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Finding the California Bearing Ratio (CBR) of soil stabilised by an environmentally 
friendly binder composite is one of the most important steps in designing an appropriate 
mix. By utilising an artificial neural network (ANN) to forecast soil parameters and
additions of Portland cement and Bamboo Leaf Ash (BLA), this study aims to estimate
the California Bearing Ratio (CBR) of treated cement-lateritic soils. The precise and
accurate findings are obtained by selecting six factors as input variables. Maximum Dry
Density (MDD) (kg/m3), Plasticity Index (PI) (%), Liquid Limit (LL) (%), Cement (%),
Bamboo Leaf Ash (BLA) (%), and OMC (%) were the six input variables. In contrast,
the output variables were CBR soaked (%) and CBR unsoaked (%). 1288 samples from
a database were used in the investigation. Training is done using a multilayer perceptron-
backpropagation algorithm. The network topology is acquired after the fixing of several
hidden neurones. With a 99.5% accuracy rate, the model can predict CBR results.
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1. INTRODUCTION

The stability and durability of the soil dictate how much
weight well-compacted and treated soils can bear when used 
as foundation materials. A typical crushed rock sample's 
impedance is compared to the resistance that arises from 
lowering a penetration piston into the soil at a rate of 1.27 
mm/min (0.05 in/min) using the California Bearing Ratio 
(CBR), according to Yildrim and Gunaydin [1]. For the speed 
control to lower the penetration piston to the required depth, 
CBR resistance is essentially defined as the ratio of the applied 
stress to the energy-compressed soil at the specified moisture 
content. The CBR test can be performed in the field and lab. 
ASTM-D 1883-99 and ASTM-D 4429-93 [2, 3] explain the 
CBR test in the field and the laboratory, respectively. 
Laboratory samples of compacted soil are frequently used for 
CBR testing. The CBR test is conducted in a field trial on a 
ground level excavated from a test pit [4]. Both soaked (in 
water) and unsoaked (without water) CBR testing is conducted 
on natural or compacted soils. The subgrade soil strength is 
assessed by comparing the test results with the curves from the 
standard tests [5, 6]. In order to increase a local clay's 
California Bearing Ratio (CBR), Karimiazar et al. [7] 
investigated the use of nano-silica and nano-alumina. Nano 
additives (0.1%), cement (2%-8%), and cement with nano-
additive (3% cement + 0.1%-1.5%). The cured and compacted 
sample was also tested for unsoaked CBR after seven days 

drying. CBR (soaked) (%). The maximum improvement in the 
soaked CBR of untreated clay amended by 1% nano-alumina 
and 1% nano-silica are: 27% and 49%, respectively. Ice37: 
Furthermore, the incorporation of 3% cement increased the 
CBR values by an average value of about approximately 28%, 
while that increase was full-fledged by using nano-silica and 
cement, which augmented up to a magnitudeofaround196 and 
164 times respectively for soaked conditions. It is also 
observed that the cement-based reactive powder with nano-
additives was prepared using about 6% to 7% of the traditional 
CBR requirement to produce a similarly soaked CBR. The 
results revealed that the clay combined with 1% nano-silica 
and WBA (3 wt%) showed superior CBR value over other 
samples tested. In contrast, the soil admixed by NWA@1 
percentage and WBA indicates a maximum reduction in free 
swell potential. As a result of the interaction between nano-
additive and sepiolite, homonymous material was formed with 
less porosity while revealing Calcium Silicate Hydrate (CSH) 
or/and calcium aluminate hydrate (CAH) product inside the 
fabric [8-10]. The CBR test is essential in geotechnical 
engineering and earth structures like road pavements and dam 
embankments [11]. It typically requires 4 days to establish 
soaked CBR in the case of a laboratory test, which is a 
motivation for any soil specimen. It has been published that 
the CBR test is time-consuming, tedious, and boring to 
conduct in the laboratory [12, 13], so appropriate models are 
also needed from this perspective. Studies indicate that CBR 
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can be estimated based on laboratory assessments of the type 
and content quantities [14, 15]. This scenario has led to a new 
field in the construction industry: dependable predictions. Due 
to valuable contribution, using artificial neural networks 
(ANNs) is becoming more common in geotechnical 
engineering [16-18]. 

1.1 Artificial neural networks in civil engineering 

Artificial neural networks (ANNs) have demonstrated high 
precision in practice and have been widely used in modelling 
a wide range of engineering problems related to nonlinearity 
in recent years [19]. Methods We employ artificial neural 
networks (ANNs) and regression analysis (RA). The authors 
developed simple and robust CBR models using conventional 
material properties such as gradient, Atterberg limits, and 
compressive strength. The Highway and Airport Engineering 
Laboratory at Mansoura University prepared quality assurance 
reports, which comprised a database of 207 CBR values. The 
CBR values ranged between 26% and 98%. The data were 
equally divided into training and testing (used for model 
validation) at a ratio of 80:20 and tested in parallel with the 
experimental samples from 11 laboratories. The model 
developed by RA and ANNs, in which the CBR values were 
related to the maximum dry density and D60. Regarding the 
coefficient of determination (R2), both approaches created a 
CBR model with excellent prediction accuracy, and the 
recommended model's validation was adequate. Timani and 
Rain [20] state that layers of different materials with changing 
thicknesses make up the flexible pavement. CBR, elastic 
modulus, moisture condition, and unit weight are the basic 
subgrade properties used in pavement component design. CBR 
characterisation is important for any activity requiring flexible 
pavement. Numerous researchers have suggested ANN 
techniques as a superior alternative to CBR since they are less 
time-consuming and laborious than CBR [21-24]. 

Artificial neural networks (ANN) have emerged as a true 
model and tool for various applications, including prediction, 
identification, classification, and pattern recognition. Due to 
its increased relevance and utility, this machine learning (ML) 
model has become a viable substitute for statistical models and 
regular regression [25]. ANNs are mathematical models of 
human cognition or neural ecology that have been made 
simpler. The primary differentiating factor of ANN is the 
unique structure of its information processing system. An 
artificial neural network (ANN) comprises several neurones, 
strongly coupled processing units collaborating to solve 
certain problems. Neurones that share comparable properties 
are arranged in layers inside an ANN [26]. Neural networks 
are commonly classified into single, bilayer, and multilayer 
categories according to the number of layers they are 
composed. The direction and flow of information processing 
can also be used to categorise ANNs. Compared to statistical 
approaches, artificial neural networks (ANNs) are becoming 
more and more dependable due to their unique capacity to 
understand complicated systems when the input and output are 
known via either in situ or field research [27].  

Adaptivity, nonlinearity, homogeneity, and fault tolerance 
are the main benefits of the ANN over alternative modelling 
software. Understanding the underlying relationship between 
variables is unnecessary for ANNs because they are data-
driven systems. These parametric nonlinear models can most 
remarkably approximate any continuous relationship between 
input and output [28, 29]. Consequently, MLR and ANN are 

employed in the study of Harini and Naagesh [30] to compute 
the CBR of fine-grained soils. Fine-grained soils CBR. Soil 
metrics associated with CBR include some of the easiest to 
acquire, as they are based on basic engineering tests such as 
optimum moisture content and maximum dry density (OMC-
MDD), liquid limit, plastic limit (LL-PL), PI (%/attritions). A 
series of forty different soil data sets is used in the study. It 
was also found that the ANN model displayed better 
performance than MLR in predicting CBR from soil factors. 
The proposed ANN model was effectively tested on real-life 
laboratory data, providing a strong correlation of 0.94. This 
study focuses on deploying an ANN to forecast the CBR of 
treated cement laterite soil stabilised with Bamboo Leaf Ash. 
However, the prediction analysis in this study is done in the 
context of reinforced eco-friendly soil stabilisers using an 
artificial neural network, and the prediction is performed in 
both the soaked and unsoaked CBR. 

2. METHODS

Determining the particle size distribution, specific gravity,
and Atterberg limits were among the initial analyses 
performed on the soil samples. Tests were also conducted on 
the natural soil samples for compaction and California Bearing 
Ratio (CBR).  

These techniques were applied to each soil sample's 
unstabilised and stabilised stages, A and B. The following 
procedure was employed: 

i. The treated soil samples were then treated with
cement at 0, 2, 4, 6, 8, 10, and 12%, then individually
mixed with Bamboo Leaf Ash at various ratios of 2, 4,
6, 8, 10, 12, 14, and 16% by the weight of dry soil.

ii. These samples were subjected to the California
Bearing Ratio, compaction, and Atterberg limits.

iii. All tests were done by the study [31] and BS 1377 [32] 
for natural soil samples.

The liquid limit, plasticity index, maximum dry density, 
optimum moisture content, percentages of cement, and 
Bamboo Leaf Ash were among the test results obtained in the 
laboratory that were used as inputs to construct an artificial 
neural network (ANN) model for predicting the soaked and 
unsoaked CBR values of stabilised soils. 

2.1 The design procedure for the artificial neural network 

Six (6) major stages comprised designing and implementing 
the Artificial Neural Network (ANN) for this research project. 
These stages include data acquisition, feature selection and 
data normalisation, ANN architecture optimisation, ANN 
algorithm optimisation, ANN initialisation and training, 
testing, validation, and deployment. Feed-forward neural 
network backpropagation using Levenberg-Marquardt is a 
classical gradient-based optimisation method that is used to 
solve nonlinear least squares problems. It also has a fast 
convergence speed the moment the initial value is given 
correctly. A MATLAB training ANN model was utilised to 
compute the data and select the optimal model. The degree of 
correlation between the target of the soft computing models 
and their final outputs was measured using the Coefficient of 
Correlation (R) and the Mean Square Error (MSE). Cement 
(%), Bamboo Leaf Ash (BLA) (%), Liquid Limit (LL) (%), 
Plasticity Index (PI) (%), Maximum Dry Density (MDD) 
(Kg/m3), and OMC (%) were the six input variables. In 
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comparison, the two output variables were CBR Unsoaked (%) 
and CBR Soaked (%). The experimental findings gathered one 
thousand two hundred eighty-eight sets of soil data; 70% were 
used for training, 15% for testing, and 15% for data validation. 

2.2 Data division 

The randomised data produced training, testing, and 
validation datasets. Training data was utilised to identify 
possibly predictive connections. It is a set of samples that are 
used to fit the weights, or parameters, of the classifier so that 
it can learn. The strength and usefulness of a predictive 
relationship were assessed using a test dataset, a collection of 
examples explicitly created to assess the efficacy 
(generalisation) of a fully specified classifier. In addition to the 
training and testing sets, a validation set was necessary to 
avoid overfitting, especially if any classification parameters 
had to be changed. Training, testing, and validation datasets 
were created using the randomised data. Training data was 
used to find potentially predictive relationships. It is a 
collection of examples that are used to fit the classifier's 
weights or parameters so that it can be trained.  

Test dataset: a set of instances created specifically for 
testing a completely specified classifier's ability to generalise; 
it was used for assessing the usefulness and strength of the 
predictive link. Besides the training and testing sets, the 
overfitting issue also called for a validation set, especially 
when any of the parameter settings for classification were to 
be varied. 

2.3 Data stabilisation 

The data stabilisation process was finished to rule out input 
weight bias. This enables the network to assign equal 
importance to various input values, irrespective of their 
magnitude. Furthermore, input stabilisation reduces the search 
interplanetary to a unitary hypercube by drastically band-
restricting inputs to a border between 0 and 1. This speeds up 
computation and training. This makes Bayesian estimate and 
weight decay much easier. The process of obtaining the 
corresponding normalised value (Pi) for every network input 
Pi is demonstrated by Eq. (1). 

𝑃𝑃𝚤𝚤 � = 𝑃𝑃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 + �
𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

� (𝑃𝑃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) (1) 

Pt
max is the maximum value, and Pt

min is the target's 
minimum value. At the same time, Pi is the actual input data, 
and Pmax and Pmin are the maximum and minimum input values, 
respectively. 

2.4 Performance indices of the study statistical 

This is for accuracy and precision. It uses the root mean 
square error (RMSE) and coefficient of determination (R2). 
This information on short-term efficiency is a starting point for 
comparing actual and expected values. The assessment is more 
accurate than the RMSE. The coefficient of determination, or 
R square, measures the variation that the model interprets or 
the reduction in variance that occurs when using a model. 
When R2 is near to 1, which ranges from 0 to 1, the model has 
strong predictive ability. The overall prediction accuracy can 
be assessed by utilising these performance criteria. The mean 
absolute error displays the average divergence of the projected 

values from the corresponding observed values, or MAE, 
which offers insight into the long-term performance of models. 
The model's long-term prediction is better with a lower MAE. 

2.5 The training algorithm of the ANN and network 
performance criteria 

The algorithm employed was Levenberg-Marquardt (LM). 
The Levenberg-Marquardt (LM) procedure is a second-order 
technique that trains a network by continuously changing its 
weights and biases through an optimisation technique. This 
method, essentially a trust region version of the Gauss-Newton 
method, is fast, efficient, and often the best choice for 
supervised training. The Levenberg-Marquardt approach 
attempts to iteratively reduce an error function E(w) by 
varying the weight and bias values of the different layers of 
the network, as shown in Eq. (2). This is carried out until a 
stop benchmark or a predefined allowed minimum rate is 
reached. 

𝐸𝐸(𝒘𝒘) =
1
2
� � 𝑒𝑒𝑝𝑝𝑚𝑚2

𝑀𝑀

𝑚𝑚=1

𝑃𝑃

𝑝𝑝=1

 (2) 

Therefore, P denotes the count of patterns from the input-
output training pair, M indicates the number of outputs, and N 
is the number of weight elements in total. The synopsis of the 
algorithm, which is the artificial neural network is contained 
in Table 1. One of the objectives of assessing the work of a 
soft computing network is to find out how close the output as 
computed by the network is to the output that would have been 
generated from a physical process. In this study, Eqs. (3)-(5) 
show the application of root mean square error (RMSE) and 
coefficient of correlation (R). 

𝐶𝐶𝐶𝐶𝐶𝐶 = �1 −
∑ (𝑦𝑦 − 𝑦𝑦�)2𝑁𝑁
𝑚𝑚=1

∑ (𝑦𝑦)2𝑁𝑁
𝑚𝑚=1

 (3) 

𝑉𝑉𝑉𝑉𝑉𝑉 = �1 −
𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦 − 𝑦𝑦�)
𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦) � × 100 (4) 

𝑅𝑅𝐶𝐶𝑅𝑅𝐸𝐸 = �
1
𝑁𝑁
�(𝑦𝑦 − 𝑦𝑦�)2
𝑁𝑁

𝑚𝑚=1

 (5) 

where, y is the desired value, 𝑦𝑦� Is the network's output, and 
var. stands for the corresponding operand's mathematical 
probabilities 

Table 1. The ANN algorithm employed for the study 

Algorithm Network Weight 
Adaptation Description 

Levenberg-
Marquardt 

(LM) 
Algorithm 

Δ𝑤𝑤
= (𝐽𝐽𝑇𝑇𝐽𝐽
+ 𝜇𝜇𝜇𝜇)−1𝐽𝐽𝑇𝑇𝑒𝑒

The Jacobian matrix J and 
the network error vector e 
are calculated during the 

weight update. 

3. RESULTS AND DISCUSSIONS

Table 2 lists the specifics of the ANN model's components.

757



The six input variables were cement (%), Bamboo Leaf Ash 
(BLA) (%), liquid limit (LL) (%), plasticity index (PI) (%), 
maximum dry density (MDD) (Kg/m3), and optimum moisture 
content (OMC) (%). In comparison, the two output variables 
were CBR Unsoaked (%) and CBR Soaked (%). The model 
consisted of one hidden layer with ten layers of neurones. 
Figures 1 to 14 show values of soaked and unsoaked CBR with 
varying proportions of cement and BLA as predicted by the 
model and observed in the laboratory. These values indicate 
the ANN models' accuracy and high precision [33]. 

Table 2. The ANN model details of components used 

Inputs number 6 
Outputs number 2 

Hidden layer neurons 10 
Output layer neurons 2 

Epochs 21 

Figure 1. Evaluation of the expected unsoaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 0% cement 

Figure 2. Evaluation of the expected unsoaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 2% cement 

Figure 3. Evaluation of the expected unsoaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 4% cement 

Figure 4. Evaluation of the expected unsoaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 6% cement 

Figure 5. Evaluation of the expected unsoaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 8% cement 
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Figure 6. Evaluation of the expected unsoaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 10% 

cement 

Figure 7. Evaluation of the expected unsoaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 12% 

cement 

Figure 8. Evaluation of the expected soaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 0% cement 

Figure 9. Evaluation of the expected soaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 2% cement 

Figure 10. Evaluation of the expected soaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 4% cement 

Figure 11. Evaluation of the expected soaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 6% cement 
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Figure 12. Evaluation of the expected soaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 8% cement 

Figure 13. Evaluation of the expected soaked CBR values 
with the observed (lab) values of A-7-5 + BLA + 10% 

cement 

Figure 14. Evaluation of the expected soaked CBR values 
with the observed (lab) values of A-7-5 + BLA +12% 

3.1 The ANN results for Bamboo Leaf Ash at A-7-5 soil for 
the regression analysis 

The regression diagram for the training dataset's projected 
(output) and observed California Bearing Ratio (CBR) during 

the ANN model's training phase is displayed in Figure 15. The 
predicted and target values for the testing dataset during the 
ANN model's testing phase are displayed in Figure 16. The 
goal (observed) and anticipated (output) values for dataset 
validation during the ANN model's validation stage are 
displayed in Figure 17. At training, testing, and validation, as 
well as throughout all phases of prediction analysis, the neural 
network's performance was demonstrated by its coefficient of 
correlation (R), which was 0.9981, 0.99553, 0.98608, and 
0.99485, respectively. These findings are consistent with 
Tesfaye and Potdar's work [33]. The authors employed ANN 
to predict the CBR of treated soil. In order to measure CBR 
values, a mixture of eggshell and waste glass was added to the 
soil in amounts ranging from 4% to 12% of the weight of the 
soil samples.  

Figure 15. The regression analysis illustrating the predicted 
(output) and target (observed) values for ANNs training 

dataset at their learning phase in models of Bamboo Leaf Ash 
+ A-7-5 soil mixes with cement

Figure 16. Regression plot of means for testing dataset 
(Bamboo Leaf Ash and A-7-5 soil with cement) The output 

versus observed values at the time of testing process is shown 
in a regression manner 
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Table 3. The experimental results 

Stabilizing Cement-Treated Soil Sample A-7-5 with Bamboo 
Cement (%) BLA LL PL PI MDD OMC CBR (Unsoaked) CBR (Soaked) 

0 0 62.8 34.1 28.7 1452 15.2 7.4 4.0 
0 2 60.4 33.0 27.4 1440 15.8 10.2 5.1 
0 4 59.1 32.6 26.5 1430 16.3 13.5 7.8 
0 6 58.0 32.0 26.0 1422 16.9 15.0 9.0 
0 8 56.8 31.7 25.1 1410 18.1 18.6 11.8 
0 10 55.8 31.0 24.6 1402 19.1 18.0 11.0 
0 12 53.8 30.6 23.2 1390 19.8 16.4 10.8 
0 14 51.9 30.2 21.7 1375 20.7 16.0 10.6 
0 16 50.4 30.2 20.2 1364 21.9 14.6 9.3 
2 0 58.2 30.2 28.0 1464 16.0 28.0 17.0 
2 2 57.1 30.1 27.0 1455 16.5 30.0 20.1 
2 4 56.2 29.7 26.5 1445 17.0 38.4 26.2 
2 6 55.4 29.3 26.1 1434 18.3 43.7 29.6 
2 8 54.8 28.8 26.0 1425 19.8 48.5 33.7 
2 10 52.7 28.8 23.9 1430 20.9 47.0 30.1 
2 12 50.8 28.0 22.8 1440 22.2 45.3 28.2 
2 14 49.2 27.8 21.4 1447 23.5 44.0 27.0 
2 16 48.5 27.5 21.0 1454 24.8 42.2 25.8 
4 0 54.5 29.7 24.8 1480 16.5 48.5 29.7 
4 2 54.0 29.7 24.3 1470 17.0 49.7 31.0 
4 4 53.2 29.5 23.7 1460 18.4 50.8 32.1 
4 6 51.9 28.9 23.0 1455 19.2 52.0 34.0 
4 8 51.2 28.4 22.8 1447 20.5 53.5 36.6 
4 12 48.7 27.7 21.0 1465 22.0 52.0 35.0 
4 14 46.2 25.7 20.5 1480 22.8 50.9 33.6 
4 16 45.0 25.0 20.0 1495 24.3 50.0 32.8 
6 0 52.8 32.0 20.8 1493 20.6 58.4 31.6 
6 2 52.0 32.0 20.0 1480 21.2 60.0 32.2 
6 4 51.2 31.8 19.4 1472 21.7 62.5 32.8 
6 6 50.8 31.8 19.0 1466 22.4 64.1 34.0 
6 8 50.0 31.2 18.8 1460 23.0 66.7 36.6 
6 10 49.5 31.0 18.5 1468 23.5 64.8 36.0 
6 12 49.0 30.7 18.3 1474 25.2 62.0 34.8 
6 14 48.2 30.4 17.8 1460 25.8 61.4 34.0 
6 16 47.7 30.3 17.4 1496 26.3 59.9 33.2 
8 0 51.2 30.8 20.4 1520 20.8 50.4 35.8 
8 2 50.7 30.5 20.2 1502 21.4 51.8 37.0 
8 4 50.0 30.3 19.7 1494 21.9 53.6 37.8 
8 6 49.2 29.7 19.5 1481 22.7 54.0 38.5 
8 8 48.7 29.2 19.5 1470 23.8 55.2 40.0 
8 10 48.2 28.8 19.4 1476 24.2 64.1 39.0 
8 12 46.0 28.7 18.1 1487 25.7 63.4 38.0 
8 14 46.0 28.5 17.5 1502 26.6 62.2 36.9 
8 16 45.5 28.5 17.0 1525 27.5 60.7 36.0 

10 0 47.5 29.3 18.2 1535 21.6 58.8 32.4 
10 2 46.2 29.0 17.2 1528 22.4 58.0 31.5 
10 4 45.5 28.7 16.8 1520 22.9 56.5 31.0 
10 6 45.1 28.4 16.7 1513 23.6 55.2 30.2 
10 8 44.0 28.0 16.0 1501 24.7 54.0 29.4 
10 10 43.2 27.4 15.8 1510 25.3 52.8 28.7 
10 12 42.5 27.0 15.5 1517 26.0 52.0 27.7 
10 14 40.1 25.9 14.2 1527 27.1 50.9 27.0 
10 16 39.3 25.6 13.7 1539 28.0 49.7 26.4 
12 0 43.1 26.1 17.0 1542 23.0 52.2 48.4 
12 2 42.3 25.4 16.9 1536 24.3 50.0 47.2 
12 4 41.8 24.9 16.9 1528 25.3 48.7 46.0 
12 6 40.4 24.4 16.0 1520 26.0 48.0 45.0 
12 8 40.0 24.4 15.6 1515 27.1 46.8 43.7 
12 10 38.9 23.5 15.4 1520 30.0 45.4 43.0 
12 12 37.8 23.1 14.7 1527 31.1 44.6 41.9 
12 14 36.0 22.0 14.0 1530 32.2 43.5 40.8 
12 16 35.4 21.4 14.0 1538 33.0 42.7 40.0 
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Table 4. The ANN predicted result 

ANN Output Error Squared Error 
CBR (Unsoaked) CBR (Soaked) CBR (Unsoaked) CBR (Soaked) CBR (Unsoaked) CBR (Soaked) 

8.5136 3.5402 -1.1136 0.4598 1.2 0.2 
11.4579 6.2225 -1.2579 -1.1225 1.6 1.3 
13.9137 8.0561 -0.4137 -0.2561 0.2 0.1 
15.6829 9.4387 -0.6829 -0.4387 0.5 0.2 
16.3493 10.0232 2.2507 1.7768 5.1 3.2 
17.8614 11.1965 0.1386 -0.1965 0.0 0.0 
18.0266 11.5672 -1.6266 -0.7672 2.6 0.6 
15.6237 10.4597 0.3763 0.1403 0.1 0.0 
14.9169 9.0864 -0.3169 0.2136 0.1 0.0 
28.9640 19.9128 -0.9640 -2.9128 0.9 8.5 
32.2079 21.0183 -2.2079 -0.9183 4.9 0.8 
36.6646 23.4778 1.7354 2.7222 3.0 7.4 
43.4830 30.1596 0.2170 -0.5596 0.0 0.3 
42.6140 26.7282 5.8860 6.9718 34.6 48.6 
44.1362 27.7602 2.8638 2.3398 8.2 5.5 
45.8342 28.4218 -0.5342 -0.2218 0.3 0.0 
43.5215 26.6273 0.4785 0.3727 0.2 0.1 
42.9766 25.3363 -0.7766 0.4637 0.6 0.2 
48.6866 27.6706 -0.1866 2.0294 0.0 4.1 
46.6299 36.4334 3.0701 -5.4334 9.4 29.5 
48.4158 34.6267 2.3842 -2.5267 5.7 6.4 
51.8963 36.2784 0.1037 -2.2784 0.0 5.2 
53.9124 36.4257 -0.4124 0.1743 0.2 0.0 
53.4027 33.9738 -1.4027 1.0262 2.0 1.1 
50.3026 33.9598 0.5974 -0.3598 0.4 0.1 
49.9392 32.5558 0.0608 0.2442 0.0 0.1 
57.7512 32.9263 0.6488 -1.3263 0.4 1.8 
61.0779 31.1476 -1.0779 1.0524 1.2 1.1 
63.4067 31.7576 -0.9067 1.0424 0.8 1.1 
65.5990 33.0109 -1.4990 0.9891 2.2 1.0 
64.6210 35.5431 2.0790 1.0569 4.3 1.1 
64.6223 35.8506 0.1777 0.1494 0.0 0.0 
63.5090 35.9106 -1.5090 -1.1106 2.3 1.2 
62.2477 36.1437 -0.8477 -2.1437 0.7 4.6 
59.0926 32.7914 0.8074 0.4086 0.7 0.2 
52.8609 32.9031 -2.4609 2.8969 6.1 8.4 
53.6551 36.8603 -1.8551 0.1397 3.4 0.0 
54.7308 35.5949 -1.1308 2.2051 1.3 4.9 
56.0608 36.9850 -2.0608 1.5150 4.2 2.3 
58.2707 38.1287 -3.0707 1.8713 9.4 3.5 
61.5976 38.6441 2.5024 0.3559 6.3 0.1 
63.5832 38.5577 -0.1832 -0.5577 0.0 0.3 
62.3854 36.7554 -0.1854 0.1446 0.0 0.0 
61.0425 34.6588 -0.3425 1.3412 0.1 1.8 
57.8307 33.6311 0.9693 -1.2311 0.9 1.5 
59.3619 29.3560 -1.3619 2.1440 1.9 4.6 
56.3837 25.9035 0.1163 5.0965 0.0 26.0 
54.7657 28.1685 0.4343 2.0315 0.2 4.1 
53.4447 30.3384 0.5553 -0.9384 0.3 0.9 
52.3655 30.5309 0.4345 -1.8309 0.2 3.4 
52.1074 30.0916 -0.1074 -2.3916 0.0 5.7 
50.2648 27.2933 0.6352 -0.2933 0.4 0.1 
49.9102 25.7429 -0.2102 0.6571 0.0 0.4 
53.0250 47.5188 -0.8250 0.8812 0.7 0.8 
49.6671 46.5039 0.3329 0.6961 0.1 0.5 
47.8092 45.4910 0.8908 0.5090 0.8 0.3 
47.2864 44.6576 0.7136 0.3424 0.5 0.1 
46.9443 42.4138 -0.1443 1.2862 0.0 1.7 
46.5554 43.6012 -1.1554 -0.6012 1.3 0.4 
45.2645 40.2422 -0.6645 1.6578 0.4 2.7 
42.9694 41.6075 0.5306 -0.8075 0.3 0.7 
40.8450 41.0484 1.8550 -1.0484 3.4 1.1 

137.0 211.8 
RMSE 1.4867 1.8484 
VAF 
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The experiment's result is displayed in Table 3, which is 
also utilised for the ANN prediction, as shown in Table 4. 
Laboratory-related tests were consequently carried out to 
obtain the best model. The highest CBR value was 5.8 at an 
addition of 8% eggshell waste glass powder. CBR was used in 
the model's development as an output layer variable. CBR was 
a function of optimum moisture content, maximum dry density, 
and the combined effects of liquid limit, plastic limit, and 
plastic index. An ANN model with 5, 6, and 1 neuron in the 
input, hidden, and output layers was the most successful model 
that could be developed. The correlation coefficient (R), mean 
square error (MSE), and mean absolute error (MAE). Root 
mean square error (RMSE) This research discussed the above 
and shed insight on the potential for stabilisation using 
Bamboo Leaf Ash in various proportions to produce an 
economically viable CBR, as it has been proven from the 
literature that bamboo is a good material for soil stabilisation 
[34]. 

Figure 17. The regression plot shows the predicted (output) 
and target (observed) values for (a) the validation dataset and 

(b) all predicted values of the ANN model (Bamboo Leaf
Ash and A-7-5 soil and cement) 

Figure 18 shows the training outcomes. As additional 
training epochs are finished, the error generally falls as the 
network overfits the training data in the default setup. Still, it 
may begin to grow on the validation data set. The best 

performance from epoch 21 with the lowest validation error is 
chosen when training ends after six consecutive increases in a 
validation error. Figure 19 shows the ANN error plot for 
Bamboo Leaf Ash, A-7-5 soil, and cement to determine the 
prediction rate. It has been demonstrated that the compatibility 
of bamboo ash with treated cement-laterite soil may be 
accurately predicted using artificial neural networks (ANNs) 
[35-38]. 

Figure 18. Training performance of the ANN training 

Figure 19. The ANN error plot for Bamboo Leaf Ash and A-
7-5 soil and cement

4. CONCLUSION

The impact of adding Bamboo Leaf Ash on laterites treated
with cement is examined in this work. It attempts to use an 
artificial neural network (ANN) to create a forecasting tool. A 
database of laboratory test results, specifically CBR, is 
comprised of ANN models. ANNs are trained using a feed-
back propagation algorithm and displayed as a multilayer 
perception system using the following model input variables: 
The output is the California Bearing Ratio (CBR) in both 
soaked and unsoaked states. The inputs include cement (%), 
Bamboo Leaf Ash (%), rice husk ash (%), maximum dry 
density (MDD) (kg/m3), liquid limit (%), optimum moisture 
content (%), and plasticity index (%). It has been determined 
that the best model, consisting of a single hidden layer with ten 
(10)hidden layer neurones, can predict the CBR results. When
tested against unobserved data, the optimal ANN exhibits
good accuracy with R of 0.99 and RMSE of 0.99. A significant
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limitation of this research is it involves using only an 
admixture of cement and Bamboo Leaf Ash in soil treatment. 
In summary, the model can be recommended as a trustworthy 
resource for estimating values of soaked and unsoaked CBR 
of laterites stabilised with Bamboo Leaf Ash (BLA) treated 
with cement.  
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