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Field-scale interpolation of soil pH on a seven-hectare field in Laguna, Philippines was 

performed. A total of 50 samples were collected following a random sampling approach. 

Cokriging methods, including those with electrical conductivity (CoKEC), organic matter 

(CoKOM), cation exchange capacity (CoKCEC), and clay content (CoKClay), were assessed 

and compared with Ordinary Kriging (OK) using cross-validation prediction errors and 

the prediction standard error (PSE). Using cation exchange capacity (CEC), electrical 

conductivity (EC), and organic matter (OM) as auxiliary variables decreased the 

prediction errors. Based on the RMSE, the relative improvement (RI%) of CoKCEC, 

CoKEC, and CoKOM were 3.19, 3.73, and 4.08%, respectively. While OK provides a good 

general overview, the findings demonstrate that incorporating relevant auxiliary variables 

like OM and EC results in more accurate predictions of soil pH. CoKEC was the most 

accurate method, with a low Root Mean Square Error (RMSE) of 0.2477 and a Root 

Mean Square Standardized Error (RMSSE) closest to 1 (0.9947), indicating a well-

calibrated model. Additionally, CoKEC produced PSE maps with lower standard errors 

(0.85-0.242), suggesting a high level of precision in soil pH predictions. The choice of 

method should be guided by the specific characteristics of the study area and the 

availability of auxiliary data. The PSE maps clearly show the importance of considering 

prediction uncertainty when selecting an interpolation method for soil pH, with CoKEC 

offering both improved accuracy and reduced uncertainty. 

Keywords: 

cokriging, interpolation, geostatistics, soil pH 

1. INTRODUCTION

Soil pH, a measure of alkalinity or acidity, is a master 

variable that influences various soil processes and plays an 

essential role in affecting the availability of essential nutrients 

to plants. Acidification occurs as a natural process during soil 

formation. In humid environments, it lasts for a long time as 

water moves laterally or downward through the soil, leaching 

the products of weathering; in dry environments, soil leaching 

and weathering are less intense, and the pH of the soil is often 

alkaline or neutral [1]. 

Various soil properties exhibit variation across spatial 

scales [2, 3]. This variation is predominantly attributed to the 

diversity of anthropogenic and internal factors that result in 

complex spatial soil patterns [4, 5]. Soil pH is not a static 

parameter and can exhibit significant variability across 

different locations within a field or even within a single soil 

profile. The variability observed can be due to the variables of 

soil formation, climate, living organisms, relief, parent 

material, and time [6]. 

Routine soil testing and monitoring can provide valuable 

information about pH variability, allowing for targeted 

amendments and adjustments to optimize soil conditions for 

plant growth and productivity. However, traditional soil 

sampling and analysis can be time-consuming and expensive, 

often resulting in limited spatial coverage. Various 

interpolation techniques and strategies are explored and 

utilized to map the geographical variability of soil pH [7-10]. 

Geostatistics has been extensively utilized to forecast the 

spatial distribution of soil parameters [11, 12].  

Mapping of various soil properties, like soil pH, is 

considered vital for directing decision-makers in 

environmental modeling, land use research, and natural 

resource evaluation [13]. The knowledge of the spatial 

distribution of soil characteristics is crucial for precision 

agriculture, which plays a vital role in agricultural, economic, 

and environmental activities. For site-specific management of 

agricultural practices, understanding the spatial variability of 

soil physicochemical properties in both their dynamic (such as 

water content, compaction, and organic matter) and static 

(such as texture and mineralogy) forms is essential. This 

understanding has a direct impact on the observed variability 

in crop yield and productivity [14, 15]. By considering these 

factors collectively, farmers can improve their understanding 

of soil pH dynamics and implement appropriate strategies to 

maintain optimal soil health and fertility. 
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In relation to mapping, it is essential to provide estimates of 

the uncertainties linked to predicted soil functional properties 

alongside the corresponding soil property maps [16]. The 

standard error or variance of predictions offers a quantifiable 

measure of uncertainty. Methods that produce both uncertainty 

and prediction maps are rare, with geostatistical prediction 

methods being among the few that account for spatial 

distances and structures. A key advantage of digital soil 

mapping lies in the increasing ability of modern techniques to 

generate uncertainty estimates alongside predictions [17]. For 

instance, model prediction errors reveal the discrepancies 

between observed data and model outputs [18-21]. Despite 

extensive use of kriging techniques, there remains a gap on the 

use of auxiliary soil properties in enhancing the interpolation 

accuracy of certain soil properties including soil pH and its 

uncertainty estimation at a field scale. This study addresses 

this gap by exploring the integration of auxiliary soil 

properties to improve spatial prediction of soil pH and by 

providing a comprehensive evaluation of model uncertainties.  

Cokriging, an extension of the standard geostatistical 

kriging approach, achieves good results by including 

secondary information. It increases the interpolation accuracy 

by taking into account the spatial cross-correlation of the 

primary and secondary variables. Thus, it has been 

increasingly utilized in the prediction of soil properties since 

it offers better precision than standard kriging [22]. In 

pedometrics, a significant interest has been placed on using 

spatially correlated supplementary data to enhance the 

prediction quality of mapping soil properties [23-25]. 

The study evaluates the use of selected soil properties such 

as electrical conductivity (EC), organic matter (OM), cation 

exchange capacity (CEC), and clay content as auxiliary 

variables in the field-scale interpolation of soil pH as 

compared to ordinary kriging. Furthermore, cross-validation 

and uncertainty mapping using prediction standard errors were 

used to assess the prediction accuracy of the models. The study 

contributes in evaluating the effectiveness of specific soil 

properties to enhance field-scale interpolation of soil pH. 

Through rigorous cross-validation and uncertainty mapping, 

the research provides valuable insights into the spatial 

variability and prediction accuracy of soil pH mapping. These 

findings support more precise and reliable soil pH assessments, 

with significant implications for precision agriculture 

applications. 

 

 

2. MATERIALS AND METHODS  
 

2.1 Study area 

 

The study area is a 70,000 m2 field between 14°08’48” N 

and 121°15’40” E in Los Banos, Laguna, Philippines (Figure 

1). It is in a relatively flat area with an elevation of 27 to 30 

meters above sea level. The average annual temperature is 

around 27℃, and the annual precipitation is 1800 mm. The 

soil in the area is classified as Lipa soil series, a residual soil 

of volcanic tuff, and is classified as fine clayey, mixed, 

shallow, isohyperthermic Typic Eutrudepts [26]. It is a 

medium-textured (loam to clay loam) soil. 

Previously, the area had been primarily designated for 

livestock grazing. In 2018, the area was converted into a 

research station dedicated to organic agriculture research. 

Organic farming emphasizes soil health, biodiversity, and 

ecological balance. Converting the area into an organic 

research station indicates a commitment to studying and 

promoting organic agricultural practices.

 

 
 

Figure 1. Study area location and sampling point distribution (n=50) 
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2.2 Soil collection and analysis 

 

Fifty soil samples were collected at a depth of 0-20 cm, 

chosen based on its relevance to root zone activities and 

nutrient availability, as this depth is commonly influenced by 

agricultural management practices and is critical for plant 

growth.  

A random sampling approach was implemented to avoid 

sampling bias and to allow for a representative overview of 

soil conditions across the field. Although stratification based 

on soil type, prior land use, or other factors was considered, it 

was ultimately not applied due to the relative homogeneity of 

the soil type and recent conversion to organic farming 

practices. This approach was thus deemed suitable to capture 

the field's current variability under organic management 

without historical land use impacts. 

At each sampling point, five subsamples were collected 

within a 1 m diameter and combined into a composite sample. 

The collected soil samples were air-dried in cool, dry 

conditions before they were transferred to the laboratory. 

Following air drying, the larger aggregates were broken down 

into smaller particles and passed through a 2-mm sieve. The 

soil samples were stored for no longer than two weeks before 

processing to minimize alterations in soil properties. The 

samples were analyzed following standard laboratory 

protocols for five parameters: soil pH (soil/water, 1:1 ratio), 

clay content (hydrometer method), EC (soil/water, 1:5 ratio), 

CEC (ammonium acetate method), and OM (Walkley-Black 

method). 

 

2.3 Exploratory data analysis 

 

Statistical descriptors such as the minimum, maximum, 

mean, standard deviation, skewness, and kurtosis were used as 

measures of central tendency, variability around the mean, 

distribution, and deviation from normality (Table 1). 

Furthermore, the Kolmogorov-Smirnov normality test was 

utilized to assess the normality of the soil properties. The box-

cox transformation was applied to normalize non-normal 

parameters. Spearman correlation was utilized to investigate 

the association and strength of the relationship between soil 

pH and the auxiliary variables. 

 

Table 1. Descriptive statistics of the soil pH across the study 

area 

 

Parameters Min. Max. Mean SD Skewness Kurtosis KS p 

pH 5.00 6.30 5.53 0.29 0.66 0.85 0.068 

 

2.4 Geostatistical analysis 

 

Geostatistics is a standard technique for statistical analysis 

of geospatial data, specifically soil properties, for agricultural 

and environmental applications [27, 28]. The selection of 

kriging and cokriging methods was driven by their 

demonstrated effectiveness in handling spatially continuous 

data and their ability to incorporate spatial autocorrelation, 

which is essential for accurate soil property mapping. Ordinary 

kriging, is widely recognized for its capability to estimate 

unknown values by weighting neighboring sample values, 

which is suitable for relatively homogeneous fields such as the 

study area. Cokriging was chosen to further improve 

prediction accuracy by incorporating secondary, correlated 

variables, which can reduce uncertainty and enhance the 

interpolation of soil pH when auxiliary soil properties are 

available. The assumptions underlying the kriging approach 

include stationarity of the spatial process, meaning that 

statistical properties do not vary across the study area, and 

spatial autocorrelation, assuming that points closer together 

have more similar values. These assumptions can influence 

results, as deviations from stationarity or weak autocorrelation 

in soil pH and auxiliary variables could impact prediction 

accuracy and the interpretation of results [29, 30]. 

The ArcGIS Pro 3.2 Geostatistical Analyst extension was 

utilized to analyze the data, generate interpolated surfaces, and 

perform post-process cross-validation. The kriging approach 

was used to estimate the values of soil parameters in areas 

where no samples had been collected. Cokriging allows for the 

inclusion of secondary variables that are spatially correlated 

with the primary variable (soil pH), leveraging cross-

correlation to achieve a higher prediction precision. The 

spatial variance across variables can be mapped if multiple soil 

properties from the same locations are available. Nevertheless, 

it is useful that these covariables have a positive or negative 

correlation thus exhibit autocorrelation [29]. Semivariograms 

and its parameters are used to establish spatial correlation 

between the variables [30]. 

The ordinary kriging semivariogram (γi) (Eq. (1)) and 

cokriging cross-semivariograms (γij) (Eq. (2)) were derived 

using the equations: 

 

𝛾𝑖(ℎ) =  
1

2𝑁(ℎ)
∑ (𝑍1𝑖(𝑋𝑖) − 𝑍1𝑖(𝑋𝑖 + ℎ))

2

𝑁(ℎ)

𝑖=1

 (1) 

 

𝛾𝑖𝑗(ℎ) =
1

2𝑁(ℎ)
 ∑ {

[𝑍1𝑖(𝑥𝑖) − 𝑍1𝑖(𝑥𝑖 + ℎ)] ∗

[𝑍2𝑗(𝑥𝑖) −  𝑍2𝑗(𝑥𝑖 + ℎ)]
}

N(h)

i=1

 (2) 

 

where, h is the distance, and N(h) is the pairs of Z1i(xi) and 

Z2j(xi) in a h + dh, a known lagged distance interval [31]. The 

ordinary kriging and cokriging prediction models of Z1i at x0 

can be summarized as follows: 

 

𝑍1𝑖(𝑥𝑜) =  ∑ 𝛼𝑖𝑍1𝑖(𝑥1𝑖)

𝑁1

𝑖=1

 (3) 

 

𝑍1𝑖(𝑥0) = ∑ 𝛼1𝑖𝑍1𝑖(𝑥1𝑖) + 

𝑁1

𝑖=1

∑ 𝛼2𝑗𝑍2𝑗(𝑥2𝑗) 

𝑁2

𝑖=1

 (4) 

 

where, Z1i(x0) is the predicted value; α1i and α2j are weight 

coefficients and Z1i(x1i) and Z2j(x2j) are two regionalized 

variables; and N1 and N2 are the Z1i and Z2j neighborhood used 

in interpolation [12, 32-35]. 

The distribution of soil pH was predicted by the utilization 

of the semivariogram's best-fitting mathematical functions. 

Three commonly used semivariogram models, exponential 

(Eq. (5)), gaussian (Eq. (6)), and spherical (Eq. (7)) functions 

were used to identify the best-fit model based on the dataset. 

 

𝜌(ℎ) =  𝐶0 + 𝐶1 [1 − 𝑒𝑥 (−
ℎ

𝑎
)]      for h ≥ 0 (5) 

 

𝜌(ℎ) =  𝐶0 + 𝐶1 [1 − 𝑒𝑥 (−
ℎ2

𝑎2
)]      for h ≥ 0 (6) 
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𝜌(ℎ) =  𝐶0 + 𝐶1 [1 − 𝑒𝑥 (−
ℎ3

𝑎3)]      for h ≤ 𝛼; 

𝐶0 +  𝐶1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(7) 

 

where, 𝜌(h) is the semivariance for h, the lag interval; C0 is the 

nugget; C1 is the partial sill; and α is the range to reach the sill 

(C0 + C1). 

 

2.5 Cross-validation and prediction accuracy 

 

Kriging and cokriging models were assessed using cross-

validation, a leave-one-out approach. Mean error (ME), root 

mean square error (RMSE), average standardized error (ASE) 

and root mean square standardized error (RMSSE) were 

utilized for the evaluation. A ME close to zero and a lower 

RMSE value is preferred. Lower RMSE values indicate a 

stronger correlation coefficient of the estimated and actual 

values, which leads to a reduction in estimation inaccuracy [36, 

37]. Also, the method with the least difference between RMSE 

and ASE is preferred. RMSSE close to 1 indicates accurate 

standard errors. ME and RMSE were derived using the 

following equations: 

 

𝑀𝐸 =  
1

𝑛
∑[𝑍∗(𝑥𝑖) − 𝑍′(𝑥𝑖)]

𝑛

𝑖=1

 (8) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑[𝑍∗(𝑥𝑖) − 𝑍′(𝑥𝑖)]2

𝑛

𝑖=1

 (9) 

 

𝐴𝑆𝐸 =  √
1

𝑛
∑ 𝜎∗2(𝑥𝑖)

𝑛

𝑖=1

 (10) 

 

𝑅𝑀𝑆𝑆𝐸 =  √
1

𝑛
∑

[𝑍∗(𝑥𝑖) − 𝑍′(𝑥𝑖)]2

𝜎∗2(𝑥𝑖)

𝑛

𝑖=1

 (11) 

 

where, Z'(xi) and Z*(xi) are the measured and predicted value, 

respectively; σ* is the standard error of the predicted value, 

and n is the cross-validation points. 

To test the improvement in prediction accuracy of the CoK 

technique compared to the reference method (OK), a relative 

improvement (RI) in RMSE was determined, as described by 

study [38] following Eq. (12). 
 

𝑅𝐼𝐶𝑜𝐾 =
𝑅𝑀𝑆𝐸𝑂𝐾 − 𝑅𝑀𝑆𝐸𝐶𝑜𝐾

𝑅𝑀𝑆𝐸𝑂𝐾

 × 100 (12) 

 

The prediction standard error maps were generated to show 

the prediction errors within the study area, quantifying the 

uncertainty or precision of the predictions to visualize the 

estimated uncertainty for each method. 

 

 

3. RESULTS AND DISCUSSION  

 

3.1 Descriptive statistics 

 

The descriptive statistics of the soil pH are shown in Table 

1 while the boxplots of the auxiliary variables (EC, OM, CEC, 

and clay) are presented in Figure 2. The soil in the area is 

generally acidic, with soil pH values between 5.00 and 6.30, 

with a mean and standard deviation of 5.53 and 0.29, 

respectively. The acidic soil pH affects agricultural potential 

and nutrient availability, as lower pH levels can reduce the 

availability of certain nutrients like nitrogen and phosphorus 

while increasing the solubility of potentially toxic elements 

like aluminum. This soil acidity suggests that crops sensitive 

to low pH may require lime amendments or other soil 

management practices to optimize growth. The low EC, with 

a mean value of 65 µS/cm, indicates that the area has a low 

concentration of soluble salts. The OM content ranged from 

1.37 to 4.27%, with a mean value of 2.86%. Moreover, the area 

is confirmed to have a medium-textured soil with a mean clay 

content of 31.06%. The low skewness values (<1) of pH, OM, 

CEC, and clay content imply normal distribution, while the 

low kurtosis values of pH, OM, and clay content imply light-

tailed distribution. The Kolmogorov-Smirnov (KS) test 

showed that pH, OM, CEC, and clay content are normally 

distributed. The Box-Cox transformation (λ = -1) was used to 

normalize the soil EC. This transformation was necessary to 

correct for skewness in the EC data, which may affect the 

accuracy of interpolation models if left untransformed. 

Normalizing EC data ensures that it meets the assumptions of 

normality required by geostatistical methods, thereby 

improving model reliability and interpretability for spatial 

prediction of EC values and their relationship with soil pH. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

Figure 2. Box plot with normal distribution curve of the 

auxiliary variables (a) EC, (b) OM, (c) CEC, and (d) Clay 

 

Spearman correlation analysis explored the relationship 

between soil pH and the auxiliary variables (Table 2). A 

significant positive correlation (r=0.310, p<0.05) was 

observed between soil pH and EC, indicating that an increase 

in the concentration of soluble salts results in a corresponding 

rise in pH. Meanwhile, soil pH has a significant negative 

correlation (r=-0.383, p<0.05) with the clay content. Soils with 

higher clay content generally have higher CEC values, which 

can influence soil buffering capacity [39]. However, clay 

content alone may not directly determine pH variability, as 

other factors like organic matter content, type of clay, and 

CEC also play significant roles. Soils with a higher CEC can 

retain a greater amount of cations, which can influence soil pH 

due to the higher buffering capacity. As a result, soils with 

higher CEC values are generally more resistant to pH changes 

and exhibit lower pH variability compared to soils with lower 

CEC values. 

 

Table 2. Spearman correlation coefficients (95% CI) 

between soil pH and the auxilliary variables 

 
Primary Variable EC %OM CEC %Clay 

Soil pH 

0.310* 

(0.028, 

0.546) 

0.064 

(-0.218, 

0.337) 

-0.021 

(-0.298, 

0.259) 

-0.383* 

(-0.605, 

-0.107) 

* Indicates significance at p ≤ 0.05. 

 

Organic matter contains various organic compounds that 

can release hydrogen ions (H+) when decomposed, leading to 

soil acidification. Consequently, soils with higher organic 

matter content tend to have lower pH values. Additionally, 

organic matter acts as a buffer, helping to stabilize soil pH by 

adsorbing and neutralizing excess acidity or alkalinity. 

Therefore, variations in organic matter content across different 

soil locations can contribute to pH variability [40]. The 

significant correlations between soil pH and EC or clay 

content indicate that both have the potential to serve as 

auxiliary variables for cokriging, hence enhancing the 

accuracy of predictions. 

 

3.2 Geostatistical analysis 

 

Insights into potential processes that influence the spatial 

distributions of soil properties and precise descriptions of their 

spatial structure can be obtained using semivariograms [41, 

42]. The attributes of the semivariograms for both OK and 

CoK methods and the corresponding best-fit models are 

presented in Table 3. Furthermore, the semivariograms of the 

best-fitted models for soil pH are presented in Figure 3. 

 

 
(a) OK 

1877



 

 
(b) CoKEC 

 
(c) CoKOM 

 
(d) CoKCEC 

 
(e) CoKClay 

 

Figure 3. Semivariograms of the best-fit models of soil pH using (a) Ordinary kriging, (b-e) Cokriging models 
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Table 3. Semivariogram parameters of best-fit models 

 

Method 

Best-

fit 

Model 

Semivariogram 

Nugget 

(C0) 

Partial 

Sill 

(C1) 

Sill 

(C0+C1) 

Range 

(meters) 

OK S 0.0403 0.0231 0.0634 75.8421 

CoKEC G 0.0478 0.0135 0.0613 69.0770 

CoKOM E 0 0.0641 0.0641 56.2049 

CoKCEC G 0.0468 0.0139 0.0607 56.2049 

CoKClay S 0 0.0709 0.0709 58.3545 

S- Spherical, G- Gaussian, E- Exponential. 

 

The nugget (C0) signifies the microscale field variations and 

experimental errors within the minimum sampling spacing 

[43]. Nugget effects were small to none (0.0468-0.0000) 

indicating low experimental error and sampling error. The sill, 

the total variance at which the model first flattens out, were 

also small (0.0709-0.0607). The range, the distance limit 

beyond which the variable became spatially independent of 

another, were around 75.8421 to 56.2049 m. The nugget-to-

sill ratio ((C0/(C0 + C1))*100) was utilized to define the degree 

of spatial dependence (DSD) of the soil pH [44]. Based on OK, 

the DSD of soil pH was 63.56%, indicating moderate spatial 

dependence. Therefore, the spatial variability of soil pH was 

influenced by extrinsic (soil cultivation and management 

practices) and intrinsic (soil-forming processes) factors. 

 

3.3 Cross-validation 

 

The best-fit models of the OK and CoK methods were 

assessed using cross-validation indicators, including ME, 

RMSE, ASE, and RMSSE, as shown in Table 4. The ME 

represents the mean difference between the predicted and 

measured values. It indicates whether the predictions are 

biased by being, on average, too high or too low. A ME closest 

to zero (lowest bias) is preferred. In general, regardless of the 

method, the ME values were extremely low. Ordinary kriging 

produced a positive ME (0.00018). In contrast, CoK with 

auxiliary variables resulted in negative MEs (-0.00002 to -

0.00367). A negative ME means that the predicted pH is lower 

than the measured pH. The best-fit methods are considered 

unbiased due to the extremely low ME values. Overall, CoKEC 

resulted in an ME closest to zero. 

 

Table 4. Cross-validation parameters of best-fit models 

 

Method 
Best-fit 

Model 

Cross-validation Parameters 

ME RMSE ASE RMSSE 

OK S 0.00047 0.2571 0.2512 1.0182 

CoKEC G -0.00002 0.2477 0.2476 0.9947 

CoKOM E -0.00130 0.2468 0.2457 1.0022 

CoKCEC G -0.00032 0.2491 0.2478 1.0107 

CoKClay S -0.00081 0.2627 0.2152 1.1842 

S- Spherical, G- Gaussian, E- Exponential. 

 

The RMSE specifies and quantifies the degree of accuracy 

with which a model predicts the measured data. The model 

with the lowest RMSE values is most preferred. The RMSEs 

follow the order: CoKClay > OK > CoKCEC > CoKEC > CoKOM. 

Relative to the OK method, most CoK methods (CoKCEC, 

CoKEC, and CoKOM) improved the accuracy of predictions. 

The difference between the RSME values of the three CoK 

methods were extremely small (<0.0023). Overall, CoKOM 

resulted to the smallest RMSE value. Compared with OK, the 

use of CEC, EC, and OM as auxiliary variables resulted in RI 

of 3.19%, 3.73%, and 4.08%, respectively. This indicates that 

incorporating these properties as an auxiliary variable reduces 

the overall prediction error. According to Cambardellaet al. 

[45] and Goovaerts [46], the impact of additional information 

on the cokriging estimation is influenced by both the 

correlation between the main and additional variables, as well 

as their spatial continuity patterns. 

The ASE represents the mean value of the standard errors 

of the predictions. A low ASE value is preferred. The ASEs 

follow the order: CoKCEC > OK > CoKEC > CoKOM > CoKClay. 

The CoKClay had the lowest ASE of 0.2152. Furthermore, the 

disparity between ASE and RMSE was computed to evaluate 

if there was an overestimation of variability (ASE-RMSE > 0) 

or an underestimation of variability (ASE-RMSE < 0) in each 

model. Excluding CoKCEC, ASE-RMSE were negative in the 

remaining models, which indicates an underestimation of 

variability.  

The RMSSE assesses the overall error. The prediction 

standard errors are valid if it is close to 1. If RMSSE is greater 

than 1, variability is underestimated. Conversely, if the 

RMSSE is less than 1, variability is overestimated. In this 

study, most of the methods, except CoKEC, underestimate the 

variability with RMSSE values between 1.1842 and 1.0022. 

The CoKEC overestimates the variability with an RMSSE 

value of 0.9947. Nevertheless, as the RMSSE values are close 

to 1, they are well within the acceptable range indicating a 

well-calibrated model. The RMSSEs follow the order: 

CoKClay > OK > CoKCEC > CoKOM > CoKEC. Overall, CoKEC 

resulted in an RMSSE closest to one. 

 

3.4 Spatial variability mapping 

 

Interpolated maps of soil pH using five different 

geostatistical methods are presented in Figure 4. Ordinary 

Kriging (Figure 4(a)) serves as a baseline map for comparison. 

The map produced by OK reveals a smooth gradient of pH 

values, with distinct zones of higher and lower pH. The 

northeastern part of the area exhibits higher pH levels, 

possibly indicating less acidic conditions, while other areas are 

more acidic. 

The inclusion of EC as an auxiliary variable in Cokriging 

results in a more refined spatial pattern of pH variability 

(Figure 4(b)). The CoKEC map shows that the northeastern 

zone with a less acidic pH is more pronounced compared to 

OK. This indicates that EC has a significant influence on pH 

distribution, possibly due to the relationship between the two 

variables capturing more localized variations. 

Although the ME is slightly higher than CoKEC, the OM is 

an effective auxiliary variable for predicting soil pH. The 

CoKOM map (Figure 4(c)) introduces further localized 

variations, particularly highlighting both high and low pH 

zones more distinctly than OK. The influence of organic 

matter on soil pH is reflected in these variations, suggesting 

that areas with higher organic matter content may experience 

different buffering capacities and hence the variations in the 

pH levels. The areas with higher pH in the northeastern area 

are consistent, but the map also reveals additional spots of high 

and low pH, showing that organic matter plays a role in pH 

distribution 

Incorporating CEC as auxiliary variable shows a pattern 

similar to CoKEC but with some differences (Figure 4(d)). The 

CoKCEC map reflects these characteristics, showing a more 
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refined spatial distribution compared to OK, with CEC 

influencing the pH variability effectively, although not as 

strongly as EC or OM. The pH distribution remains consistent 

with the previous methods, but CEC's influence seems to 

smooth out the pH variability in some regions while enhancing 

it in others. This suggests that CEC, which influences soil's 

ability to retain cations, has a significant effect on the spatial 

distribution of soil pH. The northeastern part with a lesser 

acidity is consistently captured, reaffirming the area's distinct 

soil characteristics. 

The CoKClay map displays the most localized variations 

among the methods (Figure 4(e)). The influence of clay 

content is evident, as it significantly affects soil's water 

retention and hence its pH buffering capacity. The map shows 

a more heterogeneous pattern with smaller pockets of varying 

pH levels. The high pH area in the northeast is still present, but 

the inclusion of clay content introduces additional areas of 

both high and low pH across the field, highlighting the 

intricate relationship between soil texture and pH. However, 

as this method produced the highest RMSE and RMSSE, the 

prediction error is higher when clay content is used as an 

auxiliary variable and the variability in predictions is 

overestimated suggesting that the model overfits the data, 

leading to less reliable predictions. 

 

 
(a) OK 

 
(b) CoKEC 

 
(c) CoKOM 

 
(d) CoKCEC 

 
(e) CoKClay 

 

Figure 4. Interpolated maps of soil pH using (a) OK, (b) 

CoKEC, (c) CoKOM, (d) CoKCEC, and (e) CoKClay 
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Overall, both OK and CoK approaches exhibited similar 

patterns of field-scale variability throughout the study area. 

However, the CoK maps provide better details compared to the 

OK maps. Additionally, CoKEC, CoKOM, and CoKCEC resulted 

in interpolated maps with less errors compared to OK. This 

outcome demonstrates that the inclusion of auxiliary variables 

enhances the accuracy of soil pH interpolation. The error of 

interpolation is never equal to zero, no matter how accurately 

the data are measured. It does decrease as the number of 

samples increases, but the reduction is small [47]. Since 

prediction is always associated with uncertainty, the goal is to 

minimize that uncertainty. 

Similar trends have been found for other cokriged soil 

properties [22, 34, 48-51]. The majority of cokriging methods 

demonstrated better interpolation quality compared to the OK 

method. Hence, other soil properties may serve as secondary 

parameters for cokriging interpolation of soil pH. In this study, 

cokriging using EC as an auxiliary variable (CoKEC) was 

observed to be the best method for improving prediction 

accuracy. Based on the low prediction errors, it generates the 

most precise map. 

 

3.5 Uncertainty assessment 

 

To assess the dependability of maps to be utilized in various 

applications, it is critical that end users are aware of the 

uncertainty associated with the predicted spatial distribution 

[52-54]. The geographic distribution produced by 

interpolation algorithms inevitably includes sources of 

uncertainty. Figure 5 shows the PSE of the OK and CoK 

methods. The PSE surface is a spatial representation of the 

standard errors associated with the projected values at 

different locations. It represents the variability of the estimated 

values with an area, and a higher standard error indicates a 

lesser level of precision. It shows areas where the predictions 

are most uncertain. This helps in understanding how much 

confidence can be placed in the predicted values. 

The PSE map for OK (Figure 5(a)) shows a relatively 

smooth gradient of uncertainty across the field, with standard 

error values ranging from 0.11 to 0.241. The higher standard 

errors are concentrated in the northeastern region, which also 

exhibited higher pH levels in the interpolation map. This 

pattern suggests that OK has more difficulty accurately 

predicting pH in areas with greater variability or fewer data 

points, leading to higher uncertainty in those regions.  

The CoKEC method shows a notable reduction in PSE 

compared to OK, with values ranging from 0.085 to 0.242 

(Figure 5(b)). The map indicates that CoKEC has lower 

uncertainty, particularly in areas where EC data is likely 

available and strongly correlated with pH. The lower standard 

errors in most parts of the field suggest that incorporating EC 

as an auxiliary variable improves the confidence in pH 

predictions. This aligns with the lower RMSE observed for 

CoKEC, indicating that the model is both more accurate and 

less uncertain. 

The CoKOM method shows a different pattern, with higher 

standard errors distributed more unevenly across the field 

(Figure 5(c)). The PSE values range from 0.027 to 0.317, with 

particularly high uncertainties in specific localized areas. This 

pattern suggests that while CoKOM can produce accurate 

predictions (with the lowest RMSE), the model's uncertainty 

varies significantly across the field, potentially due to the 

spatial variability of organic matter. The presence of high 

standard errors in localized regions may indicate areas where 

organic matter data is less reliable or where its correlation with 

pH is weaker. 

The CoKCEC method shows a relatively uniform distribution 

of standard errors, with values ranging from 0.09 to 0.24 

indicating that CEC as an auxiliary variable helps in 

maintaining a consistent level of prediction uncertainty across 

the field (Figure 5(d)). The relatively narrow range of standard 

errors suggests that the influence of CEC is consistent, 

resulting in a stable model with moderate uncertainty. This is 

reflected in the RMSSE value, indicating that CoKCEC is well-

calibrated regarding both prediction accuracy and uncertainty. 

 

 
(a) OK 

 
(b) CoKEC 

 
(c) CoKOM 
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(d) CoKCEC 

 
(e) CoKClay 

 

Figure 5. Prediction standard error maps of (a) OK, (b) 

CoKEC, (c) CoKOM, (d) CoKCEC, and (e) CoKClay 

 

The CoKClay method exhibits the highest variability in 

standard errors, with values ranging from 0.016 to 0.338 

(Figure 5(e)). This wide range indicates that the inclusion of 

clay content as an auxiliary variable introduces significant 

uncertainty in certain regions of the field. The map shows 

many localized areas with high standard errors, suggesting that 

the relationship between clay content and pH may be complex 

or variable across the field. This is consistent with the higher 

RMSE and RMSSE values, indicating that while it captures 

fine-scale variations, it does so with considerable uncertainty. 

The mapping accuracy of the OK and CoK methods was 

affected by the sampling pattern that was used. Areas 

characterized by a sparse sampling distribution exhibit a 

diminished level of prediction accuracy, whereas regions with 

a denser sampling distribution demonstrate a higher level of 

prediction accuracy. The edges of the maps tend to have 

relatively higher predicted standard error values due to the lack 

of sampling points within the neighborhood search area used 

during the interpolation process. 

When interpreting standard error numbers, it is important to 

consider the values and range of the data. For instance, in the 

case of CoKEC, since the soil pH values are between 5.0 and 

6.30, a standard error values between 0.085 and 0.242 

indicates high prediction precision. This is because the 

standard errors are significantly smaller than both the pH 

values and the overall range of the data. 

The PSE maps provided important insights into the 

reliability of each interpolation method. The maps presented 

information on the prediction error at each point on the map, 

making them valuable for model evaluation. CoKEC and 

CoKCEC exhibit the most consistent and lowest standard errors, 

indicating that these methods not only improve the accuracy 

of pH predictions but also reduce the uncertainty associated 

with those predictions. CoKOM, while providing accurate 

predictions, shows greater variability in uncertainty, which 

may limit its reliability in some regions of the field. CoKClay, 

despite capturing detailed variations in pH, introduces 

significant uncertainty, making it a less reliable choice for 

fields with highly variable clay content. 

For practical applications, these PSE maps suggest that 

CoKEC is the most robust method for predicting field-scale soil 

pH with high confidence, especially in areas where the 

corresponding auxiliary variables are well-understood and 

closely related to pH. In contrast, while CoKOM and CoKClay 

may offer detailed insights into pH variability, their higher and 

more variable prediction uncertainties must be considered 

when using these methods for decision-making in soil 

management or precision agriculture. 

 

 

4. CONCLUSIONS  

 

This research highlights the potential of integrating 

auxiliary soil properties to enhance the accuracy of soil pH 

mapping, which can inform more targeted and efficient soil 

management practices. We demonstrated the use of other soil 

properties to improve the prediction accuracy of field-scale 

soil pH variability. In this study, ordinary kriging and 

cokriging with auxiliary variables, particularly EC, OM, CEC, 

and clay content, have been employed to interpolate and 

predict the spatial distribution of the soil pH. For prediction 

assessment, cross-validation and mapping of prediction 

standard errors were used to assess the mapping accuracy and 

precision. 

Relative to OK, the CoKEC, CoKOM, and CoKCEC methods 

decreased the RMSE, ASE, and RMSSE, thereby improving 

the prediction accuracy. In terms of RMSE, the relative 

improvement (RI%) of CoKCEC, CoKEC, and CoKOM were 3.19, 

3.73, and 4.08%, respectively. Overall, CoKEC was observed 

to be the best method for improving prediction accuracy, as 

observed in the lower prediction errors. Furthermore, the 

resulting CoKEC interpolated map provided more spatial 

details. Comparing CoKEC, CoKOM, and CoKCEC methods, the 

differences in errors parameters produced by cross-validation 

were comparatively minor. Therefore, the fact that one method 

has a lower RMSE does not imply that it is superior to the other. 

The mapping accuracy of both OK and CoK methods was 

affected by the sampling pattern that was used, as observed in 

the prediction error maps. The generated standard error maps 

using OK and CoK methods exhibit a spatial distribution that 

is highly responsive to both the density of sampling and the 

chosen technique. The cross-validation metrics clearly show 

that the inclusion of auxiliary variables in CoK generally 

improves the accuracy and reliability of soil pH predictions 

compared to OK. For practical applications in soil 

management or precision agriculture, the choice of 

interpolation method should be based on the availability and 

relevance of auxiliary variables. Among the CoK methods, 

CoKEC, with a minimal ME and an RMSSE close to 1, making 

it a robust method for soil pH interpolation. Furthermore, the 
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PSE maps clearly show the importance of considering 

prediction uncertainty when selecting an interpolation method 

for soil pH. CoK methods that utilize correlated auxiliary 

variables, such as EC, offer both improved accuracy and 

reduced uncertainty. In contrast, methods like CoKOM and 

CoKClay require careful consideration of the associated 

uncertainties to avoid overconfidence in the predictions. 

Cokriging with auxiliary variables can be valuable in 

precision agriculture by enabling site-specific soil 

management practices that enhance nutrient availability and 

soil health. Future research should explore the integration of 

real-time soil sensor data with cokriging techniques to further 

improve prediction accuracy and spatial resolution. 

Additionally, examining the application of these methods in 

diverse soil types and agricultural systems could provide a 

broader understanding of their utility in various agroecological 

contexts. 

This research supports the potential for cokriging to play a 

crucial role in sustainable agriculture by allowing for more 

data-driven and adaptive soil management practices. By 

leveraging multiple datasets, cokriging provides a robust tool 

for addressing complex agricultural challenges, ultimately 

fostering sustainable and productive farming practices that 

optimize soil resources and support long-term agricultural 

viability. 
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