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Epilepsy seizures are complex neurological phenomena marked by recurrent and 

unpredictable seizures that can greatly affect an individual’s quality of life. It affects 

millions of people worldwide. The exact and timely detection of epileptic seizures is 

crucial in the management and treatment of epilepsy. Many methods have been put forth 

recently for the diagnosis of epileptic seizures using magnetic resonance imaging (MRI) 

and electroencephalography (EEG). This work focuses on using deep learning and 

machine learning techniques, such as Support Vector Machines (SVMs), Recurrent Neural 

Networks (RNNs), and Convolutional Neural Networks (CNNs), to automatically identify 

epileptic seizures. These techniques have shown promising results in a variety of fields, 

including time series data processing and medical image analysis. In this work, we present 

a unique method for detecting epileptic seizures using electroencephalogram (EEG) data 

by comparing the outcomes of three deep learning architectures: SVM, CNN, and RNN-

LSTM (Long-short term memory). The experimental results demonstrate that the SVM, 

CNN and RNN-LSTM models exhibit promising performance in detecting epileptic 

seizures from EEG data. 
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1. INTRODUCTION

Millions of people worldwide suffer from epilepsy, a 

neurological condition that is characterized by recurring, 

spontaneous seizures. Most of the time it becomes life 

threatening if we do not detect it at the initial stage. Accuracy 

and timely detection of epileptic seizures is necessary in 

improving patient outcomes, enabling effective treatment 

strategies, and ensuring the safety and well-being of 

individuals living with epilepsy. Electroencephalography 

(EEG) is a crucial tool for monitoring and diagnosing epilepsy 

as it records the brain's electrical activity. Various techniques 

exist for extracting features and classifying epileptic seizures 

from EEG data [1, 2]. 

Machine learning, hybrid [3] and deep learning techniques 

serve remarkable results in automatic detection of epileptic 

seizures. Recently, deep learning and machine learning 

algorithms have shown great potential in numerous fields, 

including healthcare [4-9]. Specifically, in deep learning 

RNN-LSTM [10, 11], CNN [12-14] and GAN (Generative 

Adversarial Network) [15] and in machine learning random 

forest [16], ensemble learning [17], and SVM [18-20] have 

been successful in processing sequential and spatial data, 

respectively. For preprocessing of data too many transform 

techniques were used. Wavelet transform gives more accurate 

results for preprocessing, it's used for eliminating the feature 

extraction part in preprocessing [20, 21].  

In the proposed work we use SVM, RNN-LSTM, and CNN 

algorithms to build a reliable and accurate seizure detection 

system for epilepsy patients utilizing EEG datasets, using the 

power of deep learning. The problems we are trying to solve 

in this proposed work are to try to increase accuracy, compare 

the algorithms result on a large amount of dataset. We are 

using the dataset of large duration EEG signals which consist 

of the data points before the seizure, during the seizure and 

after seizure. 

The key contributions of our work include a comprehensive 

comparison of SVM, RNN-LSTM, and CNN models for 

epileptic seizure detection, providing a thorough evaluation of 

their respective strengths and weaknesses. By applying these 

models separately, we highlight their individual performance 

metrics and identify the most effective approach for different 

aspects of EEG signal analysis. Our work distinguishes itself 

by not only focusing on a single model but by offering detailed 

insights into each model's efficacy, ultimately directing 

subsequent studies and medical uses of seizure detection. 

Additionally, our model's capability to process large-duration 

EEG signals and accurately capture the pre-seizure, seizure, 

and post-seizure phases distinguishes it from existing methods, 

providing a comprehensive solution for real-time monitoring 

of epilepsy. 

By comparing multiple models, we gain a deeper 

understanding of their strengths and weaknesses in the context 

of EEG-based seizure detection. This comparative analysis 

allows us to identify the most suitable model for specific 

applications, such as real-time monitoring or clinical diagnosis. 

Additionally, it provides insights into the underlying 

mechanisms of each model, which can inform future research 

and development of more advanced seizure detection 

techniques. 
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The primary focus of this research paper is to design a Deep 

Neural Network model aimed at enhancing the sensitivity of 

seizure detection using EEG signals. In order to comprehend 

the scope of the problem that will be addressed in this 

investigation, we first begin with the exploration provocation, 

which includes a brief summary of the issues and the basic 

knowledge of epilepsy that is required. Further, the paper 

concludes with results of the conducted experiment along with 

its methodology and future outcomes. 

 

 

2. LITERATURE SURVEY 

 

Epilepsy seizure detection is an important task in the area of 

medical diagnostics, as it helps in the timely identification and 

management of epileptic seizures. Various researchers have 

made significant contributions to this field by utilizing SVM 

and deep learning algorithms. 

Developing automatic systems for detecting epileptic 

seizures has been a critical area of research focused on 

enhancing the diagnosis and treatment of epilepsy, a condition 

marked by recurrent seizures. Numerous contributions have 

been made in this field, utilizing various techniques and 

approaches to accurately detect and classify epileptic seizures. 

A method for automatically detecting seizures using 

electroencephalogram (EEG) signals was proposed [22]. The 

approach involved extracting multi-domain features, including 

statistical, time-frequency, and nonlinear measures, from EEG 

data. The machine learning classifiers then used these 

attributes as inputs to differentiate seizure and non-seizure 

segments. The method achieved high accuracy in seizure 

detection and showed promise in real-time applications. 

Truong et al. [23] focused on seizure prediction using a deep 

learning method based on CNN. The study utilized both 

intracranial EEG and scalp EEG data to capture localized and 

global patterns associated with seizures. The CNN model was 

trained to learn discriminative characteristics from the EEG 

signals and predict the occurrence of seizures. The presented 

methodology achieved competitive output in seizure 

prediction, highlighting the effectiveness of deep learning 

techniques. 

In 2018, Tsiouris et al. [24] investigated the use of deep 

learning methods, particularly Long Short-Term Memory 

(LSTM) networks, for the identification of epileptic seizures. 

The study employed preprocessed EEG signals as inputs to 

LSTM models, which captured the temporal dependencies in 

the data. The models were trained to classify segments of EEG 

signals as either seizure or non-seizure. The experimental 

outcomes highlighted the accuracy and potential of LSTM 

networks in seizure detection. 

A method for automatic seizure detection that combines 

Random Forests (RF) and wavelet transform was proposed 

[25]. EEG data were broken down into various frequency 

bands using the wavelet transform, and these bands were then 

utilized as features. These attributes served as the training set 

for the RF classifier, which classified seizure and non-seizure 

segments. The method demonstrated the efficacy of wavelet-

based feature extraction and RF classification by achieving 

good seizure detection performance. 

Ma et al. [26] presented a deep learning technique for 

seizure detection using LSTM networks enhanced with an 

attention mechanism. The LSTM network was designed to 

recognize temporal dependencies in EEG signals, while the 

attention mechanism emphasized relevant segments for 

seizure detection. This approach achieved high accuracy in 

detecting seizures and outperformed traditional machine 

learning algorithms, demonstrating the capabilities of 

attention mechanisms and deep learning in this domain. 

Maia et al. [27] presented the use of multimodal signals, 

specifically Electroencephalogram (EEG) and 

Electrocardiogram (ECG), for seizure detection. The study 

combined features extracted from both modalities and 

employed deep learning techniques, such as CNN and LSTM, 

for classification. 

According to all the models used we are using SVM, CNN 

and RNN-LSTM algorithms for seizure detection. The 

selection of SVM, CNN, and RNN-LSTM models for this 

study was driven by their unique strengths and suitability for 

EEG data analysis and epileptic seizure detection. SVM is 

robust in handling high-dimensional data and effective in 

binary classification tasks, making it a reliable baseline model. 

CNN excels at automatic feature extraction and capturing 

spatial hierarchies in the data, particularly beneficial for 

identifying spatial patterns in EEG signals. RNN-LSTM is 

proficient in modeling temporal dependencies in sequential 

data, such as EEG time series, by retaining important 

information over extended periods. However, they also present 

challenges: SVM with complex datasets, CNN’s 

computational demands, and RNN-LSTM’s tendency to 

overfit. These complementary strengths and weaknesses 

provide a comprehensive evaluation of EEG-based seizure 

detection of epilepsy. 

 

 

3. METHODS AND MATERIALS 

 

The suggested methodology for this study is as shown in 

Figure 1. 

 

 
 

Figure 1. Flowchart of proposed methodology 

 

3.1 Dataset acquisition 

 

We used the CHB-MIT dataset [28] for Epilepsy seizure 
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detection on three modules of deep learning SVM, RNN-

LSTM, and CNN. 

Here are some of the features of the CHB-MIT dataset: 

▪ 23 instances of EEG recordings from 22 young patients 

aged 1.5 to 22 years with uncontrollable seizures are 

included in the collection. 

▪ It contains 916 hours of EEG recordings. These 

recordings were collected after patients stopped taking 

anti-seizure medication. 

▪ The dataset is divided into seizure and non-seizure 

segments, with a total of 664 EEG files. Out of these, 

198 files contain seizures, providing a rich source of 

data for studying epileptic activity. 

▪ Each EEG file can be either one hour or four hours long. 

▪ Each case contains one or more EEG recordings, each 

of which is a time series of 256 EEG channels, and all 

signals are sampled at 256Hz with 16-bit resolution. 

▪ The EEG channels are recorded from different 

locations at the scalp, and they represent different 

electrical activity in the brain. 

▪ The onsets and ends of seizures in the CHB-MIT 

dataset are annotated by expert epileptologists. 

The dataset is available in the public domain and is available 

for download from the PhysioNet website. 

The CHB-MIT dataset is a useful tool for scientists 

investigating epilepsy seizure detection and prediction. The 

dataset is large and diverse, and it includes a variety of seizure 

types. This makes it ideal for training and evaluating new 

seizure detection algorithms. 

 

3.2 Load dataset 

 

This dataset csv file contains 23 columns and 2560 rows. It 

has EEG of larger duration, sample values of the dataset are 

shown in Figure 2. 

 

 
 

Figure 2. CHB-MIT data of epilepsy seizures in csv file 

format 

 

3.3 Preprocessing 

 

The preprocessing of EEG signals is a critical step before 

feeding the data into machine learning models. In this study, 

EEG data preprocessing involves several key steps to ensure 

the dataset is suitable for training the SVM, CNN, and RNN-

LSTM models. In the preprocessing steps include data loading, 

normalization, and reshaping, as well as class balancing for the 

SVM model. 

Initially, the EEG data was loaded from the CHB-MIT 

dataset using the pandas library. The dataset was inspected to 

identify and handle any missing values or anomalies. The raw 

EEG signals were extracted from specific channels, such as 

'C3-P3' and 'F8-T8'. Select the column labeled 'C3-P3' from 

the DataFrame and store it in the variable 'X'. The data in 'X' 

is reshaped into a 2D array. Next, it selects the column labeled 

'T8-P8.1' from dataframe and stores it in another variable. 

Then, use the `make_classification` function, to generate a 

synthetic classification dataset. It creates 1000 samples with a 

class imbalance of 90% for one class. 

To achieve reliable model evaluation, the CHB-MIT EEG 

dataset was carefully divided into training, validation, and 

testing sets for the experimental setting of this investigation. 

The generated dataset is then separated into training, 

validation and testing sets using the 'train_test_split' method 

from 'sklearn.model_selection'. The training set was used to 

train the models, the validation set was used to tune 

hyperparameters and monitor overfitting, and the test set was 

used to evaluate the final performance of the models. The split 

ratios were approximately 80% for training, 10% for 

validation, and 10% for testing. 

A linear kernel with the regularization parameter C set to 

1.0 was utilized for the SVM model. Three convolutional 

layers, with 2 max-pooling layers, and a fully connected layer 

with ReLU activation made up the CNN model's configuration. 

To avoid overfitting, the RNN-LSTM model has two LSTM 

layers with 56 and 50 units and a 0.03 dropout rate. The Adam 

optimizer was used to train CNN and RNN-LSTM models, 

with a learning rate of 0.001. TensorFlow 2.4.1 and Python 3.8 

were used in the experiments on a system that has an NVIDIA 

GTX 1080 GPU, an Intel i7 processor, and 16GB of RAM. 

These specifics guarantee the dependability and 

reproducibility of the findings from this investigation. 

Below is the signal representation after the removal of noise 

at the time of preprocessing of the EEG signals in Figure 3. 

 

 
 

Figure 3. Epileptical signals post preprocessing 

 

3.4 Normalize the input features and compile the model 

 

The model rescales the input features using MinMaxScaler 

to maintain values between 0 and 1. This step is crucial for 

consistent and dependable model training. Subsequently, it 

reshapes the standardized input features into a 3D array to 

align with the expected input format. 

It compiles the model using the 'compile' method. It 

designates the loss function as 'categorical_crossentropy,' 
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commonly used for multiclass classification. The optimization 

method 'adam' is chosen, and the evaluation metric is set to 

'accuracy'. Next, the number of unique classes found in the 

training labels 'y_train' is assigned to the variable 

'num_classes'. To do this, the 'np.unique' function is used. 

Then, using the 'np_utils.to_categorical' function, the labels 

'y_train' and 'y_test' are transformed into one-hot encoded 

vectors. 'num_classes' is the requested number of classes. Next, 

the 'fit' approach is used to train the model. Standardizing the 

training data 'X_train' entails deducting the mean and dividing 

the result by the standard deviation. Similarly, the testing data 

'X_test' is standardized as well. The standardized data 

alongside the corresponding labels are passed as the training 

and validation data, respectively. 

 

3.5 SVM  

 

An algorithm for supervised machine learning is SVM. 

SVM is an effective machine learning method that is used in 

both classification and regression applications. In essence, 

SVM looks for the perfect hyperplane in the feature space that 

can split many classes. By choosing the hyperplane, the 

margin-the distance between it and the closest data points from 

each class-is maximized. The set of data points that are closest 

together is known as a support vector. 

The way it operates is by locating the feature space 

hyperplane that best divides the classes. 

● Architecture: We use a linear SVM for its simplicity 

and effectiveness in high-dimensional spaces. 

● Feature Extraction: We extracted statistical features 

from the raw EEG signal, such as mean, standard 

deviation, skewness, and kurtosis. These features 

capture the overall characteristics of the EEG signal 

and can be used to discriminate between seizure and 

non-seizure segments. 

● Training Process: The EEG data is preprocessed and 

transformed into feature vectors. These feature vectors 

are then fed into the SVM for training. 

In this work, we used a support vector classifier to 

normalize and classify the data by generating hyperplanes. We 

initialize an SVM classifier with a linear kernel and class 

weights to handle class imbalance. Balance the dataset using 

resampling techniques to ensure the model is tested and trained 

on a balanced data. Split the data into training and testing sets 

as in the ratio 80:20. Model evaluation was conducted through 

30-fold cross-validation to assess accuracy and loss metrics. 

The decision boundary for a linear SVM is given by Eq. (1): 

 

𝑦 = 𝑤 ∗ 𝑥 + 𝑏 (1) 

 

where, y is the output value (class prediction); w is the weight 

vector; b is the bias term; and x is the input feature vector. 

Figure 4 depicts the training data, with each point 

representing a sample. The two classes are clearly separable, 

as evidenced by the distinct clusters. 

 

 
 

Figure 4. Classification in SVM  

 

The detailed architecture of the SVM model employed for 

the classification of epileptic seizure and non-seizure EEG 

signals shown in Figure 5.

 

 
 

Figure 5. SVM architecture for epileptic seizure detection 

 

3.6 CNN  

 

CNN is a part of deep learning models that were created 

primarily for processing structured grid-like data, such as 

images, audio spectrograms, and even text. They use fully 

connected layers for global pattern recognition, convolutional 

layers for extracting local patterns, and pooling layers for 

downsampling and aggregating data. CNNs have 

revolutionized the field of computer vision and are widely 

used for various tasks, offering robustness, scalability, and the 

ability to learn hierarchical representations. 

The convolution operation, a core component of CNNs, is 

mathematically defined as Eq. (2): 

 

(𝑓 ∗ 𝑔)(𝑡) = ∫
+∞

−∞

𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 (2) 
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Figure 6. CNN architecture 

 

In discrete terms for CNN, this operation can be represented 

as Eq. (3): 

 

(𝑓 ∗ 𝑔)[𝑛] = ∑

+∞

𝑚=−∞

𝑓[𝑚]𝑔[𝑛 − 𝑚] (3) 

 

In this context, f represents the input signal, g represents the 

convolutional filter, and the resulting sum (f ∗ g)[n] represents 

the convolution of the input signal with the filter at a particular 

point. This process enables CNNs to extract patterns and 

features from the EEG data, facilitating accurate signal 

classification. Figure 6 presents the architecture of the CNN 

model used in this proposed work. 

In this proposed method we applied: 

● 3 convolutional layers, in first layer we used 32 filters, 

in second 64 filters, and in third 128 filters of kernel 

size 3×3 and the activation function we used is ReLu. 

● We take 2 max pooling layers of 2×2 pool size after 

each convolutional layer to reduce dimensionality and 

capture important features. 

● Afterwards, a flatten layer was used to convert the final 

convolutional layer's output into a 1D vector. 

● We employ two fully-connected dense layers: 

➢ 256 neurons with a ReLU activation function are 

found in the first dense layer. 

➢ To avoid overfitting, a dropout layer with a rate of 

0.5 is inserted after this dense layer. 

➢ 128 neurons in the second dense layer have a 

ReLU activation function. 

➢ This dense layer is followed by another dropout 

layer with a rate of 0.5. 

● Output layer has a number of neurons equal to the 

number of classes according to classification problems. 

The softmax activation function is used for multi-class 

classification 

 

3.7 RNN-LSTM  

 

A kind of RNN architecture called LSTM solves the 

vanishing gradient issue and makes it possible to describe 

long-term relationships in sequential data more accurately. 

The core idea of LSTM is the incorporation of a memory cell, 

which allows the network to learn and store information over 

extended periods of time. The memory cell updates and 

retrieves data selectively, operating as an information highway 

that traverses time steps. Because of this, LSTM is able to 

capture long-term relationships by reducing the vanishing 

gradient issue that standard RNNs frequently face. 

The LSTM architecture comprises several key components 

and their interactions shown in Figure 7. These components 

and their corresponding equations are outlined in Eq. (4) to Eq. 

(9): 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−𝑙 , 𝑥𝑡] + 𝑏𝑓) (4) 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−𝑙 , 𝑥𝑡] + 𝑏𝑖) (5) 

 

�̃�𝑡 =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑊𝑐 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)  (6) 

 

1* *t t t t tC f C i C−= +  
(7) 

 

𝑂𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (8) 

 

ℎ𝑡 = 𝑂𝑡∗ 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝐶𝑡)  (9) 

 

where, Ot is the output gate, ht is the hidden state, it is the input 

gate, xt is the input, C̃t is the candidate cell state, Ct is the cell 

state, and ft is the forget gate. All of these are at time step t. 

The input gate, forget gate, cell state update, and output gate 

are represented by the weight matrices Wi, Wf, Wc, and Wo, 

respectively. Similarly, input gate, the forget gate, cell state 

update, and output gate are connected to the bias terms bf, bi, 

bc, and bo, respectively. tanh represents the hyperbolic tangent 

activation function, while σ represents the sigmoid activation 

function. 

The model's input layer begins with raw EEG data collected 

and stored in a CSV file, which serves as the input. In the data 

preprocessing stage, this raw data is reshaped to be compatible 

with the LSTM layers. 

The LSTM layers consist of two key components. The 

reshaped input data is processed by LSTM Layer 1, which has 

56 units. To avoid overfitting, Dropout Layer 1, which has a 

dropout rate of 0.03, comes next. Next, LSTM Layer 2 with 50 
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units further processes the data, followed by Dropout Layer 2, 

also with a 0.03 dropout rate. 

The 'tanh' activation function and a Dense Layer consisting 

of 20 units are among the Dense Layers that aid in preparing 

the data for the final classification. The output layer, which 

provides the model's final output, classifies classes using 

softmax activation. 

In the Output stage, the model produces the seizure 

detection results, indicating whether a seizure is detected or 

not.

 

 
 

Figure 7. RNN-LSTM model architecture for epileptic seizure detection 

 

 

4. RESULTS 

 

In this research we implement three different models on the 

same CHB-MIT dataset. All these three models give different 

results. 

These are the confusion matrix, which shows the true 

positive, true negative, false positive, and false negative counts 

to graphically illustrate the classification results, used to assess 

each model performance. 

The confusion matrix of SVM, CNN, LSTM modules are 

shown in Figures 8-10, respectively. 

SVM Model: Accuracy=87.5% 

CNN Model: Validation dataset accuracy=95.89%; 

Training dataset accuracy=90.91% 

RNN-LSTM Model: Validation dataset accuracy=97.85%; 

Training dataset accuracy=99.9% 

 

 
 

Figure 8. Confusion matrix for SVM 

 
 

Figure 9. Confusion matrix for CNN 
 

 
 

Figure 10. Confusion matrix for RNN-LSTM 
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So, in all the three methods LSTM model gives high 

accuracy and more effective results. 

Some of the other parameters to measure the performance 

of the modal are given in the below Table 1. 

● Precision: Indicates the percentage of real positive 

detections among all positive detections, or the number 

of seizure episodes that were really identified. 

● Recall (Sensitivity): Shows how well the model 

detects genuine seizure occurrences by expressing the 

percentage of actual seizure events that it accurately 

identified. 

● F1-Score: It is a balanced indicator of the model's 

performance in identifying seizures that takes into 

account both false positives and false negatives. It is 

calculated as the harmonic mean of precision and recall. 

● Specificity: Shows the ability to prevent false alarms 

in non-seizure instances by reflecting the percentage of 

real non-seizure occurrences that the model properly 

detected. 

Based on these metrics, LSTM-RNN performs better than 

SVM and CNN for accuracy, recall, and F1-score, indicating 

that it is a more useful model for epileptic seizure 

identification on the provided dataset. 

The SVM model performs 30-fold cross-validation to 

evaluate model generalization. Plots accuracy and loss scores 

across folds to visualize performance of SVM model shown 

below in Figure 11. According to the graph we observed that 

accuracy generally increases as the model trains on more data 

and loss generally decreases as the model learns. Some 

variability in performance across folds is expected due to 

random sampling. Cross-validation provides a robust estimate 

of model performance. 

 

Table 1. Performance parameters 

 
Modals Precision F1-Score Recall Specificity 

SVM 0.54 0.55 0.56 0.92 

CNN 0.73 0.74 0.75 0.98 

LSTM-RNN 0.98 0.86 0.88 0.99 

 

 
 

Figure 11. Cross validation accuracy and loss for SVM 

 

Training and Validation loss and accuracy graph of CNN 

and RNN-LSTM over epochs (CNN on 200 epochs and RNN 

on 700 epochs) shown in Figure 12 and Figure 13 respectively. 

It shows how loss and accuracy change during training and 

validation. We observed that accuracy generally increases as 

the model trains on more data and loss generally decreases as 

the model learns. 

The performance of a classification model is represented 

graphically by the ROC (Receiver Operating Characteristic) 

curve. At different threshold values, it shows the genuine 

positive rate (sensitivity) versus the false positive rate (1-

specificity). The capacity of the model to discriminate between 

seizure and non-seizure events is demonstrated by the ROC 

curve, which also shows the trade-off between sensitivity and 

specificity. 

 

  
(a) 

 
(b) 

 

Figure 12. Training loss and accuracy graph for (a) CNN (b) 

RNN 

 

  
(a) 
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(b) 

 

Figure 13. Validation loss and accuracy graph for (a) CNN 

(b) RNN 

 

The total capacity of the model to distinguish between 

classes is measured by the AUC (Area Under the ROC Curve). 

The range of an AUC value is 0 to 1, where 1 denotes perfect 

discrimination and 0.5 denotes no better performance than 

arbitrary guesswork. An extensive assessment of the model's 

performance across various threshold settings may be obtained 

by looking at the AUC value, which indicates how well the 

model performs in differentiating between seizure and non-

seizure events. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 14. ROC Curves for (a) SVM, (b) CNN, (c) RNN-

LSTM 

 

In Figure 14 there are the ROC curves of each model. The 

ROC curves and AUC values were calculated on the test set. 

The AUC also mentioned that which is high for RNN-LSTM 

models, shows that RNN-LSTM model performance is best. 

 

 

5. CONCLUSION 

 

In this work, we examined the effectiveness of SVM, CNN, 

and RNN-LSTM models for the EEG based seizure detection. 

We conducted a comparative analysis of these models using a 

carefully curated and preprocessed EEG dataset. While the 

results from each model varied, the LSTM model showed the 

most accuracy and efficacy. 

The SVM model demonstrated an accuracy of 87.5% in 

classifying seizures based on EEG signals. The LSTM got a 

validation dataset accuracy of 97.85% and a perfect training 

dataset accuracy of 99.9%. With a validation dataset accuracy 

of 95.89% and a training dataset accuracy of 90.91%, the CNN 

model also demonstrated strong performance. This suggests 

that the RNN-LSTM model is particularly well-suited for 

capturing temporal dependencies in sequential data, such as 

EEG signals. It can effectively learn long-term patterns and 

relationships between different time steps, which is crucial for 

detecting subtle changes in EEG patterns that may precede or 

accompany a seizure. In contrast, CNNs are better at capturing 

spatial patterns, and SVMs are more suitable for simpler 

classification tasks. 

Future research can focus on further optimizing and fine-

tuning the LSTM model to improve its performance. 

Furthermore, investigating ensemble approaches or hybrid 

models that integrate the advantages of many algorithms may 

improve the overall precision and robustness of seizure 

detection systems. 

 

 

6. FUTURE SCOPE 

 

The paper can be significantly enhanced by discussing 

potential improvements and future extensions of the work. 

● Dataset Limitations: The CHB-MIT dataset, while 

widely used, may not fully capture the diversity of 

seizure types and patient populations. 
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● Model Complexity: Deep learning models like RNN-

LSTM can be computationally expensive to train and 

deploy, especially for real-time applications. 

● Feature Engineering: The performance of the models 

may be influenced by the choice of features and 

preprocessing techniques. 

● Multimodal Data: One promising direction is the 

integration of multimodal data, combining EEG with 

other physiological signals such as ECG or EMG, to 

provide a more comprehensive understanding of 

seizure activity. 

These limitations can be addressed in future work by 

exploring larger and more diverse datasets, developing more 

efficient model architectures, and investigating advanced 

feature engineering techniques. 

These approaches could lead to more robust and 

generalizable models, advancing the field of EEG-based 

seizure detection. 
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