑒−𝑘(ℎ+𝑧)

𝑒𝑘ℎ − 𝑒−𝑘ℎ
) 

 

So if we take vertical derivative, it yields 

 

𝐴𝑥 = 𝐴
cosh (𝑘(𝑧 + ℎ))

sin (𝑘ℎ)
 (29) 

 

Eq. (29) is the horizontal amplitude of the moving wave 

which is influenced by the interaction between the waves and 

stratified water layers. When z becomes negative then 

sinh (𝑘(𝑧 + ℎ)) disappears and the amplitude decreases with 

depth and when the depth is significantly greater than the 

wavelength then we have deep water. 

Importantly, when Eqs. (27) and (28) are equal then 

equation of stratified deep water is established at the 

thermocline regime. 

 

 
 

Figure 3. Stratification effects in different fluid layers under 

modified gravity conditions 
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3.4 Variation of pressure in stratified deep water 

 

In stratified deep water, where multiple layers are stacked 

atop one another, the pressure within each layer is determined 

by the hydrostatic approximation. This pressure variation is 

influenced by several factors, including depth, temperature, 

salinity, and density gradients. As depicted in Figure 3, these 

layers possess distinct densities. Consequently, the pressure at 

any given depth is affected by the density of the layer above 

it. This results in a layered effect where pressure changes are 

not uniform across the deep water column. 

For the Bosques equation, the hydrostatic approximation is 

given as 

 
𝑑𝑝

𝑑𝑧
= −𝑔𝑝 (30) 

 

The layers in Figure 3 are numbered from top down. The 

coordinates of the interfaces are denoted by 𝜂, and the layer 

thickness hi. So integrating from η0 to ηz 

 

∫𝑑𝑝 = ∫ (−𝑔𝜌𝑑𝑧)
𝜂𝑧

𝜂0

 

𝑝1 = −𝜌1𝑔(𝑧 − 𝜂0), 𝑝1 = 𝜌1𝑔(𝜂0 − 𝑧) 

(31) 

 

For the second layer, integrating from 𝜂0 to 𝜂1 and 𝜂1 to 𝑧, 

we have 

𝑝2 = −𝜌𝑔 ∫ 𝑑𝑧 − 𝜌𝑔 ∫ 𝑑𝑧
𝜂1

𝑧

𝜂1

𝜂0

 

𝑝2 = 𝜌1𝑔(𝜂0 − 𝜂1) + 𝜌2𝑔(𝜂1 − 𝑧) 

= 𝜌1𝑔𝜂0 − 𝜌1𝑔ˈ1𝜂1 + 𝜌2𝑔ˈ1𝜂1 − 𝜌2𝑔𝑧 

𝑝2 = 𝜌1𝑔𝜂0 + (𝜌2 − 𝜌1)𝑔ˈ𝜂1 − 𝜌2𝑔𝑧 

 

At 𝑧 = 0, 𝑝2𝑔𝑧 = 0, hence 

 

𝑝2 = 𝜌1𝑔𝜂0 + (𝜌2 − 𝜌1)𝑔ˈ𝜂1 (32) 

 

From Eq. (32), 𝑝1 = 𝜌1𝑔𝜂0 and 

 

𝜌1𝑔ˈ1𝜂1 = 𝑔(𝜌2 − 𝜌1)𝜂1 (33) 

 

From Eq. (33), we get  

 

𝑔ˈ1 = 𝑔
(𝜌2 − 𝜌1)

𝜌1

= 𝑔
Δ𝜌

�̅�
 (34) 

 

Eq. (34) is the modified gravity, where 
Δ𝜌

�̅�
=

𝜌𝑖+1

𝜌𝑖
, 𝜌  is 

density. 

The term involving 𝑧 is irrelevant for the dynamics, because 

only the horizontal motion is considered; hence Eqs. (32) and 

(33) become 

 
𝑝

1 = 𝜌1𝑔𝜂0, 𝑝2 = 𝜌1𝑔𝜂0 + 𝜌1𝑔ˈ1𝜂1 (35) 

 

Summing from the top down, we have 

 

𝜂0 = ℎ1 + ℎ2 + 𝜂𝑏 , 𝜂1 = ℎ2 + 𝜂𝑏 (36) 

 

Therefore, putting Eqs. (32) and (33) the pressure in the two 

layers’ system can be expressed as: 

 
𝑝

1 = 𝜌1𝑔𝜂0 = 𝜌1𝑔(ℎ1 + ℎ2 + 𝜂𝑏) (37) 
 

𝑝
2 = 𝜌1𝑔𝜂0 + 𝜌1𝑔ˈ1𝜂1 

= 𝜌1𝑔(ℎ1 + ℎ2 + 𝜂𝑏)+𝜌1𝑔ˈ1(ℎ2 + 𝜂𝑏) 
(38) 

 

Now for the conservation equation of mass, each layer has 

the same form as the single-layer case and it is expressed as 

 
𝐷ℎ𝑛

𝐷𝑡
+ ℎ𝑛∇. 𝑢𝑛 (39) 

 

Considering the three-layer model, pressure can be given as 

 

𝑝1 = 𝜌1𝑔𝜂0 = 𝜌1𝑔(ℎ1 + ℎ2 + ℎ3 + 𝜂𝑏) (40) 

 

𝑝2 = 𝜌1𝑔𝜂0 + 𝜌1𝑔1ˈ𝜂1 

= 𝜌1𝑔(ℎ1 + ℎ2 + ℎ3 + 𝜂𝑏)+𝜌1𝑔1ˈ(ℎ2 + ℎ3 + 𝜂𝑏) 
(41) 

 

𝑝3 = 𝜌1𝑔𝜂0 + 𝜌1𝑔1ˈ𝜂1+𝜌1𝑔ˈ2𝜂2 

=𝜌1𝑔(ℎ1 + ℎ2 + ℎ3 + 𝜂𝑏)+𝜌1𝑔1ˈ(ℎ2 + ℎ3 + 𝜂𝑏) 

+𝜌1𝑔ˈ2(ℎ3 + 𝜂𝑏) 

(42) 

 

where, 𝜂𝑏 is the nth layer of the strata. 

Hence, 

 

𝜂1 = 𝜂𝑏 + ∑ ℎ𝑖

𝑖=𝑁

𝑖=𝑛+1

 (43) 

 

Therefore, for the nth layer model, the dynamical pressure 

is given as: 

 

𝑝𝑛 = 𝜌𝑖 ∑ 𝑔𝑖𝜂𝑖

𝑛−1

𝑖=0

 (44) 

 

Eq. (39) is a continuity equation in stratified deep water and 

Eq. (44) is the pressure variation for nth stratification of deep 

water. 

 

𝑔ˈ𝑖 = 𝑔
(𝜌𝑖+1 − 𝜌𝑖)

𝜌𝑖

= 𝑔
∆𝜌

�̅�
 (45) 

 

Eqs. (34) and (45) show the effect of modified gravity on 

deep water stratification. 

It leads to changes in the density and temperature gradients 

within stratified deep water column. 

Taking 𝜌0 = 0. 

Therefore, incorporating modified gravity into the stratified 

deep water equations at the thermocline regime become:  

 

𝜕(ℎ1𝑢1)

𝜕𝑡
+

𝜕(ℎ1𝑢1
2 + 𝑔

∆𝜌
�̅�

ℎ1
2 2)⁄

𝜕𝑥
+

𝜕(ℎ1𝑢1𝑣1)

𝜕𝑦
 

= −𝑔
∆𝜌

�̅�
ℎ1

𝜕ℎ2

𝜕𝑥
− 𝑔

∆𝜌

�̅�
ℎ1

𝜕(𝜉)

𝜕𝑥
+ 𝑓𝑣1 

(46) 

 

𝜕(ℎ1𝑣1)

𝜕𝑡
+

𝜕(ℎ1𝑢1𝑣1)

𝜕𝑥
+

𝜕(ℎ1𝑣1
2 + ℎ1

2 2)⁄

𝜕𝑦
 

= −𝑔
∆𝜌

�̅�
ℎ1

𝜕ℎ2

𝜕𝑦
− 𝑔

∆𝜌

�̅�
ℎ1

𝜕(𝜉)

𝜕𝑦
+ 𝑓𝑢1 

(47) 

 
𝜕ℎ1

𝜕𝑡
+

𝜕(ℎ1𝑢1)

𝜕𝑥
+

𝜕(ℎ1𝑣1)

𝜕𝑦
= 0 (48) 
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𝜕(ℎ2𝑢2)

𝜕𝑡
+

𝜕(ℎ2𝑢2
2 + 𝑔

∆𝜌
�̅�

ℎ2
2 2 + 𝑔

∆𝜌
�̅�

ℎ2ℎ1)⁄

𝜕𝑥
 

+
𝜕(ℎ2𝑢2𝑣2)

𝜕𝑦
= −𝑔

∆𝜌

�̅�
 ℎ1

𝜕ℎ2

𝜕𝑥
− 𝑔

∆𝜌

�̅�
ℎ2

𝜕(𝜉)

𝜕𝑥
+ 𝑓𝑣2 

(49) 

 
𝜕(ℎ2𝑣2)

𝜕𝑡
+

𝜕(ℎ2𝑢2𝑣2)

𝜕𝑥
 

+
𝜕(ℎ2𝑣2

2 + 𝑔
∆𝜌
�̅�

ℎ2
2 2 + 𝑔

∆𝜌
�̅�

ℎ2ℎ1)⁄

𝜕𝑦
 

= −𝑔
∆𝜌

�̅�
 ℎ1

𝜕ℎ2

𝜕𝑦
− 𝑔

∆𝜌

�̅�
ℎ2

𝜕(𝜉)

𝜕𝑦
+ 𝑓𝑢2 

(50) 

 
𝜕ℎ2

𝜕𝑡
+

𝜕(ℎ2𝑢2)

𝜕𝑥
+

𝜕(ℎ2𝑣2)

𝜕𝑦
= 0 (51) 

 

We can now provide solution to the model equation in Eqs. 

(46)-(51) by considering the characteristic equations in matrix 

form. 

In conservation form, 

 
𝜕𝑞

𝜕𝑡
+

𝜕𝐹

𝜕𝑥
+

𝜕𝐺

𝜕𝑦
= 𝜓 (52) 

 

where, 

 

𝑞 = [

𝑞1

𝑞2

𝑞3

] = [
ℎ
ℎ𝑢
ℎ𝑣

], 

𝐹 =

[
 
 
 
 
 

𝑞2

𝑞2
2

𝑞1

+
𝑔

∆𝜌
�̅�

𝑞1
2

2
𝑞2𝑞3

𝑞1 ]
 
 
 
 
 

=

[
 
 
 
 

ℎ𝑢

ℎ𝑢2 +
𝑔

∆𝜌
�̅�

ℎ2

2
ℎ𝑢𝑣 ]

 
 
 
 

, 

𝐺 =

[
 
 
 
 
 

𝑞3
𝑞2𝑞3

𝑞1

𝑞3

𝑞1

+
𝑔

∆𝜌
�̅�

𝑞1
2

2 ]
 
 
 
 
 

=

[
 
 
 
 

ℎ𝑣
ℎ𝑢𝑣

ℎ𝑣2 +
𝑔

∆𝜌
�̅�

ℎ2

2 ]
 
 
 
 

, 

𝜓 =

[
 
 
 
 

0

−𝑔
∆𝜌

�̅�
ℎ𝜉𝑥 + 𝑓𝑣

−𝑔
∆𝜌

�̅�
ℎ𝜉𝑦 − 𝑓𝑢

]
 
 
 
 

 

(53) 

 

The subscripts 𝑥, 𝑦  denote differentiation with respect to 

that variable. In vector form, the unknown is 𝑞 = [ℎ; ℎ𝑢; ℎ𝑣]𝑇 

is the vector of conserved variables.  

The right-hand side vector of source terms, ψ, includes the 

effects of density stratification at the transition zone 

(thermocline) and the effects of the Coriolis force. To calculate 

the eigenvalues of the deep water equations, define the 

Jacobian matrix with differentiated coefficients of 𝐹(𝑞) =

[𝑓1; 𝑓2; 𝑓3]
𝑇 as 𝐹ˈ(𝑞) =

𝜕𝑓1

𝜕𝑞1
 for 𝑖, 𝑗 = 1,2,3. 

 

𝐹ˈ(𝑞) =

[
 
 
 
 
 
 
𝜕𝑓1

𝜕𝑞1

𝜕𝑓1

𝜕𝑞2

𝜕𝑓1

𝜕𝑞3

𝜕𝑓2

𝜕𝑞1

𝜕𝑓2

𝜕𝑞2

𝜕𝑓2

𝜕𝑞3

𝜕𝑓3

𝜕𝑞1

𝜕𝑓3

𝜕𝑞2

𝜕𝑓3

𝜕𝑞3]
 
 
 
 
 
 

 

And an equivalent expression for 

 

𝐺ˈ(𝑞)𝑞1 + 𝐹ˈ(𝑞)
𝜕𝑞

𝜕𝑥
+ 𝐺ˈ(𝑞)

𝜕𝑞

𝜕𝑦
= 𝜓 (54) 

 

where, 

 

𝐹ˈ(𝑞) = [

0 1 0

𝑔
∆𝜌

�̅�
ℎ − 𝑢2 2𝑢 0

−𝑢𝑣 𝑣 𝑢

] (55) 

 

𝐺ˈ(𝑞) = [

0 0 1
−𝑢𝑣 𝑣 𝑢

𝑔
∆𝜌

�̅�
ℎ − 𝑣2 0 2𝑣

] and 𝐹ˈ(𝑞). 𝑥 = 𝜆𝑥 

 

That is 

 

(𝐹ˈ(𝑞) − 𝜆𝐼)𝑥 = 0 (56) 

 

The characteristics determinant: 

 

⃒𝐹ˈ(𝑞) − 𝜆𝐼⃒ = |𝑔
∆𝜌

�̅�

−𝜆 1 0
ℎ − 𝑢2 2𝑢 − 𝜆 0
−𝑢𝑣 𝑣 𝑢 − 𝜆

| (57) 

 

Will lead to the characteristic equation: 

 

⃒𝐹ˈ(𝑞) − 𝜆𝐼⃒ = |

−𝜆 1 0

𝑔
∆𝜌

�̅�
ℎ − 𝑢2 2𝑢 − 𝜆 0

−𝑢𝑣 𝑣 𝑢 − 𝜆

| = 0 (58) 

 

Solving the 3 by 3 matrix in Eq. (45),  

 

−𝜆{(2𝑢 − 𝜆)(𝑢 − 𝜆)} − 1 {(𝑔
∆𝜌

�̅�
ℎ − 𝑢2) (𝑢 − 𝜆)} = 0 

(𝑢 − 𝜆) (𝜆2 − 2𝑢𝜆 − (𝑔
∆𝜌

�̅�
ℎ − 𝑢2)) = 0 

(𝑢 − 𝜆) = 0, 𝜆 = 𝑢 

or (𝜆2 − 2𝑢𝜆 − (𝑔
∆𝜌

�̅�
ℎ − 𝑢2)) = 0 

 

Solving using the quadratic formula: 𝜆 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
, 

where, 𝑎 = 1, 𝑏 = −2𝑢  and  𝑐 = −(𝑔
∆𝜌

�̅�
ℎ − 𝑢2), 

substituting these values in the formula; we obtain: 

 

𝜆 = 𝑢 ± √𝑔
∆𝜌

�̅�
ℎ (59) 

 

This leads us to the eigenvalues,  
 

𝜆1(𝑞) = 𝑢 − √𝑔
∆𝜌

�̅�
ℎ, 𝜆2(𝑞) = 𝑢 + √𝑔

∆𝜌

�̅�
ℎ, 𝜆3(𝑞) = 𝑢 (60) 

 

The following eigenvectors are obtained using Maple 

Software; 

For 𝜆1(𝑞) we have: 
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𝜆1(𝑞) =

[
 
 
 
 
 
 
 
 
 √𝑔

∆𝜌
�̅�

ℎ (𝑔
∆𝜌
�̅�

ℎ − 𝑢2)

𝑢𝑣(−𝑢 − √𝑔
∆𝜌
�̅�

ℎ)(𝑢 − √𝑔
∆𝜌
�̅�

ℎ)

√𝑔
∆𝜌
�̅�

ℎ (𝑔
∆𝜌
�̅�

ℎ − 𝑢2)

𝑢𝑣(−𝑢 − √𝑔
∆𝜌
�̅�

ℎ)

1 ]
 
 
 
 
 
 
 
 
 

 

𝜆2(𝑞) =

[
 
 
 
 
 
 
 
 
 −√𝑔

∆𝜌
�̅�

ℎ(𝑔
∆𝜌
�̅�

ℎ − 𝑢2)

𝑢𝑣(−𝑢 + √𝑔
∆𝜌
�̅�

ℎ)(𝑢 + √𝑔
∆𝜌
�̅�

ℎ)

−√𝑔
∆𝜌
�̅�

ℎ (𝑔
∆𝜌
�̅�

ℎ − 𝑢2)

𝑢𝑣(−𝑢 − √𝑔
∆𝜌
�̅�

ℎ)

1 ]
 
 
 
 
 
 
 
 
 

 

𝜆3(𝑞) = [
0
0
1
] 

(61) 

 

Similarly, for 𝐺ˈ(𝑞)  
 

𝜆1(𝑞) = 𝑣 − √𝑔
∆𝜌

�̅�
ℎ, 𝜆2(𝑞) = 𝑣 + √𝑔

∆𝜌

�̅�
ℎ, 𝜆3(𝑞) = 𝑣 (62) 

 

With the corresponding eigenvectors, 

 

𝜒1(𝑞) =

[
 
 
 
 
 
 
 
 

1

𝑣 − √𝑔
∆𝜌
�̅�

ℎ

−𝑢𝑔
∆𝜌
�̅�

ℎ + 𝑢𝑣2 + 𝑢𝑣 (𝑣 − √𝑔
∆𝜌
�̅�

ℎ) − 2𝑢𝑣2

(𝑔
∆𝜌
�̅�

ℎ − 𝑣2)√𝑔
∆𝜌
�̅�

ℎ

1 ]
 
 
 
 
 
 
 
 

 (63) 

 

𝜒2(𝑞) =

[
 
 
 
 
 
 
 
 

1

𝑣 + √𝑔
∆𝜌
�̅�

ℎ

−𝑢𝑔
∆𝜌
�̅�

ℎ + 𝑢𝑣2 + 𝑢𝑣 (𝑣 + √𝑔
∆𝜌
�̅�

ℎ) − 2𝑢𝑣2

(𝑔
∆𝜌
�̅�

ℎ − 𝑣2)√𝑔
∆𝜌
�̅�

ℎ

1 ]
 
 
 
 
 
 
 
 

 (64) 

 

𝜒3(𝑞) = [
0
1
0
] (65) 

 

Since this system has two spatial dimensions for Eqs. (59) 

and (60), the waves (solutions) move in horizontal direction 

establishing the vertical amplitude of the wave and the 

horizontal amplitude which is given by the unit normal vector 

𝑛 where 𝑛(𝑛𝑥; 𝑛𝑦). 

 

⃒𝑛𝑥𝐹ˈ(𝑞) + 𝑛𝑦𝐺ˈ(𝑞) − 𝜆𝑖𝐼⃒ = 0 for 𝑖 = 1,2,3 (66) 

 

that yield 

 

𝜆1 =
𝑛𝑥𝑞2

𝑞1
+

𝑛𝑦𝑞3

𝑞1
− √𝑔

∆𝜌

�̅�
𝑞1, 

𝜆2 =
𝑛𝑥𝑞2

𝑞1
+

𝑛𝑦𝑞3

𝑞1
, 𝜆3 =

𝑛𝑥𝑞2

𝑞1
+

𝑛𝑦𝑞3

𝑞1
+ √𝑔

∆𝜌

�̅�
𝑞1 

(67) 

𝜆1(𝑞) = 𝑢 + 𝑣 − √𝑔
∆𝜌

�̅�
ℎ, 𝜆2(𝑞) = 𝑢 + 𝑣,  

𝜆3(𝑞) = 𝑢 + 𝑣 + √𝑔
∆𝜌

�̅�
ℎ 

(68) 

 

where 

 

𝑐 = √𝑔
∆𝜌

�̅�
ℎ (69) 

 

Eq. (69) provides the speed of stratified deep water at 

equilibrium position which is when the vertical amplitude is 

equal to the horizontal amplitude. 

The characteristic equations/eigenvalues obtained in Eq. 

(68) are very useful in deep water analysis as it tells us the 

behavior of the deep water waves. The eigenvalues help us to 

predict the growth or decay rates of wave modes in deep water 

as demonstrated in Figure 1. 

The Froude Number is a dimensionless quantity mainly 

used in fluid dynamics in defining the nature of boundary 

layer. Fundamentally, Froude Number is defined as the ratio 

of the inertial force to gravitational force acting on a fluid. 

The eigenvalues take the form of a convective velocity 

minus/plus a phase velocity. Dividing convective by phase 

yields a Froude number for each x- and y- direction, therefore, 

𝐹𝑟 is Froude number which can be expressed as: 

 

𝐹(𝑟)𝑖 ≡
𝑈𝑥

√(𝑔
∆𝜌
�̅�

) ℎ

=
𝑉𝑦

√𝑔
Δ𝜌
�̅�

 
(70) 

 

Eq. (70) is the Froude number expressed in terms of vertical 

and horizontal velocities respectively. 

Now in x-direction, the Froude number between two 

stratified layers can be expressed as: 

 

𝐹𝑟 =
𝑢

√𝑔
(𝜌2 − 𝜌1)

𝜌1
ℎ

=
𝑢

𝑐
 

(71) 

 

Eq. (71) is the dimensionless quantity which helps to 

determine the stability and propagation of internal waves 

which occurs at the interface between the two layers.  

 

𝑞 =

[
 
 
 
 
 

ℎ1

ℎ1𝑢1

ℎ1𝑣1

ℎ2

ℎ2𝑢2

ℎ2𝑣2]
 
 
 
 
 

 

𝑆(𝑞) =

[
 
 
 
 
 
 
 
 
 
 

0

−
𝑔∆𝜌

�̅�
ℎ1

𝜕ℎ2

𝜕𝑥
−

𝑔∆𝜌

�̅�
ℎ1

𝜕𝜉

𝜕𝑥
+ 𝑓𝑣1

−
𝑔∆𝜌

�̅�
ℎ1

𝜕ℎ2

𝜕𝑦
−

𝑔∆𝜌

�̅�
ℎ1

𝜕𝜉

𝜕𝑦
− 𝑓𝑢1

0

−
𝑔∆𝜌

�̅�
ℎ1

𝜕ℎ2

𝜕𝑥
−

𝑔∆𝜌

�̅�
ℎ2

𝜕𝜉

𝜕𝑥
+ 𝑓𝑣2

−
𝑔∆𝜌

�̅�
ℎ1

𝜕ℎ2

𝜕𝑦
−

𝑔∆𝜌

�̅�
ℎ2

𝜕𝜉

𝜕𝑦
− 𝑓𝑢2]
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𝑓(𝑞) =

[
 
 
 
 
 
 
 
 

ℎ1𝑢1

ℎ1𝑢1
2 +

1

2

𝑔∆𝜌

�̅�
ℎ1

2

ℎ1𝑢1𝑣1

ℎ2𝑢2

ℎ2𝑢2
2 +

1

2

𝑔∆𝜌

�̅�
ℎ2

2 +
𝑔∆𝜌

�̅�
ℎ2ℎ1

ℎ2𝑢2𝑣2 ]
 
 
 
 
 
 
 
 

  𝑔(𝑞) =

[
 
 
 
 
 
 
 
 

ℎ1𝑣1

ℎ1𝑢1𝑣1

ℎ1𝑣1
2 +

1

2

𝑔∆𝜌

�̅�
ℎ1

2

ℎ2𝑣2

ℎ2𝑢2𝑣2

ℎ2𝑣2
2 +

1

2

𝑔∆𝜌

�̅�
ℎ2

2 +
𝑔∆𝜌

�̅�
ℎ2ℎ1]

 
 
 
 
 
 
 
 

 

 

We can then calculate, the flux Jacobians of 𝑓(𝑞) as: 
 

𝑓ˈ(𝑞) =

[
 
 
 
 
 
 
 

0 1 0 0 0 0

−𝑢1
2 +

𝑔∆𝜌

�̅�
ℎ1 2𝑢1 0 0 0 0

−𝑢1𝑣1 𝑣1 𝑢1 0 0 0
0 0 0 0 1 0

𝑔∆𝜌

�̅�
ℎ2 0 0 −𝑢2

2 +
𝑔∆𝜌

�̅�
ℎ2 +

𝑔∆𝜌

�̅�
ℎ1 2𝑢2 0

0 0 0 −𝑢2𝑣2 𝑣2 𝑢2]
 
 
 
 
 
 
 

 (72) 

 

𝑔′(𝑞) =

[
 
 
 
 
 
 
 
 

0 0 1 0 0 0
−𝑢1𝑣1 𝑣1 𝑢1 0 0 0

−𝑣1
2 +

𝑔∆𝜌

�̅�
ℎ1 0 2𝑣1 0 0 0

0 0 0 0 0 0
0 0 0 −𝑢2𝑣2 𝑣2 𝑢2

𝑔∆𝜌

�̅�
ℎ2 0 0 −𝑢2

2 +
𝑔∆𝜌

�̅�
ℎ2 +

𝑔∆𝜌

�̅�
ℎ1 0 2𝑣2]

 
 
 
 
 
 
 
 

 (73) 

 

3.5 Calculating the eigenspace 
 

A key step in solving multi-layer deep water equations is 

calculating the Eigen space of the system, which consists of 

two sets: eigenvalues and eigenvectors, one set corresponds to 

slightly perturb classical deep water gravity waves, while the 

other set corresponds to internal waves traveling at a much 

lower speed. By the use of the Maple Software, we have the 

following eigenvalues and eigenvectors, for 𝐴(𝑞): 

 

𝜆1(𝑞) = 𝑢1 − √
𝑔∆𝜌

�̅�
ℎ1, 𝜆2(𝑞) = 𝑢1 + √

𝑔∆𝜌

�̅�
ℎ1, 𝜆3(𝑞) = 𝑢2, 𝜆5(𝑞) = 𝑢1 − √

𝑔∆𝜌

�̅�
ℎ1 +

𝑔∆𝜌

�̅�
ℎ2, 𝜆6(𝑞) = 𝑢1 (74) 

 

And the corresponding eigenvectors 

 

𝜒1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
√

𝑔∆𝜌
�̅�

ℎ1 (−𝑢1
2 +

𝑔∆𝜌
�̅�

ℎ1)
2

(𝑢2
2 −

𝑔∆𝜌
�̅�

ℎ2 −
𝑔∆𝜌
�̅�

ℎ1 + (𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)

2

− 2𝑢2 (𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1))

𝑣2 (−𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)(𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)

2
𝑔∆𝜌
�̅�

ℎ2 (−𝑢1
2 −

𝑔∆𝜌
�̅�

ℎ1 + 𝑢1 (𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1))

√
𝑔∆𝜌
�̅�

ℎ1 (−𝑢1
2 +

𝑔∆𝜌
�̅�

ℎ1)
2

(𝑢2
2 −

𝑔∆𝜌
�̅�

ℎ2 −
𝑔∆𝜌
�̅�

ℎ1 + (𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)

2

− 2𝑢2 (𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1))

𝑣2 (−𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)(𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)
𝑔∆𝜌
�̅�

ℎ2 (−𝑢1
2 −

𝑔∆𝜌
�̅�

ℎ1 + 𝑢1 (𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1))

(−𝑢1
2 +

𝑔∆𝜌
�̅�

ℎ1)
2

(𝑢2
2 −

𝑔∆𝜌
�̅�

ℎ2 −
𝑔∆𝜌
�̅�

ℎ1 + (𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)

2

− 2𝑢2 (𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1))𝑣1

𝑣2 (−𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)(𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)
𝑔∆𝜌
�̅�

ℎ2

−𝑢1
2 +

𝑔∆𝜌
�̅�

ℎ

𝑣2 (−𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)(𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)

−𝑢1
2 +

𝑔∆𝜌
�̅�

ℎ

𝑣2 (−𝑢1 − √
𝑔∆𝜌
�̅�

ℎ1)

1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(75) 

 

Eq. (75) presents the eigenvector equations that are crucial for studying the behavior of waves, deep water currents, and 
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many other oceanic phenomena. These equations provide 

information about both the direction and magnitude of wave 

motion, which are essential for predicting wave patterns and 

assessing their impact on offshore structures. They are also 

valuable for seismic analysis in deep water. 

 

 

4. RESULT AND DISCUSSION 

 

The investigation shows that the stratification of the deep 

water column influences the behavior of water particles, 

currents, and waves under the influence of modified gravity. 

This leads to changes in deep water dynamics and stability.  

 

 
 

Figure 4. Speed vs. wavenumber 

 

 
 

Figure 5. Group speed vs. phase speed 

 

 
 

Figure 6. 3D mesh plot of A vs. wave number (k) and z 

 

 
 

Figure 7. Amplitude vs. wave number in shallow water 

 

 
 

Figure 8. Reynolds number vs. velocity and viscosity 
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Figure 9. Depth vs. wavenumber (k) 

 

Figure 4 displays the dispersion for wave propagation with 

modified gravity in deep water as density changes abruptly at 

the interface for stratified deep water flow within established 

thermocline regime. Figure 5 is the effect of phase speed with 

modified gravity in stratified deep water when density is 

greater near the bottom at the transition zone (thermocline). 

Figure 6 shows how gravity and friction can restore the bottom 

boundary condition with gravity modification, 𝑔
∆𝜌

�̅�
. Figure 7 

shows that the density increases with height and the fluid is 

unstable when the bottom is perturbed due to inequalities 

resulting from the wave amplitudes. Figure 8 shows that when 

a flow is relative to obstacle, the approach flow is uniform with 

height and this underscores the significant of vertical and 

horizontal amplitude of the surface wave as demonstrated in 

Eqs. (48) and (54). Figure 9 shows amplitudes of surface 

waves which depict the condition when the vertical amplitude 

is equal to the horizontal amplitude, hence the sufficient 

condition for deep water stratification.  

 

 

5. CONCLUSION  

 

We have sufficiently established that the condition for deep 

water stratification is when the vertical amplitude of the 

surface waves is equal to the horizontal amplitude of the wave 

as demonstrated in our simulation in Figure 8 and the 

amplitude of vertical and horizontal surface waves when equal 

establishes the stratified deep water waves. The effects of 

amplitude on deep water waves varies and depends on the 

specific stratification of water column, the layers with 

different densities as we demonstrated with our numerical 

simulations. 

While the effect of gravity modification, vertical and 

horizontal amplitudes, Coriolis force and friction was 

considered and incorporated into our work unlike in previous 

works. The model will make significant contributions to the 

understanding of wave dynamics, coastal engineering and 

oceanography. The research improves understanding of wave 

forecasting models; understanding of wave-induced currents 

and in designing structures that can withstand load stress. 

The limitation of the research is the problem of not 

obtaining accurate measurements of amplitude of stratified 

deep water waves and using estimated data values for 

simulations, the complexity of wave and current interaction in 

stratified deep water poses a significant challenge to the 

understanding of the amplitude of deep water and must be 

factored in subsequent model assumptions and formulation. 
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NOMENCLATURE 

 

𝑢 = (𝑢, 𝑣, 𝑤) The three-dimensional velocity vector 

𝜌 The density 

𝑝 The pressure 

𝑔 The gravity constant 

𝑓 Coriolis parameter 

𝑢 Velocity in the horizontal 𝑥 direction 

𝑣 Velocity in the horizontal 𝑦 direction 

𝐿 Length scale 

𝜌0, 𝑇0, 𝑝0 Are reference values of density, temperature 

and Salinity respectively 

ℎ Vertical length scale 

𝜍 Free surface elevation 

𝑥 Horizontal, 𝑥 direction 

𝑦 Horizontal, 𝑦 direction 

𝑧 Vertical 𝑧 direction 

𝑡 Time 
𝐷

𝐷𝑡
 

Material derivative 

ℎ(𝑥, 𝑦, 𝑡) The height of water surface from the same 

reference height 

H Depth of stratified deep water 

𝐹𝑟 Froude number 

𝜉(𝑥, 𝑦) Denotes the thermocline regime 

𝐻 Undisturbed free surface level 

ℎ∗ The water height above the thermocline 

regime 

𝛿𝑥 Width in the 𝑥  ̶ direction 

𝛿𝑦 Width in the 𝑦  ̶ direction 

𝑢1 Velocity in the first layer in the 𝑥   ̶direction 

𝑣1 Velocity in the first layer in the 𝑦   ̶direction 

𝑢2 Velocity in the second layer in the 𝑥    ̶

direction 

𝑣2 Velocity in the second layer in the 𝑦    ̶

direction 

𝐹 Sum of all forces 

𝑚 Mass 

𝑎 Acceleration of the block of water 

𝜆 Eigenvalues 

𝜒 Eigenvector 

𝐴𝑍 Horizontal amplitude  

𝐴𝑋 Vertical amplitude  

𝐴 Amplitude  

𝐾 Wave number 

∆𝜌 Change in density 

�̅� Density bar 

𝑔ˈ Modified gravity 
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