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The study of non-Newtonian fluid dynamics within cardiovascular systems is critical for 

understanding the complex interactions between blood flow and arterial health. This 

research focuses on the application of the Finite Volume Method (FVM) to simulate non-

Newtonian fluid behavior under pulsatile flow conditions, mimicking the heartbeat. The 

objective is to analyze the effects of varying viscosity properties and flow patterns on the 

development and progression of atherosclerosis. By employing computational simulations, 

we investigate the rheological properties of blood, characterized as a non-Newtonian fluid, 

and its impact on shear stress distribution and arterial wall interaction. The simulation 

framework incorporates advanced non-Newtonian models, including Power-law and 

Carreau-Yasuda models, to accurately represent blood viscosity variations. Pulsatile flow 

dynamics are modeled to replicate physiological conditions, providing insights into the 

mechanical forces exerted on arterial walls and their role in atherosclerotic plaque 

formation. The results highlight critical areas of high shear stress and low shear rate, which 

correlate with regions prone to atherosclerosis. This study's findings contribute to a deeper 

understanding of cardiovascular fluid mechanics and offer potential implications for 

medical diagnostics and treatment strategies for atherosclerosis. The application of the 

FVM in this context demonstrates its robustness in handling complex fluid behaviors and 

geometries, paving the way for more sophisticated simulations in biomedical engineering. 
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1. INTRODUCTION

In the realm of fluid dynamics, the study of non-Newtonian 

fluids has garnered significant attention due to their complex 

flow behavior, which deviates from the simple linear 

relationship between shear stress and shear rate observed in 

Newtonian fluids. Non-Newtonian fluids, such as blood, 

exhibit a range of behaviors including shear-thinning, shear-

thickening, and viscoelasticity, making their analysis crucial 

for understanding various biological and industrial processes. 

The complexity of non-Newtonian fluids lies in their viscosity, 

which is not a constant but rather a function of the shear rate. 

This dependency poses challenges for accurately predicting 

flow behavior, especially in intricate geometries like those 

found in the human cardiovascular system. One of the 

prevalent models used to describe the viscosity of non-

Newtonian fluids is the Carreau-Yasuda model, which 

effectively captures the shear-thinning nature of fluids like 

blood. The Carreau-Yasuda model provides a more accurate 

representation of blood viscosity by incorporating parameters 

that adjust the fluid's behavior across different shear rates, thus 

enabling a more realistic simulation of blood flow in 

physiological conditions [1]. 

The effect of viscosity on blood flow is profound, 

influencing both macroscopic and microscopic dynamics 

within the cardiovascular system. Blood, being a shear-

thinning fluid, experiences a decrease in viscosity with 

increasing shear rates, which is particularly relevant in the 

context of pulsatile flow induced by the heartbeat [2, 3]. The 

pulsatile nature of blood flow means that the velocity and 

shear rates within arteries are continuously fluctuating, leading 

to complex temporal and spatial variations in viscosity. These 

variations play a critical role in determining the hemodynamic 

forces exerted on the arterial walls, which are crucial for 

understanding the progression of diseases such as 

atherosclerosis. Atherosclerosis, characterized by the buildup 
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of plaques within the arterial walls, leads to geometric 

constrictions that further complicate the flow dynamics. The 

interplay between the non-Newtonian viscosity of blood and 

the altered geometry due to atherosclerosis necessitates 

sophisticated modeling approaches to accurately capture the 

resultant flow patterns and stress distributions. The Carreau-

Yasuda model is particularly advantageous in this regard, as it 

provides a robust framework for modeling the shear-thinning 

behavior of blood. The model is defined by the Eq. (1). 

 

μ(γ̇) = μ∞ + (μ0 − μ∞)[1 + (λγ̇)α]
(𝑛−1)

α   (1) 

 

where, μ is the viscosity γ̇ is the shear rate, μ0 , μ∞  are the 

zero-shear and infinite-shear viscosities respectively, λ  is a 

time constant α is a parameter that defines the transition region 

between the Newtonian plateau and power-law region and n is 

the power-law index. This model effectively bridges the low 

and high shear rate viscosities, capturing the essential 

characteristics of blood flow under various physiological 

conditions. By incorporating this model into numerical 

simulations, researchers can gain deeper insights into the flow 

behavior in health and disease [4-6]. 

To simulate the complex flow of non-Newtonian fluids in 

cardiovascular systems, the Finite Volume Method (FVM) is 

a powerful numerical technique. FVM is widely used in 

computational fluid dynamics (CFD) due to its flexibility in 

handling complex geometries and conservation properties. 

Unlike other numerical methods, FVM discretizes the domain 

into small control volumes and applies conservation laws 

(mass, momentum, and energy) to each control volume [7-9]. 

This approach ensures that the fluxes entering and leaving a 

control volume are balanced, which is particularly 

advantageous for simulating flow in irregular geometries such 

as those found in atherosclerotic arteries. The ability of FVM 

to handle complex boundaries and ensure conservation makes 

it an ideal choice for simulating the pulsatile and shear-

dependent flow of blood in the cardiovascular system. By 

leveraging FVM, researchers can discretize the arterial 

geometry affected by atherosclerosis and accurately capture 

the local variations in flow velocity, pressure, and shear stress 

[10]. The benefits of using the Finite Volume Method to 

simulate non-Newtonian fluid dynamics in cardiovascular 

systems extend beyond accurate flow predictions. Such 

simulations provide valuable insights into the hemodynamic 

factors that contribute to the initiation and progression of 

cardiovascular diseases. For instance, understanding the 

distribution of wall shear stress and its temporal variations can 

help identify regions susceptible to atherosclerotic plaque 

formation [11]. Furthermore, these simulations can aid in the 

design of medical interventions, such as stents, by predicting 

the impact of different geometries and materials on blood flow 

[12, 13]. The integration of physiological and biomathematical 

knowledge through advanced numerical simulations also 

enhances our understanding of the fundamental mechanisms 

driving blood flow and its interaction with arterial walls. This 

comprehensive approach bridges the gap between theoretical 

models and clinical applications, enabling the development of 

more effective diagnostic and therapeutic strategies for 

cardiovascular diseases [14, 15]. 

 

 
 

Figure 1. Atherosclerosis model [16] 

 

Figure 1 illustrates a conceptual model of an artery affected 

by atherosclerosis. The diagram depicts the lumen (inner 

channel) radius, representing the open space through which 

blood flows, and the outer wall radius, representing the artery's 

external boundary. The constricted region, spanning 3 mm in 

length and narrowing to a minimum lumen radius of 0.5 mm, 

demonstrates the reduced blood flow caused by plaque buildup. 

The flow pathways (red arrows and dots) highlight the impact 

of the narrowing on blood dynamics, including velocity and 

shear stress distribution. This representation is crucial for 

understanding how arterial constrictions affect blood flow, 

potentially leading to conditions such as ischemia or plaque 

rupture. The study of non-Newtonian fluid dynamics, 

particularly in the context of blood flow in atherosclerotic 

arteries, is essential for advancing our understanding of 

cardiovascular health and disease. The Carreau-Yasuda model 

provides a robust framework for capturing the shear-thinning 

behavior of blood, while the Finite Volume Method offers a 

powerful tool for simulating the complex geometries and 

pulsatile flow conditions characteristic of the cardiovascular 

system [17, 18]. By combining these advanced modeling 

techniques, researchers can achieve accurate and detailed 

simulations that not only enhance our understanding of 

hemodynamics but also inform the development of better 

clinical interventions. The integration of physiological and 

biomathematical knowledge through these simulations holds 

the potential to significantly improve cardiovascular health 

outcomes, making this area of research both scientifically 

intriguing and clinically relevant [19-22]. 

 

1.1 Novelty of the paper 

 

The novelty of this research lies in its comprehensive 

approach to simulating non-Newtonian fluid dynamics within 

cardiovascular systems, specifically addressing the complex 

interplay between pulsatile blood flow and atherosclerotic 

artery constrictions using advanced numerical methods. By 

integrating the Carreau-Yasuda model to accurately capture 

the shear-thinning behavior of blood and employing the Finite 

Volume Method (FVM) to discretize intricate arterial 

geometries, this study provides unprecedented insights into the 

hemodynamic environment under realistic physiological 

conditions. Unlike previous studies that often simplified either 

the fluid properties or the geometrical complexities, this 

research combines both aspects, allowing for a more precise 

analysis of the temporal and spatial variations in shear stress 

and pressure due to pulsatile flow. The focus on the impact of 

pulsatility in the presence of atherosclerosis offers a deeper 

understanding of how cyclic variations in flow dynamics 

influence plaque progression and endothelial function, which 

is critical for developing more effective diagnostic tools and 

therapeutic strategies. 
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This holistic approach not only enhances the theoretical 

understanding of cardiovascular hemodynamics but also has 

significant implications for clinical applications, making it a 

pioneering effort in the field of cardiovascular fluid dynamics. 

 

1.2 Organization of the paper 

 

The organization of this paper is structured to provide a 

systematic and comprehensive exploration of non-Newtonian 

fluid dynamics in cardiovascular systems, focusing on the 

interaction between pulsatile blood flow and atherosclerotic 

constrictions [23, 24]. The paper begins with an Introduction 

section, offering background information on non-Newtonian 

fluids, the significance of viscosity variations, the Carreau-

Yasuda model, and the relevance of these topics to 

cardiovascular health. The Literature Review follows, 

summarizing previous research efforts in the field, 

highlighting gaps that this study aims to address, and 

establishing the novelty of the current research. The 

Methodology section details the numerical techniques 

employed, including the Finite Volume Method (FVM) for 

discretizing the complex arterial geometry and implementing 

pulsatile boundary conditions, as well as the integration of the 

Carreau-Yasuda model to represent blood viscosity [25, 26]. 

The Modeling and Simulation section presents the 

development of the 2D atherosclerotic artery model, the 

application of the FVM, and the simulation setup to capture 

pulsatile flow dynamics. The Results and Discussion section 

showcases the simulation outcomes, analyzing the spatial and 

temporal variations in shear stress and pressure, and discussing 

their implications for atherosclerosis progression and 

endothelial function [27, 28]. This is followed by the 

Validation and Comparison section, where the results are 

compared with experimental data and previous studies to 

establish the accuracy and reliability of the simulations. The 

Implications for Clinical Practice section explores how the 

findings can inform the development of diagnostic tools and 

therapeutic strategies. This structured approach ensures a 

thorough examination of the research questions and facilitates 

a clear understanding of the study's contributions to the field 

of cardiovascular fluid dynamics. 

 

 

2. MATERIAL AND METHODS 

 

2.1 Governing equations 

 

Continuity equation (Mass Conservation) is: 

 

( ) 0
t





+ =


u  (2) 

 

For incompressible flow, this simplifies to: 

 

. 0 =u  (3) 

 

2.2 Navier-stokes equations (momentum conservation) 

 

For an incompressible, non-Newtonian fluid, the Navier-

Stokes equations in two dimensions (2D) are [29]: 

 

p
t

 
 

+  = − + + 
 

u
u u T g  (4) 

where, u = (𝑢, 𝑣) is the velocity vector with u and v being the 

velocity components in the x and y directions, respectively. 

 

2.3 Stress tensor for non-Newtonian fluids 

 

For non-Newtonian fluids, the stress tensor 𝐓 is given by 

[30, 31]: 

 

T = 2μ(γ̇)D  (5) 

 

where, μ(γ̇) is the dynamic viscosity, which is a function of 

the shear rate γ̇ , D =
1

2
(∇𝑢 + (∇𝑢)𝑇)  is the rate-of-

deformation tensor. 

 

2.4 Modified governing equations 

 

In the presence of atherosclerosis, the geometry of the artery 

is no longer a simple straight channel. Instead, there is a 

constriction that affects the flow characteristics. This 

constriction can be modeled as a reduction in the cross-

sectional area of the artery in the constricted region. This 

impacts the continuity and momentum equations by 

introducing spatial variations in the flow properties. Pulsatile 

flow, such as the flow induced by the heartbeat, introduces 

time-dependent boundary conditions. This affects the 

momentum equations by adding a time-varying component to 

the velocity field at the inlet. The continuity equation for 

incompressible flow remains the same but must be satisfied in 

the modified geometry. 

 
∂𝑢

∂𝑥
+
∂𝑣

∂𝑦
= 0 (6) 

 

The Navier-Stokes equations in the presence of 

atherosclerosis and pulsatile flow are given by x  and y 

directions respectively: 

 

ρ (
∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
)

= −
∂𝑝

∂𝑥
+

∂

∂𝑥
(μ(γ̇)

∂𝑢

∂𝑥
)

+
∂

∂𝑦
(μ(γ̇)

∂𝑢

∂𝑦
) 

(7) 

 

ρ (
∂𝑣

∂𝑡
+ 𝑢

∂𝑣

∂𝑥
+ 𝑣

∂𝑣

∂𝑦
)

= −
∂𝑝

∂𝑦
+

∂

∂𝑥
(μ(γ̇)

∂𝑣

∂𝑥
)

+
∂

∂𝑦
(μ(γ̇)

∂𝑣

∂𝑦
) 

(8) 

 

Eq. (7) and Eq. (8) model blood flow’s complex behavior in 

arteries affected by atherosclerosis, where constrictions and 

pulsatile flow create time-varying and spatially-dependent 

velocity and pressure fields. This helps to understand shear 

stress distribution and hemodynamics in diseased arteries. 

 

2.5 Share rate condition on non-Newtonian fluids 

 

The shear rate γ̇ in the presence of atherosclerosis must be 

calculated considering the modified velocity gradients due to 

the constriction. 
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γ̇ = √(
∂𝑢

∂𝑥
)
2

+ (
∂𝑣

∂𝑦
)
2

+ (
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
)
2

  (9) 

 

The viscosity μ(γ̇) is then given by the power-law model. 

 

μ(γ̇) = μ0(γ̇ + ε)𝑛−1 (10) 

 

2.6 Pulsatile inlet velocity 

 

The pulsatile nature of the blood flow can be modeled by a 

time-varying inlet velocity [32, 33]. 

 

𝑢𝑖𝑛(𝑡) = 𝑈0[1 + α sin(2π𝑓𝑡)] (11) 

 

where, 𝑈0 is the mean inlet velocity, α is the amplitude of the 

pulsation, f is the frequency of the pulsation, and t is time. 

This time-varying inlet velocity affects the boundary 

conditions of the Navier-Stokes equations, making the 

problem time-dependent [34, 35]. 

 

2.7 Stabilization analysis 

 

There are to criteria to ensure that the fluid flows in a stable 

condition [36, 37]. 

 

2.7.1 Courant-Friedrichs-Lewy 

 

CFL =
𝑢maxΔ𝑡

Δ𝑥
+

𝑣maxΔ𝑡

Δ𝑦
≤ 𝐶max  (12) 

 

where, 𝐶max the number of counts that are usually less than 1 

for explicit scheme stability. 

 

2.7.2 Viscous diffusion 

 

Diff =
𝑣Δ𝑡

Δ𝑥2
+

𝑣Δ𝑡

Δ𝑦2
≤ 𝐷max  (13) 

 

where, 𝐷max  the maximum limit to ensure stability, usually 

less than 0.5. 

 

2.8 Simulation algorithm 

 

The algorithm for simulating non-Newtonian fluid flow in 

arteries was somewhat basic, with a focus on simple geometry 

definitions, straightforward boundary conditions, and a limited 

explanation of fluid properties [38]. It lacked considerations 

for complex artery geometries, like realistic atherosclerosis 

modeling, and did not fully account for the pulsatile nature of 

blood flow. The approach to grid creation was also standard, 

without utilizing advanced techniques like adaptive mesh 

refinement. Additionally, there was minimal detail on post-

processing or visualization, which are critical for interpreting 

the results of a simulation in practical medical or engineering 

contexts. 

Based on the algorithm, it became more comprehensive and 

capable of handling realistic simulations of blood flow in 

arteries affected by atherosclerosis. The enhancements 

included more sophisticated geometry definitions, such as 

using medical imaging data to model arterial constriction 

accurately. The boundary conditions were refined to include 

pulsatile inlet flow and pressure outlet conditions, which better 

reflect the natural behavior of blood flow.  

 

non-Newtonian Algorithm 

Step 

1:  

Define Geometry and Grid Parameters 

•Input the length and height of the artery. 

•Determine the number of grid points based on desired 

resolution and calculate the grid spacing (Δ𝑥,Δ𝑦). 

•Consider 3D simulation for more accurate results, with 

grid along x, y, and z axes if required. 

Step 

2:  

Create grid 

Generate a uniform or non-uniform grid, depending on the 

complexity of the geometry. Adaptive mesh refinement 

(AMR) can also be considered for regions with higher 

gradients (near the constriction). 

Step 

3: 

Create Atherosclerosis Geometry 

•Introduce arterial constriction representing 

atherosclerosis. 

•Define the fraction of artery blockage (e.g., 30%, 50%) 

and generate a mask for the constricted region in the 

geometry. 

•For more precision, use imaging data (e.g., MRI, CT 

scans) to model realistic atherosclerosis. 

Step 

4:  

Define fluid properties 

•Define blood density (ρ) and a base viscosity (μ0) for 

the fluid. 

•Include non-Newtonian behavior: Specify flow behavior 

index (𝑛)  for shear-thinning, where viscosity decreases 

with increasing shear rate (for blood, n < 1). 

•Set the consistency index (𝐾)  for the non-Newtonian 

power-law model. 

•Choose a time step (Δ𝑡) appropriate for resolving the 

time-dependent flow (e.g., pulsatile flow). 

Step 

5: 

Define Initial and Boundary Conditions 

•Initial condition: Set initial velocities u(𝑥, 𝑦, 𝑡 =
0),   v(𝑥, 𝑦, 𝑡 = 0) to zero or small perturbations. 

•Define pressure distribution across the domain for the 

initial time step. 

•Boundary conditions: 

Inlet: Time-dependent velocity profile to simulate 

pulsatile flow. 

Outlet: Specify a pressure outlet condition based on 

desired downstream pressure (could be a function of 

time). 

Walls: Apply no-slip condition at artery walls. 

Step 

6: 

Define Non-Newtonian Viscosity Function 

•Implement the viscosity model for non-Newtonian fluids: 

share rate: μ(γ̇) = K ⋅ γ𝑛−1̇  

epsilon regularization (ε): 
μ(γ̇) = K ⋅ (γ̇ + ε)𝑛−1  

Step 

7: 

Solve Navier-Stokes Equations 

•Implement a Navier-Stokes solver (e.g., Finite Volume 

Method) to compute velocity and pressure fields. 

•Account for non-Newtonian effects by updating the 

viscosity at each time step based on the local shear rate. 

•Apply the atherosclerosis mask to account for the 

constricted region in the artery. 

 

The grid generation process was made more efficient by 

incorporating techniques like adaptive mesh refinement, 

which allows for greater resolution in critical areas like the 

constriction. The fluid properties were also enhanced by 

introducing a shear-thinning model with regularization, 

ensuring stable and realistic simulations of non-Newtonian 

blood flow. Finally, the post-processing step was expanded to 

include detailed analysis of wall shear stress, pressure drops, 

and flow visualization, making the algorithm more suitable for 

medical and engineering applications in understanding arterial 

blockages and blood dynamics. 
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3. RESULT AND DISCUSSIONS 

 

3.1 Displacement function analysis 

 

The Navier-Stokes equation modified for the blood flow 

(non-Newtonian fluid) can be written as: 

 

ρ (
∂𝑢

∂𝑡
+ 𝑢. ∇𝑢) = −∇𝑝 + ∇ ⋅ τ + f (14) 

 

Incorporating the displacement function ε  involves 

introducing a term that characterizes the alteration in position 

or motion of the vessel wall, which in turn impacts the flow of 

blood. Let ε  be a position-dependent and time-dependent 

movement function. To make this adjustment, simply 

incorporate the word ε  into the speed component u . Let's 

consider the new velocity component as u + ε. The Navier-

Stokes equation modified with the ε function to be: 

 

ρ (
∂(𝑢 + ε)

∂𝑡
+ (𝑢 + ε) ⋅ ∇(𝑢 + ε))

= −∇𝑝 + ∇ ⋅ τ + f 

(15) 

 

Expanding this equation further will yields as follows: 

 

ρ (
∂𝑢

∂𝑡
+
∂ε

∂𝑡
+ 𝑢 ⋅ ∇𝑢 + 𝑢 ⋅ ∇ε + ε ⋅ ∇𝑢 + ε ⋅ ∇ε)

= −∇𝑝 + ∇ ⋅ τ + f 
(16) 

 

Since ε is a small transition function, we can ignore the term 

small square ε.  ∇ε. So, the equation can be simplified to: 

 

ρ (
∂𝑢

∂𝑡
+
∂ε

∂𝑡
+ 𝑢 ⋅ ∇𝑢 + 𝑢. ∇ε + ε. ∇𝑢)

= −∇𝑝 + ∇ ⋅ τ + f 
(17) 

 

The impact of the addition of ε functions on the results of 

simulation and analysis of blood flow in the cardiovascular 

system can have several important aspects. The ε function, 

which denotes a displacement or deformation of the vessel 

wall, will result in an alteration of the blood flow velocity 

profile. This is because the displacement of the wall will 

impact the boundary condition of the blood flow. When the 

wall of the vessels shifts or displaces, it also affects the blood 

flow near the wall, causing a change in the distribution of 

speed inside the vascular intersection. The blood arteries might 

experience pressure variations because to the deformation of 

the wall caused by ε . The pressure will intensify in the region 

where the vessel wall constricts and diminishes in the regions 

where the wall widens. Understanding the hemodynamic 

response to changes in the elasticity of blood vessel walls 

requires a thorough comprehension of this pressure fluctuation. 

The inclusion of ε will impact the allocation of tension on the 

walls of the blood vessels. Understanding the relationship 

between wall tension and plaque development is crucial in 

studying atherosclerosis, as regions experiencing elevated 

wall tension are more prone to plaque formation. This model 

has the potential to offer an enhanced understanding of regions 

with a high susceptibility to atherosclerotic plaque 

development by providing a more precise depiction of stress 

distribution. 

 

 

3.2 Explicit discretization approach 

 

The momentum equation in the x direction is: 

 

ρ (
∂𝑢

∂𝑡
+ (𝑢 + ε)

∂𝑢

∂𝑥
+ (𝑣 + ε)

∂𝑢

∂𝑦
) = −

∂𝑝

∂𝑥
+ μ(

∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2
)  

(18) 

 

Discrimination using an explicit scheme: 

 

( ) ( )
1

, , , 1, , , 1

, , , ,

1, 1,

1 1

1, , 1, 1, , , 1

2 2

2

2 2

n n n n n n

i j i j i j i j i j i jn n n n

i j i j i j i j

n n

i j i j

n n n n n n

i j i j i j i j i j i j

u u u u u u
u v

t x y

p p

x

u u u u u u

x y

  



+

− −

+ −

+ +

+ − + −

 − − −
+ + + + 

    

−
= −



 − + − +
+ + 

   

 
(19) 

 

From Eq. (17), we evaluate to solve the 𝑢{𝑖, 𝑗}
{𝑛+1}

 as follows: 

 

( ) ( ), 1, , , 1 1, 1,1

, , , , ,

1, , 1, , 1 , , 1

2 2

2

2 2

n n n n n n

i j i j i j i j i j i jn n n n n n

ij i j i j i j i j i j

n n n n n n

i j i j i j i j i j i j

u u u u p p
u u t u v

x y x

u u u u u u

x y

 






− − + −+

+ − + −

 − − −
= + − + − + − 

    

 − + − +
+ + 

   

 

(20) 

 

The momentum equation in the y direction is: 

 
2 2

2 2
( ) ( )

p u u

t x y y x y
   

       
+ + + + = − + +  

        

v v v
u v  (21) 

 

Discrete using an explicit scheme: 

 

( ) ( )
1

, , , 1, , , 1

, , , ,

1 1

1, 1, 1, , 1, 1, , , 1

2 2

2 2

2

n n n n n n

i j i j i j i j i j i jn n n n

i j i j i j i j

n n n n n n n n

i j i j i j i j i j i j i j i j

v v v v v v
u v

t x y

p p v v v v v v

y x y

  



+

− −

+ +

+ − + − + −

 − − −
+ + + + 

    

 − − + − +
= − + + 

    

 
(22) 

 

From (19) we evaluate to solve the 𝑣𝑖,𝑗
𝑛+1 as follows: 

 

( )

( )

, 1,

, ,

1

, ,

, , 1 1, 1,

, ,

1, , 1, , 1 , , 1

2 2

2

2 2

n n

i j i jn n

i j i j

n n

i j i j n n n n

i j i j i j i jn n

i j i j

n n n n n n

i j i j i j i j i j i j

v v
u

x
v v t

v v p p
v

y x

v v v v v v

x y










−

+

− + −

+ − + −

 −
− + 

 = +
 − −
 − + −

   

 − + − +
+ + 

   

 (23) 

 

3.3 Explicit continuity approach 

 

The continuity equation is: 

 
∂𝑢

∂𝑥
+
∂𝑣

∂𝑦
= 0 (24) 

 

Discrimination using an explicit scheme: 

 
𝑢𝑖+1,𝑗
𝑛 − 𝑢𝑖−1,𝑗

𝑛

2Δ𝑥
+
𝑣𝑖,𝑗+1
𝑛 − 𝑣𝑖,𝑗−1

𝑛

2Δ𝑦
= 0 (25) 
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3.4 Experimental calculation of stability criteria 

 

To ensure the stability of the explicit scheme at Eq. (12) and 

Eq. (13) we know that the parameters. 
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3.4.1 Stability analysis 

a. Courant-Friedrichs-Lewy Condition 
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where, the 𝐶max = 1 we know that: 
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3.4.2 Viscous diffusion 
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So that Δ𝑡 ≤ min(0.01,  0.0525) = 0.01s with a time step 

less than or equal to 0.01 seconds, we can run a simulation 

with guaranteed numerical stability. 

 

3.5 Computational simulation 

 

We used computational fluid dynamics (CFD) to simulate 

blood flow through a constricted artery, aiming to understand 

the flow behavior in both normal and pathological conditions. 

By utilizing CFD, we were able to model the complex 

dynamics of blood flow, including the velocity distribution, 

wall shear stress, and the presence of recirculation zones that 

typically occur downstream of a constriction due to 

atherosclerosis. The artery was modeled as a 2D domain with 

a length of 3 mm and an outer radius of 1 mm. A constriction 

representing stenosis was applied in the central region, 

reducing the artery’s radius by 50% over a 1 mm segment. The 

inlet and outlet regions on either side of the constriction 

maintained the full radius. This simplified geometry provided 

a controlled environment to study how blood flow is altered 

by stenosis. The blood flow was simulated using the 

incompressible Navier-Stokes equations, which are 

fundamental to fluid dynamics and capture the conservation of 

mass and momentum: 
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0

p
t

 

 =

 
+  = − +  

 

u

u
u u u

 

 

Blood was modeled with a density of 1060 kg/m3 and a 

dynamic viscosity that varies with shear rate. K =
0.0035 Pa. s , n = 0.8  This configuration accurately 

represents the shear-thinning nature of blood under different 

flow conditions. 

 

 
 

Figure 2. Meshing the geometry 

 

 
 

Figure 3. Comparison between Newtonian and non-

Newtonian behavior 

 

The meshing shown in Figure 2 geometry is crucial for 

studying blood flow in constricted arteries, as it allows the 

simulation to focus on the dynamics of how blood accelerates 

through the constriction and how pressure and wall shear stress 

are affected. This kind of meshing is often used in 

computational simulations to ensure accurate results near-

critical regions, such as around the constriction where flow 

separation and recirculation may occur. 

Figure 3 compares the velocity magnitude and shear stress 

distributions for Newtonian and Non-Newtonian blood flow in 

an artery. In both velocity plots (top row), the non-Newtonian 

fluid maintains higher velocities in the core region due to the 

shear-thinning behavior, while the Newtonian fluid exhibits a 

smoother decrease in velocity along the artery. The shear 

stress plots (bottom row) reveal significantly higher wall shear 

stress for the non-Newtonian fluid, particularly downstream, 

where the fluid experiences reduced viscosity in regions of 

high shear. This indicates that modeling blood as a non-
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Newtonian fluid better captures the dynamics near the artery 

walls, which is crucial for understanding the mechanical 

stresses that may contribute to cardiovascular conditions such 

as plaque rupture. Before this comparison, it is important to 

understand that blood behaves more like a non-Newtonian 

fluid under physiological conditions. The assumption of 

Newtonian behavior is a simplification often used in 

theoretical studies but may not accurately capture the behavior 

of blood, especially in constricted arteries. 

Figure 4 demonstrates that non-Newtonian fluid models 

better capture the complexity of blood flow, especially in 

regions of high shear near artery walls. The higher shear stress 

in the non-Newtonian model suggests that neglecting this 

behavior may underestimate the mechanical forces acting on 

the artery walls, which are critical in understanding diseases 

like atherosclerosis. Before this model, understanding how 

blood flow is affected by stenosis (narrowing of the artery due 

to plaque) was challenging. Clinicians needed to predict how 

blood would behave near and downstream of such 

constrictions, particularly in regions where flow separation 

and vortices form. Computational fluid dynamics (CFD) 

simulations like this model enable more detailed analysis of 

flow behavior, wall shear stress, and areas prone to 

recirculation or turbulent behavior. 

 

 
 

Figure 4. Blood flow in the atherosclerosis model 

 

Figure 4 visualizes the blood flow dynamics within a 

constricted artery, modeling the effects of atherosclerosis. The 

color gradient represents the velocity magnitude of blood flow, 

with higher velocities (red) concentrated in the narrowed 

section of the artery and lower velocities (blue) occurring in 

less restricted areas. Streamlines indicate the flow direction 

and the formation of recirculation zones or vortices 

downstream of the constriction, where the flow becomes 

disrupted. The black contours highlight areas of wall shear 

stress, showing elevated stress near the constricted region and 

lower stress in recirculation zones. Figure 4 demonstrates the 

complex interaction between blood velocity, wall shear stress, 

and recirculation zones, which are critical factors in 

understanding plaque progression and thrombus formation in 

atherosclerosis. After understanding the atherosclerosis model, 

it becomes evident how constricted arteries (due to 

atherosclerosis) affect blood flow. The increase in velocity in 

the constricted region can lead to high wall shear stress, while 

recirculation zones downstream are areas where blood flow 

stagnates, potentially promoting plaque buildup. These models 

help predict regions at risk for disease progression or 

intervention. 

 

 
 

Figure 5. Pulsatile turbulence behavior 

 

Figure 5 illustrates velocity magnitude with potential 

turbulence in an artery with a constriction, showcasing 

pulsatile flow. Before the pulsatile flow enters the artery, the 

fluid moves steadily, following a smooth laminar pattern. 

However, as pulsatile flow is introduced, the velocity 

fluctuates over time, mimicking the natural heartbeat. This 

leads to variations in flow speed and direction, with higher 

velocities seen near the center and slower flow near the walls. 

After the pulsatile flow is fully developed, the flow pattern 

becomes more complex, especially in the constricted area, 

where flow separation and potential turbulence occur. The 

streamlines in Figure 5 indicate disrupted flow near the walls 

and in the wake of the constriction, suggesting the 

development of recirculation zones or vortices. These 

turbulent regions, combined with the pulsatile nature of the 

flow, demonstrate how blood velocity changes dynamically 

throughout the cardiac cycle, potentially increasing stress on 

artery walls. 

Figure 6 illustrates key aspects of blood flow in a 

constricted artery simulation. Figure 6(a) shows velocity 

profiles at different locations (x = 0.0005 m, 0.0015 m, 0.0025 

m), with the highest velocity near the beginning of the artery 

(x = 0.0005 m), decreasing sharply as it moves further 

downstream. This indicates a deceleration of flow due to the 

presence of the constriction. Figure 6(b) displays the wall 

shear stress at time step 100, showing how shear stress peaks 

near the entrance of the artery and gradually decreases along 

its length. Higher shear stress near the inlet could result in an 

increased risk of endothelial damage. Figure 6(c) compares the 

wall shear stress at different time steps (50, 100, 150), 

demonstrating that while the overall trends remain similar, the 

shear stress magnitude slightly reduces with time, likely due 

to changes in the flow’s development over time.  

Figure 6 collectively reveals how velocity and shear stress 

are affected by the geometry and flow conditions, which is 

critical for understanding the risk factors for cardiovascular 

issues in constricted arteries. The simulation results highlight 

that regions of high wall shear stress near artery constrictions 

can contribute to plaque rupture, while areas of low shear 

stress and flow recirculation downstream of the stenosis may 

promote plaque formation. The non-Newtonian behavior of 

blood, which causes viscosity to vary with shear rate, adds 

complexity to the flow, increasing the risk of thrombosis in 

low-shear zones. Arterial geometry, such as curves or 

bifurcations, further influences the flow, creating more 

disturbed regions. Incorporating personalized CFD 
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simulations based on patient-specific artery models could 

enable tailored treatments, helping clinicians predict high-risk 

areas for atherosclerosis progression and improve the 

outcomes of interventions such as stenting, medication, or 

bypass surgery.

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 6. (a) Comparison of wall shear stress at different time steps, (b) Wall shear stress (Time step: 100), (c) Velocity profiles 

at key locations (Time step: 100) 
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3.6 Discussions 

 

The computational simulation conducted in this study 

provides valuable insights into the hemodynamic factors 

influencing the progression of atherosclerosis in arteries with 

stenosis. The results emphasize the critical role of wall shear 

stress (WSS) in determining plaque behavior, with high WSS 

regions near the constriction associated with endothelial 

damage and the potential for plaque rupture, while low WSS 

regions downstream promote plaque formation. These 

findings are consistent with previous studies showing that 

mechanical forces exerted on the arterial wall are pivotal in 

atherosclerotic plaque development and rupture risk. 

The presence of recirculation zones and flow separation 

downstream of the stenosis was particularly notable in our 

simulations, where the disrupted flow led to turbulent behavior 

and low-shear regions. These areas create a favorable 

environment for lipid accumulation and plaque development, 

further exacerbating the narrowing of the artery. This is a 

critical observation, as flow disturbances of this nature are 

well-known precursors to plaque progression and are common 

in patients with severe atherosclerosis. 

Incorporating non-Newtonian behavior in the simulation 

was another significant factor, as it allowed for a more realistic 

representation of blood flow dynamics. Blood viscosity 

decreases in high-shear regions, such as within the constricted 

section, leading to faster flow velocities through the stenosis. 

Conversely, in low-shear regions, the viscosity increases, 

potentially leading to thrombus formation due to stagnation 

and clotting risks. This highlights the importance of 

considering non-Newtonian properties when modeling blood 

flow, as assuming Newtonian behavior may underestimate the 

mechanical stresses acting on the artery walls, particularly in 

areas of stenosis. 

The results also underscore the influence of arterial 

geometry on flow dynamics. While our model focused on a 

simplified constricted artery, variations in geometry, such as 

curved arteries or bifurcations, would likely introduce 

additional complexities, including more pronounced 

recirculation zones and localized peaks in WSS. These 

geometric factors, combined with flow disturbance, are key 

contributors to the progression of atherosclerosis and must be 

considered when assessing patient risk. From a clinical 

perspective, these simulations provide valuable information 

that can be used to predict high-risk areas for plaque rupture 

and progression. By identifying regions of high WSS and flow 

stagnation, clinicians could tailor treatments to target these 

areas more effectively. For instance, stent implantation in 

regions of high WSS could help stabilize vulnerable plaques, 

while medication aimed at reducing blood viscosity may help 

prevent clot formation in low-shear regions. Moreover, using 

personalized CFD models based on patient-specific arterial 

geometries could enhance diagnostic precision and treatment 

planning, offering a customized approach to managing 

cardiovascular diseases. This study demonstrates the critical 

role of hemodynamic forces in the progression of 

atherosclerosis and highlights the potential of computational 

simulations in enhancing clinical understanding and treatment. 

Future work could expand on these findings by investigating 

more complex arterial geometries and incorporating patient-

specific data to refine predictions and optimize interventions 

for those at risk of severe cardiovascular events. 

 

 

4. CONCLUSIONS 

 

The computational simulation of blood flow through a 

constricted artery reveals the significant impact of wall shear 

stress, flow recirculation, and non-Newtonian fluid behavior 

on the progression of atherosclerosis. High wall shear stress in 

the stenosed region increases the risk of plaque rupture, while 

low shear stress and recirculation zones downstream promote 

plaque formation. The results underscore the importance of 

incorporating patient-specific arterial geometries and non-

Newtonian properties of blood in simulations to accurately 

predict high-risk areas for atherosclerosis progression. These 

findings suggest that computational fluid dynamics (CFD) 

simulations can be a valuable tool for improving diagnosis, 

treatment planning, and personalized management of 

cardiovascular diseases. The implications of this study's 

findings on blood flow simulations in constricted arteries 

extend significantly to real-world healthcare and the 

management of atherosclerosis. By providing detailed insights 

into how wall shear stress and flow recirculation contribute to 

plaque formation and rupture, this research highlights the 

potential for using computational fluid dynamics (CFD) in 

clinical settings to improve early detection of high-risk regions 

in arteries. Through patient-specific simulations, physicians 

could tailor interventions such as stent placements, 

angioplasty, or drug treatments more effectively by targeting 

areas most prone to complications, thereby reducing the risk 

of heart attacks or strokes. Moreover, CFD models could 

become part of routine diagnostic protocols, allowing for 

personalized treatment plans that account for individual 

arterial geometries and flow dynamics, ultimately leading to 

better outcomes in managing cardiovascular diseases. In a 

broader public health context, this approach could help in 

preventative medicine, reducing the overall burden of 

atherosclerosis by identifying at-risk individuals earlier and 

applying interventions before severe symptoms manifest. 
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NOMENCLATURE 

 

u Velocity vector (m/s) 

P Pressure (Pa) 

ρ Density of blood (kg/m3) 

μ Dynamic viscosity of blood (Newtonian fluid) 

μ𝑒𝑓𝑓  
Effective viscosity of blood (non-Newtonian 

fluid) 

K Consistency index (non-Newtonian fluid) 

n 
Flow behavior index (non-Newtonian fluid, 

dimensionless) 

γ̇ Shear rate (s-1) 

τ𝑤 Wall shear stress (Pa) 

Re Reynolds number (dimensionless) 

ω Vorticity (s-1) 

WSS Wall shear stress (Pa) 

Stenosis Narrowing of an artery due to plaque buildup 
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