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In the current paper, a reliable iterative method has been presented and implemented to 

solve  the non-linear acoustic wave equations in one, two, and three dimensions. The 

Temimi-Ansari method (TAM) is implemented to find exact solutions to linear 

problems. Moreover, for nonlinear problems, approximate solutions are generated, 

which converge to the exact solution. The static-point theory was used in the analysis 

of the convergence of the proposed method. This method has demonstrated its accuracy 

and efficiency in solving non-linear equations. The software applied to the computing 

in this research was 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎®10 . The findings indicate that the proposed

iterative method is effective, dependable, time-efficient, and well-suited for addressing 

the given problems. Moreover, it shows potential for application to other nonlinear 

problems.  
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1. INTRODUCTION

The relationship between engineering problems and other 

sciences requires the integration of knowledge from multiple 

fields [1]. Engineers and scientists are able to analyze and 

understand engineering and scientific phenomena using 

equations and develop effective solutions to the problems 

facing the environment and society [2]. These equations help 

us understand the relationships between different variables, 

leading to new and effective solutions for engineering 

problems that promote innovation and technological 

advancement [3]. 

Many problems in engineering, science, and the 

environment can be expressed by nonlinear partial differential 

equations (PDEs) [4]. When the analytical solution is not 

feasible, solving a nonlinear PDE presents a challenge for 

engineers and scientists [5]. Consequently, numerous 

mathematicians and engineers have explored various methods 

and algorithms to tackle these problems, including, Finite 

Element Method [6] Complex variable boundary element 

method (CVBEM) [7], (TAM) [8], homotopy perturbation 

method (HPM) [9], and some other analytical and numerical 

methods [10, 11]. 

The acoustic wave equation describes the transmission of 

energy through a medium, including air, water, displacement, 

and acoustic intensity [12]. The speed of acoustic waves relies 

on the medium's qualities, such as density, elasticity and 

differing velocities in solids. Examples of acoustic waves 

include audible sound from speakers, seismic waves creating 

ground movements, and ultrasound used for medical imaging 

[13, 14]. 

Acoustic wave equations have numerous techniques to be 

used in solving them, for example. An Effective 

Discontinuous Galerkin Method [15], The Adomian 

decomposition approach [16], Variation iteration technique 

[17], Finite difference method [18], locally one method (LOD) 

[19], Normal mode analysis [20] Method of fundamental 

solutions [21], Explicit hybridizable discontinuous Galerkin 

method (HDGM) [22], the Concept of Perturbed Derivative 

Order [23], adaptive WKB approximation method [24] partial-

low-rank method [25].  

The TAM proposed by Temimi and Ansari in 2011 [26] to 

solve non-linear equations. This technique will be employed 

to address a range of differential equations, it includes second-

order nonlinear ordinary differential equations in the field of 

physics [27], Falkner-Skan equations [28], non-linear multi-

dimensional wave equations [29], differential algebraic 

equations [30], and nonlinear thin film flow issues [31]. 

This study primarily aims to employ the iterative TAM 

method for solving the nonlinear acoustic wave equation in 

one-dimensional (1D), two-dimensional (2D), and three-

dimensional (3D) cases. The outcomes are compared with the 

exact resolution of this issue to show the efficacy and precision 

of the suggested approach. The following shows how the paper 

is divided. Section 2 consists of the standard formulation of 

the problem. Section 3 provides a comprehensive explanation 

of the core concepts underlying the suggested iterative 

technique. In Section 4 of the suggested technique, we will 

analyze the convergent. Section 5 presents a detailed analysis 

and discussion of the numerical simulation. Section 6 provides 

the conclusion. 
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2. THE FORMULATION OF THE ACOUSTIC WAVE 

EQUATIONS  

 

The acoustic wave equation is one type of partial 

differential equation includes variable 𝔱, which may have one 

or more than one spatial variable (x, y, ...) and a scalar function 

u=u(x, y, …). Acoustic wave equations have received great 

attention from researchers because of their great importance, 

including physical and engineering applications [32]. Our 

research will examine the linear and nonlinear acoustic wave 

equations, which can be described by one-dimensional, two-

dimensional, and three-dimensional formulas: 

 

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝐹(𝑥, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑡),  
 𝑎 < 𝑥 < 𝑏, 𝑡 > 0 

(1) 

 

with the conditions 

 

𝑢(𝑥, 0) = 𝑓1(𝑥), 𝑢𝑡(𝑥, 0) = 𝑓2(𝑥) 

 

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝐹(𝑥, 𝑦, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑦 , 𝑢𝑡),  

𝑎 < 𝑥, 𝑦 < 𝑏, 𝑡 > 0 
(2) 

 

with the conditions 

 

𝑢(𝑥, 𝑦, 0) = 𝑓1(𝑥, 𝑦), 𝑢𝑡(𝑥, 𝑦, 0) = 𝑓2(𝑥, 𝑦) 

 

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧

+ 𝐹(𝑥, 𝑦, 𝑧, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑦 , 𝑢𝑧, 𝑢𝑡), 

𝑎 < 𝑥, 𝑦, 𝑧 < 𝑏, 𝑡 > 0 

(3) 

 

with the conditions 

 

𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑓1(𝑥, 𝑦, 𝑧), 𝑢𝑡(𝑥, 𝑦, 𝑧, 0) = 𝑓2(𝑥, 𝑦, 𝑧) 

 

 

3. THE UNDERLYING CONCEPT OF THE TAM  
 

In this section, the basic concepts of TAM will be presented. 

Here is the nonlinear partial differential equation that will 

be presented [33]: 

 

𝐿(𝑢(𝑥, 𝑡)) = 𝑁(𝑢(𝑥, 𝑡)) + 𝑔(𝑥, 𝑡) = 0 (4) 

 

with the boundary conditions  

 

𝐵(𝑢, 𝑑𝑢

𝑑𝑡
) = 0. 

 

The independent variable is denoted as x, while the variable 

of time is denoted as t. The function u(x, t) represents the 

unknown function, whereas g(x, t) is a known given function. 

L denotes a linear operator, N represents a nonlinear operator, 

and B(.) stands for the boundary operator. Let us start by 

considering that this is a starting approximation for solving the 

Eq. (4). 

The initial phase of the resolution approach is to solve the 

following initially value problem 𝑢0(𝑥, 𝑡): 

 

𝐿(𝑢0(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡), with 𝐵(𝑢0,
𝑑𝑢0

𝑑𝑡
) = 0 (5) 

 

The next iterative function 𝑢1(𝑥, 𝑡) are obtained by solving 

the following equation: 

 

𝐿(𝑢1(𝑥, 𝑡)) = 𝑁(𝑢0(𝑥, 𝑡)) + 𝑔(𝑥, 𝑡), 𝐵(𝑢1, 𝑑𝑢1
𝑑𝑡

) = 0 (6) 

 

In the same way, we find iterative function 𝑢2(𝑥, 𝑡)  by 

solving the subsequent issue 

 

𝐿(𝑢2(𝑥, 𝑡)) = 𝑁(𝑢1(𝑥, 𝑡)) + 𝑔(𝑥, 𝑡),       𝐵(𝑢2,
𝑑𝑢2

𝑑𝑡
) = 0 

 

In general, we can compute the subsequent iterations. 

𝑢𝑛+1(𝑥, 𝑡) by solving the following problem 

 

𝐿(𝑢𝑛+1(𝑥, 𝔱 )) = 𝑁 (𝑢𝑛(𝑥, 𝔱 )) + ℊ(𝑥, 𝔱 ),

𝐵 (𝑢𝑛+1 ,
𝑑𝑢𝑛+1

𝑑𝔱
 ) = 0 

(7) 

 

It should be noted that each 𝑢𝑛 serves as a solution to Eq. 

(4). Additionally, increasing the number of iterations enhances 

the precision of the approximation results. 

The solution for Eq. (4) can be obtained by 𝑢 = lim
𝑛→∞

𝑢𝑛. 

 

 

4. THE CONVERGENCE OF THE SUGGESTED 

ITERATIVE METHOD  

 

To demonstrate the convergence analysis of the suggested 

method, it is necessary to examine instances of both linear and 

nonlinear acoustic wave equations. Here, we establish the next 

iteration utilizing the subsequent equation 

 

                                 𝑣0 = 𝑢0(𝑥, 𝑡) 

                                 𝑣1 = 𝐹[𝑣0] 
                                 𝑣2 = 𝐹[𝑣0 + 𝑣1] 
                                 𝑣𝑛+1 = 𝐹[𝑣0 + 𝑣1 + ⋯ + 𝑣𝑛] 

(8) 

 

where, 𝑣𝑛 is the new iterations and 𝐹 is the operator can be 

given as follows 

 

𝐹[𝑣𝑘] = 𝑆𝑘 − ∑ 𝑣𝑖(𝑥, 𝑡)
𝑘−1

𝑖=0
, 𝑘 = 1,2, …. (9) 

 

The term 𝑆𝑘  means the solutions to the equation shown 

below 

 

𝐿(𝑣𝑘(𝑥, 𝔱)) + 𝑔(𝑥, 𝔱) + 𝑁 (∑ 𝑣𝑖(𝑥, 𝑡)
𝑘−1

𝑖=0
) = 0,   

𝑘 = 1, 2, …, 

(10) 

 

Assuming the same specified circumstances of the problem, 

in this fashion, we possess 𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡) = ∑ 𝑣𝑛
∞
𝑛=0 . 

So, the representation of solution of the problem can be 

accessed it using Eq. (8) and Eq. (9) in the resulted series: 

 

𝑢(𝑥, 𝑡) = ∑ 𝑣𝑖(𝑥, 𝑡)
∞

𝑖=0
  (11) 

 

The sufficient and required conditions for the convergence 

of the solution are outlined according to the proposed method. 

The accompanying theorems reveal the main findings for the 

used manner. 

Theorem 1: Let F represent an operator, as defined in Eq. 

(9) that maps a Hilbert space H to itself. The solution can be 

expressed using a series formula 𝑢𝑛(𝑥, 𝑡) = ∑ 𝑣𝑖(𝑥, 𝑡)𝑛
𝑖=0  

converges if ∃0 < 𝑟 < 1  such that  ‖𝐹[𝑣0 + 𝑣1 + ⋯ +
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𝑣𝑖+1]‖ ≤ 𝑟‖𝐹[𝑣0 + 𝑣1 + ⋯ + 𝑣𝑖]‖  (that is  ‖𝑣𝑖+1‖ ≤
𝑟‖𝑣𝑖‖) ∀𝑖 = 0, 1, 2, …. 

This theory is not simply a case of the fixed-point theory in 

Banach spaces; instead, this specific condition is beneficial for 

studying convergence. Proof: See reference [34]. 

Theorem 2: If the series solution 𝑢(𝑥, 𝑡)  = ∑ 𝑣𝑖(𝑥)∞
𝑖=0  

converges, it will provide an accurate representation of the 

solution to the current nonlinear problem. Proof: See reference 

[34]. 

Theorem 3: Let the series solution ∑ 𝑣𝑖(𝑥)∞
𝑖=0  which may 

be represented by Eq. (11), converge to the solution 𝑢(𝑥, 𝑡). If 
the current problem can be approximated by the truncated 

series ∑ 𝑣𝑖(𝑥, 𝑡)𝑛
𝑖=0 , the maximum error 𝐸𝑛(𝑥, 𝑡) is computed 

using the following expression: 

 

𝐸𝑛(𝑥, 𝑡) ≤
1

1 − 𝑟
𝑟𝑛+1‖𝑣0‖ (12) 

 

Proof: See reference [34]. 

Theorems 1 and 2 assert that the solutions found using either 

the Eq. (7) (for the TAM) or Eq. (8) will converge to the exact 

solution, given the constraint that there exists a value of r 

between 0 and 1 such that  ‖𝐹[𝑣0 + 𝑣1 + ⋯ + 𝑣𝑖+1]‖ ≤
𝑟‖𝐹[𝑣0 + 𝑣1 + ⋯ + 𝑣𝑖]‖  (that is  ‖𝑣𝑖+1‖ ≤ 𝑟‖𝑣𝑖‖ )  ∀𝑖 =
0, 1, 2, 3, …. In another meaning, the parameters can be defined 

for each i. 

 

𝛽𝑖 = {

‖𝑣𝑖+1‖

‖𝑣𝑖‖
,     ‖𝑣𝑖‖ ≠ 0

0,                ‖𝑣𝑖‖ = 0

 (13) 

 

The series solution ∑  𝑣𝑖(𝑥, 𝑡)∞
𝑖=0  converges to the precise 

solution  𝑢(𝑥, 𝑡) , if and only if 0 ≤ 𝛽𝑖 < 1, for each  𝑖 =
0,1,2,3, … .  The estimated error of maximum truncation, as 

stated in Theorem 3, may be expressed as ‖𝑢(𝑥, 𝑡) −

∑ 𝑣𝑖
𝑛
𝑖=0 ‖ ≤

1

1−𝛽
𝛽𝑛+1‖𝑣0‖, where 𝛽 = max{𝛽𝑖 , 𝑖 = 0,1, … , 𝑛}. 

 

 

5. NUMERICAL EXAMPLES  
 

Now, we examine the proposed solution to certain linear 

and nonlinear acoustic wave equations in one, two, and three 

dimensions. 

Example 1. Let's examine the given 1D linear acoustic 

wave equation by [35] 

 

𝑢𝑡𝑡(𝑥, 𝑡) =
1

𝑉2
 𝑢𝑥𝑥(𝑥, 𝑡),    

with 𝑢(𝑥, 0) = 3 𝑠𝑖𝑛 𝜋𝜃, 𝑢𝔱(𝑥, 0) = 0 
(14) 

 

will be solved by using the suggested method, where V=1 [30]. 

Let's begin by examining the given problem as it is stated 

 

𝐿(𝑢(𝑥, 𝑡)) = 𝑢𝑡𝑡(𝑥, 𝑡),   

𝑁(𝑢(𝑥, 𝑡)) = 𝑣2𝑢𝑥𝑥(𝑥, 𝑡), 𝑔(𝑥, 𝑡) = 0  
(15) 

 

The main problem might be expressed as 

 

𝐿(𝑢0(𝑥, 𝑡)) = 0, 

with 𝑢0(𝑥, 0) = 3𝑠𝑖𝑛 𝜋𝜃,  𝑢0𝑡(𝑥, 0) = 0 
(16) 

 

The subsequent issues can be derived from the overarching 

general relationship. 

𝐿(𝑢𝑛+1(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡) + 𝑁(𝑢𝑛(𝑥, 𝑡)) = 0, 

with 𝑢𝑛+1(𝑥, 0) = 3 𝑠𝑖𝑛 𝜋𝜃,   𝑢(𝑛+1)𝑡(𝑥, 0) = 0 
(17) 

 

𝑢0𝑡𝑡(𝑥, 𝑡) = 0, 
with 𝑢0(𝑥, 0) = 3 sin 𝜋𝜃 ,  𝑢0𝑡(𝑥, 0) = 0 

(18) 

 

To solve the problem set out in Eq. (18) we obtain 𝑢0 =
3𝑠𝑖𝑛 𝜋𝜃. 

The first iteration can be found by assessing the following 

problem 

 

𝑢1𝑡𝑡(𝑥, 𝑡) = 𝑣2𝑢0𝑥𝑥(𝑥, 𝑡) 

with 𝑢1(𝑥, 0) = 3𝑠𝑖𝑛 𝜋𝜃,  𝑢1𝑡(𝑥, 0) = 0. 
(19) 

 

Then, the solution of Eq. (19) is 

 

𝑢1 = 3𝑠𝑖𝑛 𝜋𝜃 −
3

2
𝑡2𝑣23𝑠𝑖𝑛 𝜋𝜃   

 

The second iteration is 

 

𝑢2𝑡𝑡(𝑥, 𝑡) = 𝑣2𝑢1𝑥𝑥(𝑥, 𝑡) 

with 𝑢2(𝑥, 0) = 3𝑠𝑖𝑛 𝜋𝜃,  𝑢2𝑡(𝑥, 0) = 0.   
(20) 

 

Then the solution of Eq. (20) is 

 

𝑢2 = 3𝑠𝑖𝑛 𝜋𝜃 −
3

2
𝑡2𝑣2𝑠𝑖𝑛 𝜋𝜃 +

1

8
𝑡4𝑣4𝑠𝑖𝑛 𝜋𝜃 

𝑢3 = 3𝑠𝑖𝑛 𝜋𝜃 −
3

2
𝑡2𝑣2𝑠𝑖𝑛 𝜋𝜃 +

1

8
𝑡4𝑣4𝑠𝑖𝑛 𝜋𝜃

−
1

240
𝑡6𝑣6𝑠𝑖𝑛 𝜋𝜃 

𝑢4 = 3𝑠𝑖𝑛 𝜋𝜃 −
3

2
𝑡2𝑣2𝑠𝑖𝑛 𝜋𝜃 +

1

8
𝑡4𝑣4𝑠𝑖𝑛 𝜋𝜃

−
1

240
𝑡6𝑣6𝑠𝑖𝑛 𝜋𝜃 +

𝔱8𝑣8𝑠𝑖𝑛 𝜋𝜃

13440
 

𝑢5 = 3𝑠𝑖𝑛 𝜋𝜃 −
3

2
𝑡2𝑣2𝑠𝑖𝑛 𝜋𝜃 +

1

8
𝑡4𝑣4𝑠𝑖𝑛 𝜋𝜃

−
1

240
𝑡6𝑣6𝑠𝑖𝑛 𝜋𝜃 +

𝑡8𝑣8𝑠𝑖𝑛 𝜋𝜃

13440

−
𝑡10𝑣10𝑠𝑖𝑛 𝜋𝜃

1209600
 

 

Finally, by taking the limit 

 

𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛 

𝑢(𝑥, 𝑡) = 3𝑠𝑖𝑛 𝜋𝜃 −
3

2
𝑡2𝑣2𝑠𝑖𝑛 𝜋𝜃 +

1

8
𝑡4𝑣4𝑠𝑖𝑛 𝜋𝜃

−
1

240
𝑡6𝑣6𝑠𝑖𝑛 𝜋𝜃 +

𝑡8𝑣8𝑠𝑖𝑛 𝜋𝜃

13440

−
𝔱10𝑣10𝑠𝑖𝑛 𝜋𝜃

1209600
+ ⋯ 

 

Thus, we continue with more iterations until we obtain the 

exact solution = 3𝑠𝑖𝑛 𝜋𝜃Cos𝜋𝑣𝑡. 
Example 2. Examine the one-dimensional, nonlinear 

acoustic wave equation 

 

𝑢𝑡𝑡 − 𝑢𝑢𝑥𝑥 = 2 − 2(𝑥2 + 𝑡2) 

with 𝑢(𝑥, 0) = 𝑥2,  𝑢𝔱(𝑥, 0) = 0. 
(21) 

 

Eq. (21) will be solved by the TAM. 

The following form are provided as, 
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𝐿(𝑢(𝑥, 𝑡)) = 𝑢𝑡𝑡(𝑥, 𝑡), 

𝑁(𝑢(𝑥, 𝑡)) = 𝑢𝑢𝑡𝑡 , 

𝑔(𝑥, 𝑡) = 2 − 2(𝑥2 + 𝑡2) 

(22) 

 

The initial problem is 

 

𝐿(𝑢0) = 2 − 2(𝑥2 + 𝑡2),   
with 𝑢0(𝑥, 0) = 𝑥2,   𝑢0𝑡(𝑥, 0) = 0 

(23) 

 

The subsequent problems will rely on the generalized 

iterative formula 

 

𝐿(𝑢𝑛+1(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡) + 𝑁 (𝑢𝑛(𝑥, 𝑡)) = 0 

with 𝑢𝑛+1(𝑥, 0) = 𝑥2,   𝑢(𝑛+1)𝑡(𝑥, 0) = 0 
(24) 

 

will be solving the following initial problem 

 

𝑢0𝑡𝑡(𝑥, 𝑡) = 2 − 2 (𝑥2 + 𝑡2), 
with  𝑢0(𝑥, 0) = 𝑥2,  𝑢0𝑡(𝑥, 0) = 0 

(25) 

 

we get 

 

𝑢0 = 𝑡2 −
𝑡4

6
+ 𝑥2 − 𝑡2𝑥2. 

 

The initial iteration 𝑢1(𝑥, 𝑡) can be found by solving 

 

𝑢1𝑡𝑡 = 𝑢𝑢0𝑥𝑥 + 2 − 2(𝑥2 + 𝑡2) 

with: 𝑢1(𝑥, 0) = 𝑥2,  𝑢1𝑡(𝑥, 0) = 0 
(26) 

 

The solution of Eq. (26) with initial conditions, will be 
 

𝑢1 = 𝑡2 −
7𝑡6

90
+

𝑡8

168
+ 𝑥2 −

𝑡4𝑥2

3
+

𝑡6𝑥2

15
. 

 

We apply the same process for the iteration  𝑢2(𝑥, 𝑡)  as 

follows 
 

𝑢2𝑡𝑡 = 𝑢𝑢1𝑥𝑥 + 2 − 2(𝑥2 + 𝑡2),  
with: 𝑢2(𝑥, 0) = 𝑥2, 𝑢2𝑡(𝑥, 0) = 0. 

(27) 

 

By solving Eq. (27), we get 
 

𝑢2 = 𝑡2 −
37𝑡8

2520
+

61𝑡10

37800
+

7𝑡12

17820
−

271𝑡14

3439800
+

𝑡16

302400

+ 𝑥2 −
2𝑡6𝑥2

45
+

𝑡8𝑥2

210
+

𝑡10𝑥2

405
−

𝑡12𝑥2

1485

+
𝑡14𝑥2

20475
, 

𝑢5 = 𝑡2 −
149𝑡10

113400
+

241𝑡12

2494800
+

17𝑡14

540540
−

11309𝑡16

13621608000

−
110821𝑡18

189464184000
−

4019𝑡20

16590420000
+ ⋯

+ 𝑥2 −
2𝑡10𝑥2

14175
+

𝑡12𝑥2

155925
+

2𝑡14𝑥2

1216215

+
𝑡16𝑥2

8687250
+

2𝑡18𝑥2

65786175

−
5351𝑡20𝑥2

259602367500
… 

 

The exact solution is converged by this series when 

 

𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡) = 𝑥2 + 𝑡2. 

The convergence of the suggested technique is proved using 

the provided procedure in Eqs. (9)-(12). The iterative scheme 

for Eq. (21) can be written 

 

𝑣0(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) = 𝑡2 −
𝑡4

6
+ 𝑥2 − 𝑡2𝑥2 

 

Using the technique (TAM), the operator 𝐹[𝑣𝑘]  as 

represented by Eq. (10) with the term 𝑆𝑘 is defined. Thus, the 

aim of this study is to exercise that proposition by finding a 

solution to the next challenge 

 

𝑣𝑘𝑡𝑡(𝑥, 𝑡) = (∑ 𝑣𝑖𝑥𝑥(𝑥, 𝑡)
𝑘−1

𝑖=0
) (∑ 𝑣𝑖(𝑥, 𝑡)

𝑘−1

𝑖=0
) + 2

− 2(𝑥2 + 𝑡2), 
 

with 

 

𝑣𝑘(𝑥, 0) = 𝑥2, 𝑣𝑘𝔱(𝑥, 0) = 0,           𝑘 ≥ 1 

𝑣1 =
𝑡4

6
−

7𝑡6

90
+

𝑡8

168
+ 𝑡2𝑥2 −

𝑡4𝑥2

3
+

𝑡6𝑥2

15
, 

𝑣2 =
7𝑡6

90
−

13𝑡8

630
+

61𝑡10

37800
+

7𝑡12

17820
−

271𝑡14

3439800
+

𝑡16

302400

+
𝑡4𝑥2

3
−

𝑡6𝑥2

9
+

𝔱8𝑥2

210
+

𝑡10𝑥2

405
−

𝑡12𝑥2

1485

+
𝑡14𝑥2

20475
, 

𝑣3 =
37𝑡8

2520
−

83𝑡10

28350
−

739𝑡12

2494800
+

4171𝑡14

37837800

−
28177𝑡16

6810804000

−
110821𝑡18

189464184000
… … . . +

2𝑡6𝑥2

45
−

𝑡8𝑥2

126

−
32𝑡10𝑥2

14175
+

2𝑡12𝑥2

2673
−

17𝑡14𝑥2

405405

−
𝑡16𝑥2

368550
−

703𝑡18𝑥2

546531300
+ ⋯ 

 

The above type of duplicates is used for the computation of 

the values of βi for the Eq. (13), in which we can get 

 

𝛽0 =
‖𝑣1‖

‖𝑣0‖
= 0.0294663 < 1 

𝛽1 =
‖𝑣2‖

‖𝑣1‖
= 0.0106408 < 1 

𝛽2 =
‖𝑣3‖

‖𝑣2‖
= 0.00427883 < 1 

𝛽3 =
‖𝑣4‖

‖𝑣3‖
= 0.00228477 < 1 

𝛽4 =
‖𝑣5‖

‖𝑣4‖
= 0.00142926 < 1, 

 

The  𝛽𝑖  values for  𝑖 ≥ 0 and  ∀(𝑥, 𝑡) :  𝑥 ∈ ℝ , 0 < 𝑥, 𝑡 ≤
1 are all smaller than 1, indicating that the suggested iterative 

approach meets the condition for convergence. 

We can conduct an additional investigation to evaluate the 

accuracy of the approximate solution (𝑢𝑛), by employing an 

absolute error relationship 𝐴𝑏𝑠𝑟𝑛 = 𝑁[𝐴𝑏𝑠[𝑤 − 𝑢𝑛]] ,where 

𝑤 = 𝑥2 + 𝑡2 is the exact solution. The 3D graph of the 𝐴𝑏𝑠𝑟𝑛 

for the approximate solution found by the recommended 

iterative procedure is shown in Figure 1. Increasing the 

number of iterations also cuts down on mistakes and improves 
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the accuracy of the answers. Furthermore, Table 1 presents the 

absolute error values ( 𝐴𝑏𝑠𝑟𝑛 ) derived from TAM for the 

iterations with n={1, 3, 5}. The reduction of error is readily 

apparent with an increase in the number of repetitions, 

particularly when t=1. 

 

 
(a) u1(x, t)                         (b) u3(x, t) 

 
(c) u5(x, t) 

 

Figure 1. Three-dimensional plotted graph for the Absrn at n=(1, 3, 5) of example 2, where t=1 

 

Table 1. The 𝐴𝑏𝑠𝑟𝑛 for example 2 computed using the TAM method over three iterations with t=1 

 
x Abs. Errs. for 𝒖𝟏 Abs. Errs. for 𝒖𝟑 Abs. Errs. for 𝒖𝟓 

0 0.0718254 0.00118746 0.00000219871 

0.1 0.0744921 0.00121631 0.00000223977 

0.2 0.0824921 0.00130285 0.00000236293 

0.3 0.0958254 0.0014471 0.0000025682 

0.4 0.0114492 0.00164903 0.00000285559 

0.5 0.138492 0.001908667 0.00000322508 

0.6 0.167825 0.002226 0.00000367668 

0.7 0.202492 0.00260103 0.00000421039 

0.8 0.242492 0.00303375 0.00000482621 

0.9 0.287825 0.00352417 0.00000552414 

1 0.338492 0.00407229 0.00000630417 

Example 3. Consider the 2D linear acoustic wave equation 

shown below [36] 

 

𝑢𝑡𝑡 =
1

𝑉2
(𝑢𝑥𝑥 + 𝑢𝑦𝑦), 

with: 𝑢(𝑥, 𝑦, 0) = Cos(−𝑥 − 𝑦), 

𝑢𝑡(𝑥, 𝑦, 0) = −√2 Sin(−𝑥 − 𝑦). 

(28) 

 

The three proposed iterative method will be used to solve 

Eq. (28), 𝑉 = 1 [31] 

 

𝑢0𝑡𝑡 = 0, with 𝑢0(𝑥, 𝑦, 0) = Cos(−𝑥 − 𝑦), 
 

𝑢0𝑡(𝑥, 𝑦, 0) = −√2Sin(−𝑥 − 𝑦) 

 

Then 

 

𝑢0 = Cos(𝑥 + 𝑦) + √2 𝑡 Sin(𝑥 + 𝑦). 
 

The initial iteration 𝑢1(𝑥, 𝑦, 𝑡) can be found by solving 

 

𝑢1𝑡𝑡 = 𝑢0𝑥𝑥, with 𝑢1(𝑥, 𝑦, 0)Cos(−𝑥 − 𝑦), 𝑢1𝑡(𝑥, 𝑦, 0) =

−√2Sin(−𝑥 − 𝑦) 

 

We get 
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𝑢1 = Cos(𝑥 + 𝑦) − 𝑡2Cos(𝑥 + 𝑦) + √2𝑡Sin(𝑥 + 𝑦)

−
1

3
√2 𝑡3Sin(𝑥 + 𝑦), 

 

The iteration 𝑢2(𝑥, 𝑦, 𝑡)  can be obtained by solving this 

problem 
 

𝑢2𝑡𝑡 = 𝑢1𝑥𝑥 + 𝑢1𝑦𝑦 , 

with 𝑢2(𝑥, 𝑦, 0)Cos(−𝑥 − 𝑦), 𝑢2𝔱(𝑥, 𝑦, 0)

= −√2Sin(−𝑥 − 𝑦), 
 

then 
 

𝑢2 = Cos(𝑥 + 𝑦) − 𝑡2Cos(𝑥 + 𝑦) +
1

6
𝑡4Cos(𝑥 + 𝑦)

+ √2𝑡Sin(𝑥 + 𝑦) −
1

3
√2𝑡3Sin(𝑥 + 𝑦)

+
𝑡5Sin(𝑥 + 𝑦)

15√2
, 

𝑢5 = Cos(𝑥 + 𝑦) − 𝑡2Cos(𝑥 + 𝑦) +
1

6
𝑡4Cos(𝑥 + 𝑦)

−
1

90
𝑡6Cos(𝑥 + 𝑦) +

𝑡8Cos(𝑥 + 𝑦)

2520

−
𝑡10Cos(𝑥 + 𝑦)

113400
+ √2𝑡Sin(𝑥 + 𝑦)

−
1

3
√2𝑡3Sin(𝑥 + 𝑦) … 

 

When the solution converges to the exact solution, then 
 

𝑢(𝑥, 𝑦, 𝑡) = Cos(√2𝑡 − 𝑥 − 𝑦)

= Cos(𝑥 + 𝑦) − 𝑡2Cos(𝑥 + 𝑦)

+
1

6
𝑡4Cos(𝑥 + 𝑦) −

1

90
𝑡6Cos(𝑥 + 𝑦)

+
tCos(𝑥 + 𝑦)

2520
−

𝑡10Cos(𝑥 + 𝑦)

113400

+ √2𝑡Sin(𝑥 + 𝑦) −
1

3
√2𝑡3Sin(𝑥 + 𝑦)

+
𝑡5Sin(𝑥 + 𝑦)

15√2
−

𝑡7Sin(𝑥 + 𝑦)

315√2
… 

 

The exact solution can be acquired by 𝑢(𝑥, 𝑦, 𝑡) =

lim
𝑛→∞

𝑢𝑛 = Cos(√2𝑡 − 𝑥 − 𝑦). 

Example 4. Let us examine the one-dimensional nonlinear 

wave equation. 
 

𝑢𝑡𝑡 + 𝑢𝑦𝑦 =𝑢𝑢𝑥𝑥 + 2 − (
𝑥2 + 𝑦2 + 𝑡2

2
) (29) 

 

with the given initial conditions 

 

𝑢(𝑥, 𝑦, 0) =
𝑥2 + 𝑦2

2
,  𝑢𝑡(𝑥, 𝑦, 0) = 0.  

 

To resolve Eq. (29) utilizing TAM and the given initial 

conditions, we can express it as follows 

 

𝐿(𝑢) = 𝑢𝔱𝔱(𝑥, 𝑦, 𝑡),   
𝑁(𝑢) = 𝑢(𝑥, 𝑦, 𝑡)𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) − 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡),   

𝑔(𝑥, 𝑦, 𝑡) = 2 − (
𝑥2 + 𝑦2 + 𝑡2

2
) 

(30) 

 

The initial problem is 

𝐿(𝑢0) = 2 − 2(𝑥2 + 𝑡2), 

with 𝑢0(𝑥, 𝑦, 0) =
𝑥2+𝑦2

2
,  𝑢0𝑡

(𝑥, 𝑦, 0) = 0 
(31) 

 

The following issues will be resolved using the generalized 

iterative formula 

 

𝐿(𝑢𝑛+1) + 𝑁(𝑢𝑛) = 𝑔(𝑥, 𝑦, 𝑡), 

𝑢𝑛+1(𝑥, 𝑦, 0) =
𝑥2 + 𝑦2

2
,  𝑢𝑛+1𝑡

(𝑥, 𝑦, 0) = 0        

 

By solving the Eq. (31), we get 

 

𝑢0 = 𝑡2 −
𝑡4

24
+

𝑥2

2
−

𝑡2𝑥2

4
+

𝑦2

2
−

𝑡2𝑦2

4
, 

 

The first iteration 𝑢1(𝑥, 𝑦, 𝑡) can be obtained by solving 

 

𝑢1𝑡𝑡 =  𝑢0(𝑥, 𝑦, 𝑡) 𝑢0𝑥𝑥
(𝑥, 𝑦, 𝑡) −  𝑢0𝑦𝑦

(𝑥, 𝑦, 𝑡) + 2

− (
𝑥2 + 𝑦2 + 𝑡2

2
) 

with 𝑢1(𝑥, 𝑦, 0) =
𝑥2+𝑦2

2
,  𝑢1𝔱

(𝑥, 𝑦, 0) = 0 

 

The solution will be 

 

𝑢1 =
𝔱2

2
+

𝔱4

12
−

13𝔱6

720
+

𝔱8

2688
+

𝑥2

2
−

𝔱4𝑥2

24
+

𝔱6𝑥2

240
+

𝑦2

2

−
𝔱4𝑦2

24
+

𝔱6ỿ2

240
, 

 

Applying the same process for 𝑢2, we have 

 

𝑢2𝑡𝑡 =  𝑢1(𝑥, 𝑦, 𝑡) 𝑢1𝑥𝑥
(𝑥, 𝑦, 𝑡) −  𝑢1𝑦𝑦

(𝑥, 𝑦, 𝑡) + 2

− (
𝑥2 + 𝑦2 + 𝔱2

2
) 

with 𝑢2(𝑥, 𝑦, 0) =
𝑥2+𝑦2

2
,  𝑢2𝔱

(𝑥, 𝑦, 0) = 0 

 

By solving this equation, we get 

 

𝑢2 =
𝑡2

2
+

𝑡6

180
−

7𝑡8

5760
−

97𝑡10

3628800
+

19𝑡12

1140480

−
439𝑡14

440294400
+

𝑡16

77414400
+

𝑥2

2
−

𝑡6𝑥2

360

+
𝑡8𝑥2

6720
+

𝑡10𝑥2

25920
−

𝑡12𝑥2

190080
+

𝑡14𝑥2

5241600

+
𝑦2

2
−

𝑡6𝑦2

360
+

𝑡8𝑦2

6720
+

𝑡10𝑦2

25920
−

𝑡12𝑦2

190080

+
𝑡14𝑦2

5241600
. 

 

The approximations will continue till 𝑛 = 5, for brevity it's 

not stated. 

The convergence analysis of the suggested iterative 

procedure allows us to determine the values 𝛽𝑖 for the problem 

in Eq. (29). Thus, we determine the terms of the series 
∑ 𝑣𝑖(𝑥, 𝑡)∞

𝑖=0  in the above Eq. (11), and proceed to deduce 

them in the following manner: 

 

𝛽0 =
‖𝑣1‖

‖𝑣0‖
= 0.825234 < 1      
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𝛽1 =
‖𝑣2‖

‖𝑣1‖
= 0.512054 < 1      

𝛽2 =
‖𝑣3‖

‖𝑣2‖
= 0.211578 < 1      

𝛽3 =
‖𝑣4‖

‖𝑣3‖
= 0.109301 < 1      

𝛽4 =
‖𝑣5‖

‖𝑣4‖
= 0.0977504 < 1      

 

where, the 𝛽𝑖 values for 𝑖 ≥ 0 and for each (𝑥, 𝑦, 𝑡): 𝑥, 𝑦 ∈ 𝑅 , 

0 < 𝑥, 𝑦, 𝑡 ≤ 1 and are all smaller than 1. Therefore, the 

suggested iterative approach guarantees convergence. 

To evaluate the accuracy of the projected solution for the 

given example, an absolute error is computed using 𝐴𝑏𝑠𝑟𝑛 

where 𝑤 =
𝑥2+𝑦2+𝑡2

2
 is the exact solution. Figure 2 shows a 

three-dimensional graph showing the absolute error of the 

approximate solution given by the suggested techniques, 

showing how well these techniques work. Also, as the number 

of iterations grows increases up, the mistakes go down, which 

makes the approximation answer more accurate. 

Additionally, Table 2 displays (𝐴𝑏𝑠𝑟𝑛) obtined by TAM for 

the iterations with n={1, 3, 5}. The reduction of error is readily 

apparent with an increase in the number of repetitions, 

particularly when t = 1. 

 

 
(a) 𝑢1(𝑥, 𝑦, 𝑡)                                                                      (b) 𝑢3(𝑥, 𝑦, 𝑡) 

 
(c) 𝑢5(𝑥, 𝑦, 𝑡) 

 

Figure 2. Three-dimensional plotted graph for the Absrn at n=(1, 3, 5) of example 4, where t=1 

 

Table 2. The 𝐴𝑏𝑠𝑟𝑛 values for example 4 computed using the TAM method over three iterations with t=1 

 
(x, y) Abs. Errs. for 𝒖𝟏 Abs. Errs. for 𝒖𝟑 Abs. Errs. for 𝒖𝟓 

0 0.0656498 0.000151279 4.79946×10-8 

0.1 0.048998 0.000149373 4.73387×10-8 

0.2 0.0626498 0.000143655 4.53709×10-8 

0.3 0.0588998 0.000134126 4.20912×10-8 

0.4 0.0536498 0.000120785 3.74996×10-8 

0.5 0.0468998 0.000103632 3.15961×10-8 

0.6 0.0386498 0.0000826668 2.43807×10-8 

0.7 0.0288998 0.0000578903 1.58535×10-8 

0.8 0.0176498 0.000029302 6.01436×10-9 

0.9 0.0048998 0.00000309807 5.13665×10-9 

1 0.0093502 0.0000393099 1.75995×10-8 
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Example 5. Consider the 3D linear acoustic wave equation, 

given as [37] 

 

𝑢𝑡𝑡 = 𝑉2(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧)  (32) 

 
with the initial condition 

 

𝑢(𝑥, 𝑦, 𝑧, 0) = cos(𝑥) 𝑠𝑖𝑛(𝑦) 𝑐𝑜𝑠(𝑧),  𝑢𝑡(𝑥, 𝑦, 𝑧, 0) = 0. 
 

Eq. (32) will be solved using the approach of steps that was 

suggested, 𝑉 = 1 [37] 

 

𝑢0𝑡𝑡 = 0, with 𝑢0(𝑥, 𝑦, 𝑧, 0) = cos(𝑥)𝑠𝑖𝑛(𝑦)cos (𝑧), 
𝑢0𝑡(𝑥, 𝑦, 𝑧, 0) = 0. 

 

Then,  
 

𝑢0 = cos(𝑥)cos(𝑧)sin(𝑦) 
 

The first iteration 𝑢1(𝑥, 𝑦, 𝑧, 𝑡) can be get by solving 

 

𝑢1𝑡𝑡 = 𝑉2 (𝑢0𝑥𝑥
+ 𝑢0𝑦𝑦

+ 𝑢0𝑧𝑧
), with 𝑢1(𝑥, 𝑦, 𝑧, 0) =

cos(𝑥) 𝑠𝑖𝑛(𝑦) 𝑐𝑜𝑠(𝑧), 𝑢1𝑡(𝑥, 𝑦, 𝑧, 0) = 0  

 

We get, 

 

𝑢1 = cos(𝑥)cos(𝑧) sin(𝑦) −
3

2
𝑡2cos(𝑥)cos(𝑧) sin(𝑦) 

 

The iteration 𝑢2(𝑥, 𝑦, 𝑧, 𝑡) can be obtained by solving this 

problem: 

 

𝑢2𝑡𝑡 = 𝑉2 (𝑢1𝑥𝑥
+ 𝑢2𝑦𝑦

+ 𝑢3𝑧𝑧
), with: 𝑢2(𝑥, 𝑦, 𝑧, 0) =

cos(𝑥)𝑠𝑖𝑛(𝑦)𝑐𝑜𝑠(𝑧), 𝑢2𝔱(𝑥, 𝑦, 𝑧, 0) = 0, 
 

Then 

 

𝑢2 = cos(𝑥)cos(𝑧) sin(𝑦) −
3

2
𝑡2 cos(𝑥)cos(𝑧) sin(𝑦)

+
3

8
𝑡4 cos(𝑥)cos(𝑧) sin(𝑦), 

𝑢5 = cos(𝑥)cos(𝑧) sin(𝑦) −
3

2
𝑡2cos(𝑥)cos(𝑧) sin(𝑦)

+
3

8
𝑡4cos(𝑥)cos(𝑧) sin(𝑦)

−
3

80
𝑡6cos(𝑥)cos(𝑧) sin(𝑦)

+
9𝑡8cos(𝑥)cos(𝑧) sin(𝑦)

4480

−
3𝑡10cos(𝑥)cos(𝑧) sin(𝑦)

44800
 

 

When the solution converges to the exact solution, then 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = cos (√3𝑡) cos(𝑥)𝑠𝑖𝑛(𝑦)𝑐𝑜𝑠(𝑧)

= cos(𝑥)cos(𝑧) sin(𝑦)

−
3

2
𝑡2cos(𝑥)cos(𝑧) sin(𝑦)

+
3

8
𝑡4 cos(𝑥)cos(𝑧) sin(𝑦)

−
3

80
𝑡6cos(𝑥)cos(𝑧) sin(𝑦)

+
9𝑡8cos(𝑥)cos(𝑧) sin(𝑦)

4480

−
3𝑡10cos(𝑥)cos(𝑧) sin(𝑦)

44800
+ ⋯ 

The exact solution can be found by 𝑢(𝑥, 𝑦, 𝑧, 𝑡) =

lim
𝑛→∞

𝑢𝑛 = cos(√3𝔱)cos(𝑥)𝑠𝑖𝑛(𝑦)𝑐𝑜𝑠(𝑧). 

Example 6. The equation provided is a three-dimensional 

nonlinear acoustic wave equation. 

 

𝑢𝑡𝑡(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) 𝑢𝑥𝑥(𝑥, 𝑦, 𝑧, 𝑡)
+ 𝑢𝑦𝑦(𝑥, 𝑦, 𝑧, 𝑡)

+ 2𝑥 𝑢𝑧𝑧(𝑥, 𝑦, 𝑧, 𝑡) − 4𝑥
− 2(𝑥2 + 𝑦2 + 𝑧2 + 𝑡2) 

(33) 

 

with the initial conditions 

 

𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑥2 + 𝑦2 + 𝑧2, 𝑢𝔱(𝑥, 𝑦, 𝑧, 0) = 0. 
 

When we apply the TAM to solve Eq. (33) with the given 

initial conditions, the following outcomes are obtained 

 

𝐿(𝑢) = 𝑢𝑡𝑡(𝑥, 𝑦, 𝑧, 𝑡), 
𝑁(𝑢) = 𝑢(𝑥, 𝑦, 𝑧, 𝑡)𝑢𝑥𝑥(𝑥, 𝑦, 𝑧, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑧, 𝑡)

+ 𝑢𝑧𝑧(𝑥, 𝑦, 𝑧, 𝑡) − 2
− 2(𝑥2 + 𝑦2 + 𝑧2 + 𝑡2) 

 

The initial problem is 

 

𝐿(𝑢0) = −4𝑥 − 2(𝑥2 + 𝑦2 + 𝑧2 + 𝑡2)  
with 𝑢0(𝑥, 𝑦, 𝑧, 0) = 𝑥2 + 𝑦2 + 𝑧2,

𝑢0𝔱
(𝑥, 𝑦, 𝑧, 0) = 0 

(34) 

 

The generalized iterative method can be used to get the next 

problems 

 

𝐿(𝑢𝑛+1) = 𝑁(𝑦𝑛) + 𝑔 

with 𝑢𝑛+1(𝑥, 𝑦, 𝑧, 0) = 𝑥2 + 𝑦2 + 𝑧2, 
 𝑢𝑛+1𝑡

 (𝑥, 𝑦, 𝑧, 0) = 0 

 

By solving the Eq. (34), one can get 

 

𝑢0 = −
𝑡4

6
− 2𝑡2𝑥 + 𝑥2 − 𝑡2𝑥2 + 𝑦2 − 𝑡2𝑦2 + 𝑧2 − 𝑡2𝑧2 

 

The first iteration 𝑢1(𝑥, 𝑦, 𝑧, 𝑡) can be found by solving 

 

𝑢0 = 𝑢1𝑡𝑡(𝑥, 𝑦, 𝑧, 𝑡)
= 𝑢0(𝑥, 𝑦, 𝑧, 𝑡)𝑢0𝑥𝑥

(𝑥, 𝑦, 𝑧, 𝑡)

+ 𝑢0𝑦𝑦
(𝑥, 𝑦, 𝑧, 𝑡) + 2𝑥𝑢0𝑧𝑧

(𝑥, 𝑦, 𝑧, 𝑡) − 4𝑥

− 2(𝑥2 + 𝑦2 + 𝑧2 + 𝑡2) 

with 𝑢1(𝑥, 𝑦, 𝑧, 0) = 𝑥2 + 𝑦2 + 𝑧2 … , 𝑢1𝔱
(𝑥, 𝑦, 𝑧, 0) = 0 

 

The solution will be 

 

𝑢1 = 𝑡2 −
𝑡4

3
−

𝑡6

90
+

𝑡8

168
−

2𝑡4𝑥

3
+

2𝑡64𝑥

15
+ 𝑥2 −

𝑡4𝑥2

3
+

𝑡6𝑥2

15

+ 𝑦2 −
𝑡4𝑦2

3
+

𝑡6𝑦2

15
+ 𝑧2 −

𝑡4𝑧2

3
+

𝑡6𝑧2

15
, 

 

Applying the same process for 𝑢2 as stated below 

 

𝑢2𝑡𝑡(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢1(𝑥, 𝑦, 𝑧, 𝑡)𝑢1𝑥𝑥
(𝑥, 𝑦, 𝑧, 𝑡) +

𝑢1𝑦𝑦
(𝑥, 𝑦, 𝑧, 𝑡) + 2𝑥𝑢1𝑧𝑧

(𝑥, 𝑦, 𝑧, 𝑡) − 4𝑥 − 2(𝑥2 + 𝑦2 +

𝑧2 + 𝑡2) with 𝑢2(𝑥, 𝑦, 𝑧, 0) = 𝑥2 + 𝑦2 + 𝑧2, 
𝑢2𝔱

(𝑥, 𝑦, 𝑧, 0) = 0. 
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We solve this problem Eq. (35) and then we have 

 

𝑢2 = 𝑡2 −
2𝑡6

45
−

5𝑡8

504
+

463𝑡10

113400
−

𝑡12

3564
−

103𝑡14

3439800

+
𝑡16

302400
−

4𝑡6𝑥

45
+

𝑡8𝑥

105
+

2𝑡10𝑥

405
−

2𝑡12𝑥

1485

+
2𝑡14𝑥

20475
+ 𝑥2 −

2𝑡6𝑥2

45
+

𝑡8𝑥2

210
+

𝑡10𝑥2

405

−
𝑡12𝑥2

1485
+

𝑡14𝑥2

20475
+ 𝑦2 −

2𝑡6𝑦2

45
+

𝑡8𝑦2

210

+
𝔱10𝑦2

405
−

𝑡12𝑦2

1485
+

𝑡14𝑦2

20475
+ 𝑧2 −

2𝑡6𝑧2

45

+
𝑡8𝑧2

210
+

𝑡10𝑧2

405
−

𝑡12𝑧2

1485
+

𝑡14𝑧2

20475
 

 
We continue to find approximations until n=5, which we 

will not list for brevity. 

To demonstrate convergence, we calculate the values of 𝛽𝑖 

for the issue outlined in Eq. (33). Therefore, by substituting 

the terms of the series ∑ 𝑣𝑖(𝑥, 𝑦, 𝑧, 𝑡)∞
𝑖=0  given in Eq. (11), we 

get 
 

𝛽0 =
‖𝑣1‖

‖𝑣0‖
= 0.475491 < 1 

𝛽1 =
‖𝑣2‖

‖𝑣1‖
= 0.0105437 < 1 

𝛽2 =
‖𝑣3‖

‖𝑣2‖
= 0.0042245 < 1 

𝛽3 =
‖𝑣4‖

‖𝑣3‖
= 0.00226105 < 1 

𝛽4 =
‖𝑣5‖

‖𝑣4‖
= 0.00140942 < 1 

 

 
(a) 𝑢1(𝑥, 𝑦, 𝑧, 𝑡)                                            (b) 𝑢3(𝑥, 𝑦, 𝑧, 𝑡) 

 
(c) 𝑢5(𝑥, 𝑦, 𝑧, 𝑡) 

 

Figure 3. Three-dimensional plotted graph for the 𝐴𝑏𝑠𝑟𝑛 at 𝑛 = (1, 3, 5) of example 6, where 𝑡 = 1 

 

Table 3. The 𝐴𝑏𝑠𝑟𝑛 values for example 6 computed using the TAM method over three iterations with t=1 

 
(x, y, z) Abs. Errs. for 𝒖𝟏 Abs. Errs. for 𝒖𝟑 Abs. Errs. for 𝒖𝟓 

0 0.338492 0.00407229 0.00000630417 

0.1 0.399825 0.00473579 0.00000724843 

0.2 0.477159 0.00557239 0.00000843902 

0.3 0.570492 0.00658208 0.00000987593 

0.4 0.679825 0.00776486 0.0000115592 

0.5 0.805159 0.00912073 0.0000134887 

0.6 0.946492 0.0106497 0.0000156646 

0.7 1.10383 0.0123517 0.0000180869 

0.8 1.27716 0.0142269 0.0000207554 

0.9 1.46649 0.0162751 0.0000236703 

1 1.67183 0.0184964 0.0000268315 
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The 𝛽𝑖  values for 𝑖 ≥ 0 and ∀(𝑥, 𝑦, 𝑧, 𝑡): 𝑥, 𝑦, 𝑧 ∈ 𝑅3 , 0 <
𝑥, 𝑦, 𝑧, 𝑡 ≤ 1 are all smaller than 1. Therefore, the suggested 

iterative method satisfies convergence. To evaluate the 

estimated solutions accuracy for this example by using 𝐴𝑏𝑠𝑟𝑛 

of the approximate solution, when the exact solution is 𝑤 =
𝑥2 + 𝑦2 + 𝑧2 + 𝑡2. 

Figures 3(a)-(c) display the three-dimensional plot of the 

absolute value of the approximate solution generated using the 

TAM, by increasing the iterations, the resolution of the 

approximate solution will be increased. Furthermore, Table 3 

presents the absolute error values derived from TAM for the 

iterations with n={1, 3, 5}. The diminution of mistakes is 

clearly evident with an increase in the frequency of repetitions, 

especially when t=1. 

 

 

6. CONCLUSION  

 

In this study, we have employed a dependable semi-analytic 

technique known as TAM for the solution of the acoustic wave 

equations. We demonstrate the efficacy of the suggested 

approach by using multiple test cases. Which include 

applications of non-linear acoustic wave equations in one-

dimensional, two-dimensional, and three-dimensional. All 

examples were successfully solved, and exact solutions of 

linear equations and approximate solutions of nonlinear 

equations were obtained. The TAM approach is simple to 

implement, and its application does not require intricate 

constraints for the nonlinear terms, unlike certain current 

methods such as the ADM and VIM. This method's 

programming is efficient and cost-effective regarding 

computer processing, eliminating the need for laborious 

evaluations. We conducted a comparison between the precise 

solutions and their approximations. by the absolute error. 

Through the convergence test and the graphs shown that 

demonstrated the effectiveness and precision of this employed 

technique. 
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NOMENCLATURE 

 

𝑥, 𝑦, 𝑧 the independent variable 

𝑡 time 

u unknown function 

𝑔 known function  

L linear operator 

N non-linear operator 

B(.) boundary operator 

𝑣𝑖  iterations of convergent 

𝑆𝑘 solution of the given problem 

𝐸𝑛(𝑥, 𝑡) maximum error 

𝐴𝑏𝑠𝑟𝑛 absolute error 

 

Greek symbols 

 

𝛽𝑖 values of converge 

 max{𝛽𝑖 , 𝑖 = 0,1, … , 𝑛} 

𝜃 angle parameter 

𝜋 pi 

 

Subscripts 

 

V velocity of sound 

𝑢𝑛 approximate solution 

𝑤 exact solution 
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