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The global energy crisis highlights the need for energy efficiency in the management of 

the electricity sector. One method to contribute to electrical energy efficiency in buildings 

is to develop appropriate prediction models. This research seeks to optimize the use of 

electrical energy by using an ensemble neural network approach, combining LSTM, GRU, 

and RNN models, to estimate reactive energy consumption. This study utilizes energy 

measurement data for apartment buildings in Jakarta, which includes consumption data 

during peak and off-peak periods, as well as reactive energy consumption. This 

methodology involves the use of ensemble neural network models—LSTM, GRU, RNN 

with Differentiable Architecture Search (DARTS) initiation—to build adaptive prediction 

models capable of generalizing across various data conditions. These findings demonstrate 

that ensemble neural network models with Differentiable Architecture Search Initiation 

(DARTS) achieve more accurate predictions compared to individual LSTM, GRU, and 

RNN models in estimating energy consumption. Correlation analysis shows a significant 

relationship between reactive energy consumption and peak/off-peak load More efficient 

and sustainable energy in apartment buildings is expected to reduce operational costs by 

scheduling the operation of large reactive power-consuming equipment, increasing energy 

efficiency, and mitigating environmental impacts through the application of renewable 

energy sources. 
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1. INTRODUCTION

The growing global energy crisis is driven by an imbalance 

in electricity usage and insufficient regulation of energy 

resources and unstable due and the lack of effective regulation 

of available energy resources. This phenomenon is caused by 

ever-increasing population growth, rapid industrialization, and 

the unstoppable need for energy [1]. Unbalanced use of 

electrical energy worsens the greenhouse effect and global 

warming. Fossil power plants, such as coal and gas power 

plants, are major contributors to emissions of carbon dioxide 

and other greenhouse gases. Without proper regulation and 

sufficient renewable energy, the option of fossil energy 

continues to be chosen as a quick solution to meet energy 

needs [2]. 

In small scale aspect one important of regulation of energy 

resources is the utilization of reactive power in high-rise 

residential buildings, which can be a significant determining 

factor during peak loads and off-peak hours. Peak load, which 

occurs when electrical energy demand reaches the highest 

level in an electrical system, is often the moment when energy 

efficiency can be increased or reduced [2]. 

When the load reaches its peak, the energy infrastructure 

faces significant pressure [3]. Increasing operational costs, the 

risk of overloading, and the potential for power interruptions 

or blackouts are problems that need to be addressed [4]. 

Effective strategies for managing peak loads, such as load 

scheduling and the use of cloud computing technology, can 

help optimize energy use, reduce operational costs, and 

prevent failures or interruptions in energy supply [3]. There is 

a correlation between peak load and reactive power, based on 

electrical theory that the use of electricity is for two needs, 

namely for generating heat energy and generating mechanical 

energy. These two energies are used by electricity users for life 

needs. Two energies that cause active power are apparent 

power and reactive power. When reactive power is needed by 

electricity users for magnetization needs, the power plant 

requires high rotational power so more fuel is needed when the 

reactive power is not too large. Conditions like this cause 

additional fuel costs to be charged to electricity users who use 

active power above the threshold. 

As the user of electrical power, the use of electricity in a 

building requires planning and in planning information is 

needed about the state of electricity use in the future and this 

information is obtained through predictions. The results of 

recording the condition of electrical parameters are time series 
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data. Deep learning is a time series prediction technology that 

does not need to manually determine which features should be 

extracted from the data, because the deep learning model can 

learn relevant features independently from the given data [5-

7]. 

The data produced in measuring the use of power or 

electrical energy is generally consistent at the same time for 

all variables being measured. Therefore, the results of 

recording these measurements are in the form of time series 

data. In most buildings, the process of recording measurement 

results is still done manually in the form of log sheets. Due to 

manual recording, the volume of data currently available on a 

building is limited. Due to limited data volume, the proposal 

in this research is to build a prediction model for electrical 

energy use by utilizing the advantages and disadvantages of 

deep learning neural network models. Deep learning models 

include Recurrent Neural Network (RNN), Long Short-Term 

Memory (LSTM) and Gate Recurrent Unit (GRU). Utilizing 

the advantages and disadvantages of this neural network 

model is hereinafter called an ensemble. The obstacle faced in 

ensembles is that they require repeated iterations during 

training to produce optimal weights and biases, so an adequate 

computing system and a long training time are required. To 

overcome the shortcomings of the ensemble, the 

Differentiable Architecture Search (DARTS) initiation 

concept was used. The use of DARTS contained in the 

Pythorch and TensorFlow libraries makes it possible to 

automatically generate optimal weights and internal 

architecture. In this way, DARTS generates accurate neural 

network ensembles without assigning weights and biases with 

infinite iterations. The aim of establishing a prediction model 

with accurate prediction results is to provide direction to 

building managers in planning future arrangements for using 

electrical power. 

 

1.1 The type of electrical power consumed by the user 

 

Electrical power is split into two categories based on how it 

is used: producing magnetic flux and thermal energy. Reactive 

power (Q) is the power used to generate flux, while real power 

is the power used to heat energy (P). Appearance power (S) is 

the total of real power and reactive power. The following 

mathematical representation of the interaction between the 

three forces [8]. 

 
𝑆2 = 𝑃2 + 𝑄2 (1) 

 

𝑆 = √𝑃2 + 𝑄2 (2) 

 
|𝑆| = 𝑉 ×  𝐼 (3) 

 
𝑄 = 𝑉 ×  𝐼 × sin ∅ (4) 

 
= |𝑆|  × sin ∅ (5) 

 
𝑃 = 𝑉 ×  𝐼 𝑥 cos ∅ (6) 

 
= |𝑆|  × cos ∅ (7) 

 

cos ∅ =  
𝑃

|𝑆|
 

cos ∅ = power factor
 
 

(8) 

 

In this context, electrical energy is defined as the work 

generated by the amount of electricity consumed in kilowatt 

hours (kWH) during a specific time period. Peak load occurs 

when all equipment is consuming electricity at the same time. 

Off-peak load occurs when electricity consumption differs 

from peak load [9]. 

 

1.2 Model prediction design 

 

The current predictive models offer a variety of 

configurations to choose from, with neural network 

technology emerging as a developing field. This technology is 

highly adaptable and can be customized to specific needs. 

However, not all neural network models are suitable for every 

dataset, as LSTM, GRU, and RNN each possess their strengths 

and weaknesses. Considering this, LSTM, GRU, and RNN 

have been chosen for ensemble use to capitalize on their 

respective strengths and mitigate their limitations. A review of 

the literature on the advantages and disadvantages of LSTM, 

GRU, and RNN is as follows [10-13]. 

 

Table 1. Advantages and disadvantages of LSTM, GRU, and 

RNN 

 
Theme 

Problem 
LSTM GRU RNN 

Data Series 

Capable of 

capturing 

long 

sequences 

Less able to 

capture long 

sequences 

Less able to 

capture long 

sequences 

Vanishing 

gradient 
Controlled Resolved Resolved 

Overfitting Prone Prevent Prevent 
Computing Complicated Simple Simple 

Temporal Data 
Adaptive and 

effective 

Suitable for 

short time 

series and 

text data 

Limited 

Hyperparameter Needs setup Needs setup Needs setup 

Cell Memory 

Overcome 

long-term 

dependency, 

retain past 

relevant 

information 

Overcome 

long-term 

dependency, 

retain past 

relevant 

information 

Unable to 

overcome 

long-term 

dependency 

Dataset 

Capable of 

large time 

series 

datasets 

Suitable for 

small 

datasets 

Suitable for 

small data 

sequence 

Architecture 

Internal 
Needs setup Needs setup Needs setup 

 

The data used is time series data from energy measurements 

from an apartment building in Jakarta with the following 

location. The collected data is then preprocessed to adjust the 

time series input to the neural network model, namely in the 

form of an array of three input frames consisting of, batch, 

time steps, and features. The data before preprocessing is 

carried out is described in Table 1, as part of the acquired data. 

 

1.3 Acquisition data 
 

The first stage in this research is data collection. The data 

used includes monthly electrical energy usage, which includes 

energy usage during peak load times and off-peak load times, 

as well as reactive energy usage data related to electrical 

system efficiency. The energy measurement position is on the 
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medium voltage side before it is distributed into the 

switchboard for the building. Apart from that, other supporting 

data such as current voltage and reactive current will also be 

collected. The excerpt is as follows: 

 

Table 2. Actual data measuring result 

 

Kilo Watt Hour 

Meter 

Recording Date 
01/01/ 

2022 
02/01/ 

2022 
… 

06/12/ 

2022 
07/12/ 

2022 

PL 
STAND 560 561 … 796 796 

Use 0.72 0.74 … 0.73 0.75 
FM 1600 1152 1184 … 1168 1200 

Off 

PL 

STAND 2581 2584 … 3581 3584 
Use 3.06 3.06 … 3.21 3.31 

FM 1600 4896 4896 … 5136 5296 
STAND 1137 1138 … 1460 1461 

Use 1.02 1.02 … 1.04 1.00 
FM 1600 1632 1632 … 1664 1600 

V1 58.1 58.57 … 58.7 58.54 
V2 58.1 58.87 … 58.98 58.77 
V3 58.4 58.97 … 59.1 58.89 
I1 0.82 1.02 … 0.922 1.118 
I2 0.83 0.89 … 0.826 0.972 
I3 0,80 0.90 … 0.843 1.049 

 

In Table 2, the variable PL is energy consumption during 

peak load times, off PL is energy consumption outside peak 

load times and kVh is reactive power consumption. The PL 

and off-PL data used for training are data with the initial’s 

"use" because the initial use data is data on the daily amount 

of energy used every 24 hours. While other variables such as 

current and voltage are used as input features to complete 

learning from the deep learning model that is created. For 

index data, date data is used starting from January 1, 2022, to 

December 31, 2022. 

 

1.4 Neural network 

 

Neural network is a computational model inspired by the 

structure and function of the human brain. It consists of 

interconnected nodes (neurons) organized in layers, including 

input, hidden, and output layers. Each neuron receives inputs, 

applies weights, and passes the result through an activation 

function to produce an output [6]. Through iterative training 

processes like backpropagation, neural networks learn to 

recognize patterns and relationships in data, enabling tasks 

such as classification, regression, and pattern recognition. 

They are used in various fields including image and speech 

recognition, natural language processing, finance, healthcare, 

and robotics for their ability to handle complex, nonlinear 

relationships in data [13, 14]. 

 

1.5 Long Short-Term Memory 

 

LSTM is a type of RNN architecture designed to handle 

relationships between data elements in long sequences [14, 15] 

(see Figure 1). It features a cell state for long-term information 

storage, gate mechanisms to control information flow, and the 

Backpropagation Through Time (BPTT) algorithm for 

updating the model. LSTM can recognize patterns and learn 

long-term dependencies with its memory cells, which include 

input, output, and forget gates [16, 17].  

Forget gate: 

 

𝑓𝑡 = 𝜎(𝑤𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (9) 

Input gate: 

 

𝑖𝑡 = 𝜎(𝑤𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (10) 

 

Candidat gate: 

 

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (11) 

 

Output gate: 

 

𝑂𝑡 = 𝜎(𝑤𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (12) 

 

Update cell: 

 

𝐶𝑇 =  𝑓𝑡 ∙ 𝐶𝑡−1 +  𝑖𝑡 ∙ �̃�𝑡 (13) 

 

 
 

Figure 1. Architecture LSTM [16] 

 

1.6 Gate Recurrent Unit (GRU) 

 

The Gated Recurrent Unit (GRU) is a type of architecture 

within artificial neural networks that resembles the Long 

Short-Term Memory (LSTM) and is designed to handle 

sequential data or time series problems [17] (see Figure 2). 

GRU features a simpler structure compared to LSTM, with a 

focus on computational efficiency. It comprises two gates, 

namely the reset gate and update gate, which assist in 

controlling the flow of information within the model. With its 

more concise structure, GRU is often utilized in applications 

requiring a balance between model complexity and 

computational performance, such as natural language 

processing, time series modeling, and pattern recognition in 

sequential data [18-20]. 

 

 
 

Figure 2. Architecture GRU [20] 

 
Reset gate: 

 
𝑟𝑡 = 𝜎(𝑤𝑧 . [ℎ𝑡−1, 𝑥𝑡]) (14) 
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Update gate: 

 
𝑧𝑡 = 𝜎(𝑤𝑧. [ℎ𝑡−1, 𝑥𝑡]) (15) 

 
Hidden state: 
 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑤. [𝑟𝑡⨀ ℎ𝑡−1, 𝑥𝑡]) (16) 

 
Update gate: 
 

ℎ𝑡 = (1 − 𝑧𝑡)⨀ ℎ𝑡−1⨀ ℎ̃𝑡 (17) 

 

1.7 Ensemble Neural Networks (ENN) 

 

Ensemble works by combining predictions from several 

models that have different weaknesses, by following two main 

methods, namely combining the average prediction results 

from all models such as Eq. (18) and considering the initial 

weights and biases of each model Eq. (19) ENN pooling 

models reduce total prediction variance, which can occur if 

one model produces predictions that differ significantly from 

another model. Ensembles provide prediction results by 

utilizing the advantages and disadvantages of ensemble 

models [21-24]. 

 

𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =
1

𝑁
∑ 𝑓𝑖(𝑥)

𝑁

𝑖=1
 (18) 

 

𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =
1

𝑁
∑ 𝑤𝑖𝑓𝑖(𝑥)

𝑁

𝑖=1
 (19) 

 

1.8 Differentiable Architecture Search (DARTS) 

 

In neural networks, there is a process called initialization, 

where model parameters such as weights and bias are 

determined before training begins. In practice, both of these 

processes require adequate time and computer capacity. The 

solution for this is the Neural Architecture Search (NAS) 

approach using gradient optimization to automatically search 

for the best architecture, hereinafter called DARTS 

(Differentiable Architecture Search) [25-27]. Technique for 

finding the optimal combination of RNN GRU and LSTM 

neural networks. DARTS adjusts parameters such as learning 

rate, number of layers, and number of units in each layer to 

achieve optimal performance. DARTS automates the design 

of neural network architectures without having to go through 

time-consuming manual architecture searches. 

 

 

2. METHODOLOGY 

 

In this research, the prediction method uses a deep learning 

ensemble neural network LSTM, GRU, and RNN. The goal is 

to produce high-accuracy predictions for planning future 

electricity use. To achieve this goal, a model is built that can 

adapt and generalize various data conditions. The study used 

three data sets: energy use at peak loads, off-peak loads, and 

daily reactive energy of an apartment building. The research 

process can be seen as shown in Figure 3. 

The research process starts from the Start stage, which 

marks the beginning of the analysis to increase the efficiency 

of electrical energy use. The first step is Pre-Processing, where 

the raw data is cleaned, normalized, and prepared in the format 

used by the neural network model. Once the data is ready, the 

next step is to train the Neural Network Model These models 

learn patterns from historical data to understand the use of 

electrical equipment under various conditions. After being 

trained, the model is evaluated to measure its accuracy through 

the Accuracy Evaluation stage. Evaluation results are stored in 

This model is used to predict energy use from new data, 

providing a snapshot of future electricity use. Internal Storage 

for further use. With the model that has been evaluated, the 

final step is to produce a prediction result. 

 

 
 

Figure 3. Flow of the methodology 

 

Figure 3 provides an overview of the flow of the research 

process carried out, starting from pre-processing to prediction 

results and data analysis. This picture explains in outline the 

research process. 

 

2.1 Data preprocessing 

 

Preprocessing actual data, and converting actual data into 

time series format to capture temporal patterns must be done 

by converting the data into time series form which is by the 

input concept required by the LSTM (Long Short-Term 

Memory), GRU (Gated Recurrent Unit) model and RNN, as 

well as ensemble models that combine the two. Preprocessing 

steps: 

1. Address missing data (missing values) and outliers to 

ensure good data quality. 

2. Normalize or standardize data so that all features are 

on the same scale. 

3. Time Series Arrangement: Data is organized in 

chronological order based on timestamp. 

4. Create a sliding window or sequence that combines 

several historical values as input to predict future 

values. 

5. Input Generation for the Model: For LSTM and GRU, 

the input is organized in the form of a 3D tensor with 

dimensions [samples, timesteps, features]. 

6. Dataset Division: Data is divided into training set, 

validation set, and testing set to ensure the model can 

be tested with data it has never seen before. 

 

2.2 Building a neural network model 

 

The basis of this research is based on the results of a 

prediction method using the LSTM Recurrent Neural Network 

258



 

(RNN) and Gated Recurrent Unit (GRU) neural network 

ensemble model approach. By considering the ensemble as a 

model that adopts the advantages and limitations of the LTM 

RNN and GRU models. To ensure accurate and fast learning 

convergence, the method of initiating a search for the internal 

architecture of the model using differentiation-based search or 

DARTS is used. method for automatically searching for model 

architecture with a differential approach as follows: 

Defining Candidate Architectures includes structure, 

number of layers, type of activation function, or type of 

connection between layers. 

Determination of the Search Space includes candidate 

architectures including layer type, number of layers, 

relationships between layers, and other relevant parameters. 

Defining Objective Function: Define the objective function 

or evaluation criteria to evaluate the quality of each candidate's 

architecture. 

Optimization with Gradient Descent: Use optimization 

algorithms such as stochastic gradient descent (SGD) or other 

variants to find optimal architecture. 

Model Implementation in PyTorch: Implement candidate 

architectures in the PyTorch framework, because the Python 

library supports differential computing. 

 

2.3 Training and data prediction 

 

Each model will be trained using training data through the 

steps of parameter initialization, optimization, and overfitting 

handling. Initial parameters such as the number of hidden 

layers, batch size, and number of epochs will be set, then an 

optimization algorithm such as Adam is used to minimize loss 

functions such as Mean Absolute Error (MAE), Mean 

Absolute Percentage error (MAPE), Root Mean Square Error 

(RMSE and Coefficient determinant (R2). In preventing 

overfitting, techniques such as dropout, and early stopping, are 

used. 

 

2.4 Correlation between variables 

 

Interpretation of observations of the distribution pattern of 

data points to determine whether there is a linear or non-linear 

correlation using the Pearson correlation coefficient value to 

measure the strength and direction of the relationship. 

Understanding the dynamics of the interaction between 

reactive power consumption and power consumption during 

peak and off-peak periods is crucial for effective operational 

planning and efficient electricity use. To comprehend the 

relationship patterns between variables at specific times, 

scatter plots are used. The Pearson Correlation Coefficient 

measures the strength and direction of the linear relationship 

between actual and predicted data. The formula is [28]: 

 

R = rxy = 
∑(𝑥𝑎−�̅�)(𝑦𝑖−�̅�)

√∑(𝑥𝑎−�̅�)2 ∑(𝑦𝑖−�̅�)2
 (20) 

 

The description of the formula is as follows, Xa is the actual 

data value, �̅� is the average of the actual data values, yi is the 

predicted data value, and 𝑦 ̅is the average predicted data value. 

Pearson Correlation Coefficient measures the strength and 

direction of the linear relationship between two variables. The 

value of this coefficient is in the range of -1 to +1. If the value 

is close to +1, it indicates a strong positive relationship 

between the variables. If the value is close to -1, it indicates a 

strong negative relationship between the variables. If the value 

is close to 0, it indicates no linear relationship between the 

variables. Pearson Correlation Coefficient can provide 

important information about the extent to which two variables 

are correlated with each other in different data distributions. 

Correlation and scatter plots are powerful tools for 

understanding the relationship between two variables. 

Correlation provides a numerical measure, while scatter plots 

offer an easy-to-understand visual representation. Together, 

they help data analysts identify and understand patterns in the 

data more effectively. The negative correlation is indicated by 

points trending downward from the top left to the bottom right, 

showing a negative relationship between variables. The 

positive correlation is indicated by points trending upward 

from the bottom left to the top right, showing a positive 

relationship between variables. If the points are scattered 

randomly without a clear pattern, it indicates no correlation 

between the variables [29, 30]. 

 

 

3. EVALUATION OF THE PERFORMANCE OF 

RESULT PREDICT 

 

The address Location building for data acquisition is at the 

coordinates of the location, Jakarta, Indonesia, at 6.15343 

degrees South (latitude) and 106.79633 degrees East 

(longitude).  

This data acquisition represents energy measurements using 

kWh meters and other measurement instruments, taken over 

one year at 8:00 PM every evening at the medium voltage side 

(Medium Voltage Substation).  

Energy measurements use two kWh meters: kWh meter 1 

measures energy consumption during peak loads, and kWh 

meter 2 measures energy consumption during off-peak loads 

dataset the data set is displayed as follows: 

 

Table 3. Predict result data 

 
Date Peak Load Off-Peak Load Reactive Power 

01/01/2022 0.72 3.06 1.02 

02/01/2022 0.74 3.06 1.02 

03/01/2022 0.69 3.06 1.06 

04/01/2022 0.71 2.99 1.02 

…… …… …… …… 

…… …… …… …… 

07/01/2022 0.78 3.05 1.04 

08/01/2022 0.7 2.84 1.02 

 

In deep learning training needs, apart from Table 3, current, 

voltage, and reactive current data are also used for training 

needs.  

However, in this case, because the time series data that will 

be processed and predicted is energy consumption data during 

peak load, energy consumption outside peak load time, and 

reactive power consumption, the actual data visualization 

displayed is only these three data. 

After the model is trained and results predicted, it is 

evaluated using validation and testing data with metrics such 

as RMSE, Mean Absolute Error (MAE), and formula of 

performance metric as follows [31, 32]: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑋𝑖 − 𝑋𝑖)

2𝑛
𝑖=1   (21) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖 − �̅�𝑖|

𝑛
𝑖=1   (22) 
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In general, MAE is easier to interpret because it represents 

a simple average error, while RMSE imposes a larger penalty 

for larger errors by squaring the errors before averaging. 

Together, these two metrics provide a comprehensive 

assessment of the accuracy and reliability of the prediction 

model.  

The implementation of this metric value on predicted results 

and actual data for energy consumption during peak loads is 

as follows. 

 

Table 4. Performance of peak load data prediction results 

 
Peak Load 

 ENSEMBLE GRU LSTM RNN 

MAE 0.0037 0.0392 0.026 0.018 

RMSE 0.0142 0.063 0.014 0.039 

MAPE 0.498 5.863 3.879 2.629 

R2 0.946 0.052 0.483 0.593 

 

In addition, Table 4 shows are the ensemble has a small 

level of prediction error. This states that the Ensemble model 

is more reliable in predicting energy use than other models.  

This model can capture data patterns more accurately, so it 

can provide more precise recommendations for operational 

planning and energy efficiency. This performance evaluation 

reinforces the Ensemble model's advantages in future 

electrical energy predictions. 

 

Table 5. Performance of peak load data prediction results 

 
Off-Peak Load 

 ENSEMBLE GRU LSTM RNN 
MAE 0.0146 0.0182 0.0986 0.0720 

RMSE 0.0533 0.2391 0.1651 0.1516 

 

Prediction testing results for variables off-peak load times, 

using evaluation metrics such as MAE, RMSE, and MAPE.  

In Table 5, the Ensemble model consistently shows the best 

performance in all metrics used which shows a high level of 

accuracy in predicting electrical energy consumption off-peak 

load times.  

Thus, based on the results of this evaluation, it can be 

concluded that the Ensemble model has the best performance 

in predicting electrical energy consumption off-peak load 

times in buildings. 

 

Table 6. Performance of reactive power data prediction 

results 

 
Reactive Power 

Metric ENSEMBLE GRU LSTM RNN 

MAE 0.005 0.043 0.043 0.0325 

RMSE 0.022 0.096 0.097 0.0914 

 

In Table 6, the Ensemble model consistently performs best 

in all metrics used. The MAE value, which measures the 

absolute difference between predicted and actual values, 

shows a high level of accuracy for the ENSEMBLE model.  

Likewise, a low RMSE indicates a small level of prediction 

error. The ENSEMBLE model also excels with the lowest and 

highest values respectively.  

Thus, the ENSEMBLE model has the best performance in 

predicting reactive energy consumption in buildings. 

 

 

3.1 Visualization of comparison of actual data with 

predicted data 

 

Figure 4 is a visualization of the comparison of the results 

of three prediction models with actual data. 

Figure 4 shows the visualization of the comparison of the 

results of three prediction models with actual data in ensuring 

the ability of the ensemble model with the initiation of DARTS 

in data prediction. The visualization of the actual reactive 

power data and LSTM GRU RNN and Ensemble prediction 

data, where the prediction model other than the ensemble 

shows less accurate results on certain data indices and the 

ensemble prediction model always coincides with the actual 

data for each data index. 

 

 
 

Figure 4. Visualization of Predict result and actual reactive 

data 

 

3.2 Visualization of peak load time data and LSTM GRU 

RNN and ensemble prediction data 

 

Figure 5 visualizes the comparison between the predicted 

results of all models with actual peak load energy consumption 

data. Figure 5 shows that the most superior prediction model 

is the ensemble model, characterized by the closeness of the 

predicted results to the actual data. 

Image visualization in Figure 6 shows that the ensemble 

model is always in line with the actual data movement by the 

evaluation metrics explained in the previous sub-chapter. 

 

 
 

Figure 5. Visualization of predicted result and actual peak 

load consumption data 
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Figure 6. Visualization of Predict result and actual off-peak 

load consumption data 

 

3.3 Actual reactive power and GRU 

 

Due to the existence of meters that cause an increase in the 

cost of energy use in a building, namely, energy consumption 

during peak load times and reactive power usage that exceeds 

the threshold limit determined by the electrical power supplier, 

this sub-research focuses on the correlation between reactive 

power consumption and time peak load and off-peak load 

during past events and future events. For this reason, we 

visualize this problem using scatter and rolling window 

methods. In the first stage, we can see a comparison of actual 

reactive power consumption with the prediction model. Figure 

7 is the visualization of the GRU prediction model compared 

with actual data as follows: 

 

 
 

Figure 7. Comparison of GRU prediction model results and 

actual data on peak load consumption 
 

Visualization of the image shows that the GRU prediction 

results still show errors at several initial and middle data index 

locations. So, for the time being in the case of this data, the 

GRU model still needs consideration and other prediction 

models need to be checked. Visualization between actual 

reactive consumption data and LSTM prediction results is 

shown in the following figures. 

Figure 8 shows a visualization of how the prediction results 

with the LSTM model still contain errors at several index 

points, this is as shown by the MAE RMSE metrics for LSTM 

as shown in Table 5. 

 
 

Figure 8. Comparison of LSTM prediction model results and 

actual data on Reactive power consumption 

 

 
 

Figure 9. Comparison of RNN prediction model results and 

actual data on Reactive power consumption 

 

 
 

Figure 10. Comparison of ensemble prediction model results 

and actual data on Reactive power consumption 

 

Figure 9 is the same as other single prediction models, the 

RNN prediction model has inaccuracies at the beginning of the 

data index, so this model is not recommended for further 

analysis. 

Figure 10 shows a comparison of actual data on reactive 

power consumption and actual data which shows the position 
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of the two data which always appear to be close from start to 

finish. Conditions like this show that the prediction results 

with the ensemble are very accurate, which is also shown by 

the evaluation metrics in Table 5. 

 

 

4. CORRELATION BETWEEN REACTIVE POWER 

CONSUMPTION ON PEAK LOAD AND BEYOND 

PEAK LOAD 

 

Based on the prediction results that have been carried out 

with several models the Ensemble shows the most accurate 

prediction results compared to the LSTM, GRU, and RNN 

models, especially in predicting reactive power consumption 

data. Thus, the next analysis is to analyze the correlation 

between reactive power consumption and energy consumption 

during peak load times and outside peak load times in past 

events and what correlation might occur in the future. 

 

4.1 The correlation between actual dataset 

 

Three correlation values show a linear relationship between 

reactive power consumption and energy consumption during 

peak load times and outside peak load times. Correlation 

calculations use the Pearson correlation formula, after 

calculating the correlation between reactive power 

consumption and energy consumption during peak loads (with 

the help of the Python library). 

 

 

 
 

Figure 11. Scatter diagram between peak load energy 

consumption and reactive power consumption 

 

From this plot Figure 11, we can see that there is a fairly 

linear relationship between power consumption at peak load 

times and reactive power. This shows that when power 

consumption at peak load times increases, reactive power also 

tends to increase. The correlation between reactive energy 

consumption and peak load energy consumption is 

0.29247416580871066. This correlation value is around 0.29, 

which indicates a weak positive relationship between reactive 

power consumption and electricity consumption at peak load 

times. This means that when reactive power increases, energy 

consumption during peak loads tends to increase slightly as 

well, but this relationship is not very strong. 

The correlation between reactive energy and energy 

consumption at off-peak load is 0.3317318580227448. This 

correlation value is around 0.33, which indicates that there is 

a weak to moderate positive relationship between reactive 

power consumption and electricity consumption at off-peak 

load. This means that an increase in reactive power 

consumption tends to be accompanied by an increase in off-

peak load energy, although this relationship is also not very 

strong. 

 

 
 

Figure 12. Scatter diagram between peak load energy 

consumption and off-peak load consumption 

 

The form Scattering between data in Figure 12 shows the 

relationship between reactive power consumption and peak 

load and off-peak load is relatively weak. The weak 

correlation between reactive power consumption with peak 

load and off-peak load indicates that changes in reactive power 

do not have a large impact on electricity consumption during 

peak or off-peak loads. However, there is still a slight positive 

relationship, which means that as reactive power increases, 

electricity consumption in both periods also tends to increase 

slightly. 

 

4.2 Correlation between ensemble prediction data 

 

The ensemble prediction model initiated by DARTS 

outperforms the accuracy of the LSTM GRU and RNN 

prediction models as shown by MAE, RMSE which have a 

good level in predicting all data features of reactive power 

consumption, electrical energy consumption during peak load 

times and electrical energy consumption during off-hours. 

Peak load. Therefore, the results of this Ensemble prediction 

can be used to implement planning and energy efficiency 

efforts. For this, here is the correlation between reactive power 

consumption during peak load and off-peak load result of 

ensemble prediction, as follows 

Figure 13 shows the predicted correlation between reactive 

power consumption and electrical energy consumption. This 

correlation of 0.295 and between reactive power consumption 

and peak load energy consumption of 0.334, shows a low 

correlation between the two predicted variables. The 

correlation is a Pearson correlation, then a value close to 0 

indicates that there is no strong linear relationship between 

reactive power consumption and energy consumption. 

Therefore, the correlation value does not show a zero value, 

this shows that there is still a correlation between reactive 

power consumption at peak load and off-peak load. 
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Figure 13. Scatter diagram between peak load energy 

consumption and off-peak load consumption 

 

 
 

Figure 14. Scatter diagram between peak load energy and 

off-peak load consumption result of ensemble prediction 

 

Based on data from ensemble predictions in Figure 14, the 

correlation between reactive power consumption at peak load 

times and off-peak loads shows that it is stronger than past data. 

Likewise, the correlation between consumption during peak 

loads and off-peak loads is also stronger than actual or past 

data, this reflects an increase in the consistency of electricity 

use in the future. Correlation between variables that is stronger 

than in the past indicates a pattern of changes in electrical 

power use in the future. 

 

 

5. DISCUSSION 

 

The Pearson coefficient in actual between dataset 

correlation and ensemble predicted dataset result shows 

similar values, confirming the reliability of the prediction 

model. With proven accuracy, it can be used to plan more 

effective energy management strategies. With the prediction 

results, large reactive energy-consuming equipment (water 

pumps, blowers, and other equipment under the supervision of 

the building manager) can be operationally regulated by 

avoiding peak load times. Avoiding using electricity during 

peak load times reduces operational costs. 

In addition, understanding reactive energy consumption 

enables the implementation of effective reactive power 

compensation strategies to regulate the use of capacitor banks, 

which increases the efficiency of electricity distribution and 

reduces energy losses. Reducing active and reactive energy 

consumption contributes directly to reducing carbon emissions, 

as electrical energy production is often linked to the burning 

of fossil fuels. Accurate prediction models also help plan more 

efficient use of renewable energy, such as solar or wind power, 

which can replace some fossil energy consumption and reduce 

environmental impacts. Thus, these correlation results provide 

a better understanding of the relationship between reactive 

energy consumption and electrical energy consumption during 

peak load times and outside peak load times, which can be 

used to optimize energy use and improve energy efficiency in 

building load management. 

The Pearson correlation coefficient between actual and 

predicted data shows similar values, confirming the reliability 

of the prediction model. With proven accuracy, it can be used 

to plan more effective energy management strategies. With the 

prediction results, large reactive energy-consuming equipment 

(water pumps, blowers and other equipment under the 

supervision of the building manager) can be operationally 

regulated by avoiding peak load times. Avoiding using 

electricity during peak load times reduces operational costs. 

In addition, understanding reactive energy consumption 

enables the implementation of effective reactive power 

compensation strategies to regulate the use of capacitor banks, 

which increases the efficiency of electricity distribution and 

reduces energy losses. Reducing active and reactive energy 

consumption contributes directly to reducing carbon emissions, 

as electrical energy production is often linked to the burning 

of fossil fuels. Accurate prediction models also help plan more 

efficient use of renewable energy, such as solar or wind power, 

which can replace some fossil energy consumption and reduce 

environmental impacts. Thus, these correlation results provide 

a better understanding of the relationship between reactive 

energy consumption and electrical energy consumption during 

peak load times and outside peak load times, which can be 

used to optimize energy use and improve energy efficiency in 

building load management. 

 

 

6. CONCLUSIONS 

 

Using ensemble neural network methods LSTM, GRU, and 

RNN has proven effective in improving predictions of 

electrical energy use in apartment buildings. The developed 

prediction model can provide accurate results, enabling more 

efficient planning in energy management. The correlation 

between reactive energy consumption and peak and off-peak 

loads indicates a weak to moderate relationship between these 

factors. This provides important insights into electrical energy 

usage patterns in apartment buildings, which can be optimized 

to improve energy efficiency. 

By understanding the relationship between reactive energy 

consumption and electrical energy consumption during peak 

load periods and outside peak load times, more efficient 

arrangements can be made in energy management. The use of 

accurate prediction models also allows renewable energy to 

replace fossil energy, reduce operational costs, and reduce 

environmental impacts. Thus, this article highlights the 

importance of advanced prediction technologies in improving 

energy efficiency in apartment buildings, as well as providing 

a foundation for developing more sustainable and 

environmentally friendly energy management strategies in the 

future. 
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NOMENCLATURE 

 
DARTS Differentiable Architecture Search 

ENN Ensemble Neural Network 

GRU Gate Recurrent Unit 

LSTM Long Short-Term Memory 

MAE Mean Absolute Error 

NN Neural Network 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network 

SGD stochastic gradient descent 

Tanh Tangen Hyperbolic 

kWh Kilo Watt Hour 

 

Greek symbols 

 

 

𝜎  Sigmoid 

∅  
Angle between Active and Apearence 

power 

𝛼  Weight and biases in modle ensemble 

𝑓𝑡  Forget Gate 

𝑓𝑖  The i-th model in the ensemble for input 

𝑤𝑓  Weight of forget gate 

𝑥𝑎  Actual data 

𝑖𝑡  Input gate 

𝐶𝑡  Candidate gate 

𝑂𝑡  Output gate 

𝐶𝑇  Update cell 

𝑤𝑧  Weight update gate 

𝑟𝑡  Learning rate 

ℎ𝑡  Hidden state 

S Apparent power, Volt Ampere 

P Active power, Watt 

Q Reactive power, kVAR 

𝑤𝑖   Weight of the i-th Value 

𝑥𝑡  Input data 

V Voltage, V 

I Current, A 

R Correlation 
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