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 Hand gesture recognition is a technology that enables computers to interpret and 

understand hand movements and gestures made by users. It has various applications across 

various domains, including human-computer interaction, gaming, virtual reality, sign 

language interpretation, and robotics. Hand recognition faces challenges such as lighting 

conditions, occlusions, and variations in hand shape and size. Creating reliable and precise 

recognition systems frequently necessitates tackling these issues. Neural Architecture 

Search (NAS) is a technique employed in deep learning and artificial intelligence to 

automate the creation and optimization of neural network topologies. The objective of NAS 

is to identify neural network designs that are optimally aligned with certain objectives, 

including image classification, natural language processing, or reinforcement learning 

while reducing the necessity for manual design and adjustment. YOLONAS model's 

integration of YOLO's speed and efficiency with NAS-driven optimization results in 

improved accuracy and performance in gesture recognition tasks, making it a compelling 

choice for real-time applications requiring accurate and efficient gesture analysis. In this 

research, we implement YOLO with NAS technology and training with the Oxford Hand 

Dataset. Performance metrics are employed for monitoring and quantifying important data, 

such as the number of Giga Floating Point Operations Per Second (GFLOPS), the mean 

average precision (mAP), and the time taken for detection. The results of our study indicate 

that the utilization of YOLONAS with a training time of 100 epochs produces a more 

reliable output when compared to other approaches. 
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1. INTRODUCTION 

 

Hand identification, also known as hand recognition or hand 

tracking, holds significant importance in various fields and 

applications due to its ability to detect and track the position 

and movement of human hands. The ability to accurately 

identify and discern hands depicted in images and videos holds 

significant potential for enhancing various visual processing 

tasks, including but not limited to the comprehension of 

gestures and scenes [1]. The presence of numerous hand 

variations depicted in images poses a challenge in identifying 

hands within uncontrolled scenarios [2]. Hand identification 

enables natural and intuitive interaction with computers and 

devices. Users can control and manipulate virtual objects, 

navigate menus, and perform actions using hand gestures, 

reducing the need for physical input devices like keyboards 

and mice [3, 4].  

Hand identification can be used in assistive technology 

applications to assist individuals with disabilities. It enables 

those with mobility impairments to control computers and 

communicate using hand gestures, improving their quality of 

life and independence. Next, hand recognition is fundamental 

for gesture-based gaming systems. It provides a more 

immersive and interactive gaming experience by allowing 

players to control in-game characters and actions with hand 

movements and gestures. Hand identification is a versatile 

technology with applications across various industries and 

domains. It enhances human-computer interaction, 

accessibility, entertainment, and many other aspects of our 

daily lives, making it a crucial area of research and 

development in the fields of computer vision and human-

computer interaction [5, 6].  

Neural Architecture Search (NAS) is a methodology within 

the domain of deep learning and artificial intelligence that 

endeavors to mechanize the procedure of formulating neural 

network architectures. The objective of Neural Architecture 

Search (NAS) is to discover neural network structures that are 

effectively tailored for a given task or dataset while 

minimizing the need for labor-intensive human design and 

hyperparameter optimization. NAS technology can streamline 

and automate the laborious process of developing deep 

learning models, as well as construct deep neural networks 

rapidly and efficiently that are tuned to meet certain 

production requirements [7, 8]. 

International Journal of Computational Methods and 
Experimental Measurements 
Vol. 12, No. 4, December, 2024, pp. 421-428 

 

Journal homepage: http://iieta.org/journals/ijcmem 
 

421

https://orcid.org/0000-0002-1284-234X
https://orcid.org/0000-0002-5558-7449
https://orcid.org/0000-0001-6570-4955
https://orcid.org/0000-0002-9251-0678
https://orcid.org/0000-0001-8585-036X
https://orcid.org/0000-0003-0276-295X
https://orcid.org/0009-0006-0077-1157
https://crossmark.crossref.org/dialog/?doi=10.18280/ijcmem.120411&domain=pdf


 

YOLO-NAS is an innovative object detection foundational 

model created by Deci AI. It is the result of sophisticated 

Neural Architecture Search technology, which was 

meticulously designed to overcome the limitations of previous 

YOLO models. With significant improvements in quantization 

support and accuracy-latency trade-offs, YOLO-NAS 

represents a substantial leap in object detection [9, 10]. 

The following is the most important contribution that can be 

gained from conducting this research: (1) We implement, 

analyze, and evaluate the YOLO with NAS technology. (2) 

Many different types of object detectors are investigated in this 

study, such as the average mean accuracy (mAP), 

theintersection over union (IoU), and the number of GFLOPS. 

(3) Our proposed technique is trained and tested on the Oxford 

Hand Dataset using the YOLONAS framework. 

The technique of gesture recognition has enormous 

potential in a variety of domains, including human-computer 

interaction, virtual reality, and other areas as well. Through the 

use of gesture recognition, users can engage with digital 

devices or computers in a manner that is more natural and 

intuitive, thereby imitating how humans communicate with 

one another. User interfaces that are based on gestures have 

the potential to simplify jobs by enabling users to carry out 

operations more expediently and effectively. This is especially 

useful in situations when manual input is either difficult or 

impractical. 

Gesture recognition systems can monitor drivers' gestures 

and movements to detect signs of fatigue or distraction, 

alerting them to take corrective actions or providing assistance 

as needed. These applications highlight the necessity of 

research and development in gesture recognition technology 

to unlock its full potential in improving human-computer 

interaction, enhancing virtual experiences, and advancing 

various other fields. As technology continues to evolve, 

gesture recognition promises to play an increasingly integral 

role in shaping the way we interact with and experience digital 

and physical environments. 

The subsequent sections of the paper follow a similar 

organizational structure. Section 2 provides an overview of the 

existing literature and research that is relevant to the topic at 

hand. The proposed methodologies, namely YOLONAS, are 

elaborated upon in Section 3. Section 4 comprises 

comprehensive elucidations of the conducted experiments, 

encompassing the intricacies of experimental design and the 

meticulous analysis of the acquired data. Section 5 provides a 

summary of the conclusions drawn from the study and outlines 

potential areas for future investigation. 

 

 

2. RELATED WORK 

 

2.1 Hand recognition with Convolutional Neural Network 

(CNN) 

 

Hand recognition using Convolutional Neural Networks 

(CNNs) is a common computer vision task that involves 

training a neural network to detect and recognize human hands 

in images or video frames. This technology has various 

applications, including gesture recognition, sign language 

translation, and human-computer interaction. After trying out 

several different color spaces, Girondel et al. [11] found that 

the Cb and Cr channels in the YCbCr color space were 

particularly effective for the skin recognition job. The 

Gaussian mixture model was proposed by Sigal et al. [12], and 

it performed exceptionally well under a wide variety of 

illumination conditions. Because precise hand detection is 

necessary for a wide variety of applications, Mittal et al. [13] 

developed a method that makes use of several movable parts. 

Hand detection is a computer vision technique that involves 

identifying and locating human hands in images or videos. It 

has various applications across different domains [14]. 

Furthermore, Nunez et al. [15] employed a neural network 

in conjunction with a long short-term memory (LSTM) 

network to discern three-dimensional hand motions by 

leveraging the temporal characteristics of a skeletal structure 

[16]. The computer vision field has witnessed a discernible 

surge in the level of attention dedicated to CNN-based 

detection algorithms as a subject of research. The situation in 

question can be attributed to the capacity of networked 

systems to acquire more profound and advanced features. The 

application of Convolutional Neural Networks (CNN) enables 

proficient resolution of the challenges associated with multi-

scale and diverse rotations, as previously mentioned. 

Previously, gesture recognition systems frequently 

depended on pre-established gesture templates or rule-based 

methods. These systems had challenges in dealing with the 

variety of gestures, lighting conditions, and occlusion. To 

overcome these constraints, more advanced feature extraction 

approaches were devised, such as handcrafted features like 

Histogram of Oriented Gradients (HOG) and Haar-like 

features.  

Machine learning has caused a change in gesture 

identification towards systems that rely on data. Gestures were 

recognized using techniques such as Hidden Markov Models 

(HMMs), Support Vector Machines (SVMs), and Dynamic 

Time Warping (DTW). These approaches frequently 

necessitated significant training data and had limitations in 

their capacity to generalize to novel movements or users. Deep 

learning methods, including Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), 

demonstrated potential in acquiring intricate spatiotemporal 

patterns from unprocessed data. 

 

2.2 YOLO with Neural Architecture Search (NAS) 

 

Neural Architecture Search (NAS) refers to the automated 

process of designing the architecture of neural networks to 

attain optimal performance for a given job. The objective is to 

devise an architectural framework with constrained resources 

and with minimal human interaction. Figure 1 shows the NAS 

general framework.  

 

 
 

Figure 1. The architecture of NAS general framework 

 

The landscape of NAS algorithms is generally characterized 

by a considerable degree of complexity and lack of clarity [17]. 

The prevailing classification scheme classifies NAS systems 

into three primary components: (1) The space being searched. 

(2) The search method encompasses the selection of the 

controller type and the evaluation of potential candidates. (3) 

The technique of performance evaluation. The term "search 

strategy" pertains to the systematic approach employed to 
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locate the most suitable architecture within the given search 

space. NAS algorithms can be categorized based on their search 

approach into five primary domains, including random search, 

reinforcement learning, evolutionary algorithms, sequential 

model-based optimization, and gradient optimization [18]. 

NAS is a technique used to automate the design of neural 

network architectures. Instead of manually designing 

architectures, NAS employs algorithms to search through a 

predefined search space of architectures and identifies the 

optimal architecture for a given task. The search space 

typically includes various architectural components such as 

convolutional layers, pooling layers, skip connections and 

activation functions. NAS algorithms, such as reinforcement 

learning, evolutionary algorithms, and gradient-based 

methods, iteratively explore the search space, evaluating 

different architectures based on performance metrics, and 

updating the search strategy to find increasingly better 

architectures. 

The object detection basic model, YOLO-NAS, has been 

developed by Deci AI, representing a significant advancement 

in this field [19]. The product is a result of employing 

sophisticated Neural Architecture Search technology, which 

has been carefully developed to specifically target and 

overcome the constraints observed in prior iterations of YOLO 

models. YOLO-NAS demonstrates a substantial advancement 

in object detection with notable enhancements in quantization 

support and accuracy-latency trade-offs [20, 21]. 

The YOLO-NAS framework incorporates quantization-

aware blocks and selective quantization techniques to achieve 

optimal performance [22, 23]. When the model is translated to 

its INT8 quantized version, there is a negligible decrease in 

precision, which represents a notable enhancement compared 

to alternative models. The aforementioned developments 

result in the development of an enhanced architectural 

framework that exhibits unparalleled capabilities in object 

identification and exceptional performance [24, 25]. 

Advantages of YOLONAS: (1) Customized Architecture: 

YOLONAS can discover neural network architectures 

optimized for gesture recognition tasks, potentially 

outperforming handcrafted architectures. (2) Efficiency: By 

leveraging the efficiency of YOLO and incorporating NAS, 

YOLONAS can achieve real-time performance on resource-

constrained devices. (3) Adaptability: The automated 

architecture search process enables YOLONAS to adapt to 

different gesture recognition scenarios and datasets, 

improving generalization capabilities. 

 

 

3. METHODOLOGY 

 

3.1 YOLO-NAS architecture for hand recognition 

 

The YOLO-NAS algorithm encompasses several notable 

characteristics, which are elucidated as follows: The 

algorithm's architecture was determined by the utilization of 

the company's exclusive technology, AutoNAC, which is a 

neural architecture search (NAS) approach. The AutoNAC 

algorithm was employed to ascertain the most favorable 

dimensions and configurations of stages, including block type, 

quantity of blocks, and number of channels within each stage 

[26, 27]. During the Neural Architecture Search (NAS) 

procedure, the model architecture was enhanced by 

incorporating quantization-aware RepVGG blocks, namely 

the QSP and QCI blocks depicted in the diagram [28]. This 

modification was implemented to ensure that the model 

architecture remains compatible with Post-Training 

Quantization (PTQ), hence minimizing any potential loss in 

accuracy. The proposed approach employs a hybrid 

quantization technique, which selectively quantizes specific 

components of a model [29, 30]. This method effectively 

minimizes the loss of information while simultaneously 

achieving a balance between latency and accuracy. The model 

underwent training using Objects365, a comprehensive dataset 

designed for object detection. This dataset encompasses a vast 

collection of 2 million photos, spanning over 365 distinct 

categories, and includes a total of 30 million bounding boxes. 

Additionally, the model underwent training using the 

RoboFlow100 dataset (RF100), which comprises a 

compilation of 100 datasets spanning several domains. This 

training was conducted to showcase the model's proficiency in 

tackling intricate object detection assignments [31]. 

The training process of YOLO-NAS is enhanced with the 

inclusion of Attention Mechanism, Knowledge Distillation, 

and Distribution Focal Loss. The software exhibits complete 

compatibility with advanced inference engines such as 

NVIDIA TensorRT and offers support for INT8 quantization, 

resulting in unparalleled runtime performance. YOLO-NAS 

demonstrates exceptional performance in practical contexts, 

including but not limited to autonomous vehicles, robotics, 

and video analytics applications, where the ability to minimize 

latency and optimize processing is of utmost importance. 

Figure 2 shows the YOLO-NAS architecture [32, 33]. 

 

 
 

Figure 2. YOLO-NAS architecture 

 

3.2 Oxford hand dataset 

 

The Oxford hand dataset [13] is a compendious and openly 

accessible collection of images depicting hands, which has 

been meticulously curated from a diverse array of publicly 

accessible image datasets. A total of 13,050 instances of hand 

gestures have been meticulously annotated. Instances that 

exceed a predetermined area of a bounding box, specifically 

1500 square pixels, are deemed sufficiently large for detection 

purposes and are utilized for evaluation. This yields around 

4170 instances of excellent quality hand. During the data 

collection process, there were no limitations placed on the 

pose or visibility of individuals, and no restrictions were 
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imposed on the surrounding environment. In each visual 

representation, the hands that are readily discernible to the 

human eye are meticulously labeled. The annotations are 

comprised of a bounding rectangle that is not necessarily axis-

aligned but rather orientated about the wrist. The architectural 

structure features a series of rectangular prisms, each defined 

by manual enclosures. The necessary data preparation steps 

are conducted on the dataset before its export in Yolo format. 

The training dataset constitutes 70% of the total data, while the 

testing dataset comprises the remaining 30%. Both sections 

encompass representations of a wide range of handheld objects. 

Figure 3 presents an exemplary representation of an image 

obtained from the Oxford hand dataset. 

 

 
 

Figure 3. Oxford hand dataset illustrations 
Note: The human features depicted in the figures are derived from publicly 

available datasets (Oxford Hand Dataset) 

 

 

4. EXPERIMENT AND RESULT 

 

4.1 Training YOLO-NAS 

 

In this section, we will strive to provide a comprehensive 

explanation of the training process and its associated results. 

Figure 4 illustrates the explication of the training process for 

the labels and predictions of test batch 0. Figure 4 exhibits the 

training process of YOLO-NAS. The YOLO-NAS 

architecture's training phase integrates Knowledge Distillation 

(KD) and Distribution Focal Loss (DFL) techniques to 

enhance the performance and accuracy of the training model 

in the context of object detection. The technique known as 

Knowledge Distillation (KD) is employed in the field of 

machine learning to decrease the computational resources 

needed by a model. This is achieved by training a simplified 

version of the original model, referred to as the student model, 

to achieve the same level of accuracy as the teacher model. 

However, the student model accomplishes this with 

significantly reduced computational requirements and 

memory usage compared to the teacher model. 

 
 

Figure 4. Training process of YOLO-NAS 

 

In this case, the model with lower complexity is trained to 

adjust its predictions to match the predictions made by the 

more advanced teacher model. The YOLO-NAS student 

model, which has been refined through the process of 

information distillation, exhibits enhanced optimization for 

devices characterized by constrained memory or processing 

capabilities, such as smartphones and other low-compute 

devices. The YOLO-NAS architecture has been developed to 

serve as a flexible neural network framework for various 

objective detection tasks, particularly in situations that 

demand fast and efficient prediction with minimal latency. 

Contemporary object detection methods necessitate 

robustness and applicability across diverse real-world contexts 

and application cases. For instance, the breadth and scale of 

object detection activities can vary considerably. These tasks 

range from the identification of galaxies or planets in 

astronomical photographs to the detection of microscopic 

organisms in biomedical studies using microscopy techniques. 

The utilization of the Distribution Focal Loss (DFL) 

methodology in the YOLO-NAS architectural framework for 

effective handling of the inherent variability in target object 

size and position. This capability enhances the model's 

versatility and suitability for deployment in diverse 

circumstances. The DFL (Dynamic Focal Loss) is a variant of 

the focal loss function that was originally developed to tackle 

the issue of class imbalances in object detection tasks. The 

functionality of the DFL approach is enhanced through the 

categorization of a continuous range of likely bounding box 

values into distinct possibilities. Table 1 shows the YOLO-

NAS training efficiency using the Oxford hand dataset. 

YOLO-NAS_s with 100 epochs shows the highest mAP 

79.37% compared with 50 epochs 67.68%.  

 

Table 1. YOLO-NAS training efficiency using the Oxford hand dataset 

 

Model Epoch Precision Recall mAP F1 Loss 

YOLONAS_s 50 0.0503 0.9668 0. 6768 0.09563 1.8981 

YOLONAS_s 100 0.06322 0.8648 0.7937 0.1178 1.87 
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4.2 Discussions and results 

 

To measure the dataset's performance in these simulations, 

we use certain measures. The F1 score, Precision, Recall, and 

Accuracy are the criteria that this study considers. Precision 

and Recall, two of the metrics, are formally defined in Eqs. (1) 

and (2), respectively. Consequently, Eqs. (3) and (4), 

respectively, clearly define Accuracy and F1 [34, 35]. A True 

Positive (TP) refers to instances where both the model 

assessment and the actual situation indicate a positive outcome. 

A True Negative (TN) denotes the instances where both the 

model's evaluation and the actual situation indicate a negative 

outcome. The terms "TP" and "TN" are commonly used as 

abbreviations for true positive and true negative, respectively.  

A false positive (FP) is a circumstance in statistical 

modeling where the observed data does not match the 

anticipated value produced by the model. A false negative 

(FN), on the other hand, occurs when the observed data do not 

match the anticipated value produced from the model [36]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

The integration across the precision function p(o) yields the 

arithmetic mean of the average precision (mAP) and the 

intersection over union (IoU) as depicted in Eqs. (5) and (6) 

correspondingly. 

 

𝑚𝐴𝑃 = ∫ 𝑝(0)𝑑𝑜
1

0

 (5) 

 

where, p(o) denotes the level of accuracy achieved by object 

detection. IoU determines the percentage of overlap between 

the bounding box of the prediction (pred) and the ground-truth 

value (gt) [37]. 

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑑  ∩  𝐴𝑟𝑒𝑎𝑔𝑡

𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑑  ∪  𝐴𝑟𝑒𝑎𝑔𝑡

 (6) 

 

Moreover, Eq. (7) [38] shows the calculation of the Yolo 

loss functions. 

Let S represent the total count of grid cells in the image. B 

represents the count of bounding boxes that are anticipated to 

be present within each grid cell, and c is the predicted class 

between each grid cell. In addition, the symbol pi (c) 

represents the confidence probability score. In the context of 

cell i, the variables xij and yij correspond to the coordinates of 

the anchor box's center. The variable hij represents the height 

of the box, while wij indicates its width. Additionally, Cij 

denotes the confidence score associated with the box. The 

weights λcoord and λnoobj are utilized to determine the 

relative importance of localization in the context of the task at 

hand. Table 2 describes the YOLO-NAS performance 

evaluation using the Oxford Hand Dataset. YOLO-NAS_s 

achieves the highest mAP 79.37% and Recall 96.68%. 

 

𝑌𝑜𝑙𝑜 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − 𝑥̂𝑖)2 + (𝑦 − 𝑦̂𝑖)

2]𝐵
𝑗=0

𝑠2

𝑖=0 + 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗

𝑜𝑏𝑗 [(√𝑤𝑖 − √𝑤̂𝑖)
2

+𝐵
𝑗=0

𝑠2

𝑖=0

(√ℎ𝑖 − √ℎ̂𝑖)
2

] + ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2𝐵

𝑗=0
𝑠2

𝑖=0 + 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2𝐵

𝑗=0
𝑠2

𝑖=0 + ∑ 𝕝𝑖
𝑜𝑏𝑗 ∑ (𝑝𝑖(c) −𝑐𝜖𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑠2

𝑖=0

𝑝̂𝑖(𝑐))2  

(7) 

 

Table 2. YOLO-NAS performance evaluation using the Oxford hand dataset 

 
Model Epoch Precision Recall mAP F1 

YOLO-NAS_s 50 0.05445 0.9624 0.7849 0.103 

YOLO-NAS_s 100 0.0581 0.9668 0.7937 0.109 

 

 
 

Figure 5. The detection result of Oxford hand dataset with YOLO-NAS 

 

Figure 5 illustrates the recognition outcome of the Oxford 

Hand Dataset utilizing YOLO-NAS after 100 epochs. The 

YOLO-NAS model has robust efficacy in identifying all hands 

in Figure 5, with accuracies between 75% and 88%.  

Neural architecture search benefits include: (1) The 

capacity of NAS to automate the architecture design process 

reduces the amount of effort necessary to manually create the 

neural network structure. This is its key advantage. The 
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development process is greatly accelerated by this automation, 

which also frees up researchers to concentrate on other areas 

of the issue. (2) High-level performance: The NAS has proven 

its capacity to find novel, high-performance architectures that 

outperform neural networks created by humans in a variety of 

applications. It has produced important advancements in 

computer vision, natural language processing, and picture 

recognition. (3) Scalability for complicated tasks: The manual 

design of the architecture becomes impractical as jobs get 

more complex and data intensive. NAS offers a productive 

method of investigating the potential of a wide range of 

architectures appropriate for challenging and large-scale 

activities. 

The comparison to the preceding study is described in Table 

3.  

 

Table 3. A comparison of the results of previous studies 

 
Author Method mAP (%) 

Mittal et al. 

[13] 

Classify the framework and two-

stage hypothesize 
48.2 

Roy et al. [39] R-CNN and skin 49.1 

Deng et al. 

[40] 
Joint model 58.10 

Le et al. [41] 

Multiple Scale Region-based 

Fully  

Convolutional Networks (MS 

RFCN) 

75.1 

Proposed 

Method 
YOLO-NAS 79.37 

 

Our proposed YOLO-NAS_s method with 100 epochs 

outperforms prior models on the Oxford Hand datasets in 

terms of mAP, with an accuracy of 79.37%. Le et al. [41] 

proposed the MS RFCN and exhibited only 75.1% mAP. 

Another researcher [42] implement the joint model and only 

achieve 58.10% mAP. 

 

 

5. CONCLUSIONS 

 

The YOLO-NAS architecture, developed by Deci's research 

and engineering team, establishes a new benchmark in object 

detection performance. It generates diverse models that can be 

effectively deployed in resource-constrained environments 

like edge devices. These models offer real-time and highly 

accurate performance for various object detection tasks. 

Furthermore, the YOLO-NAS method we propose with 100 

epochs outperforms earlier models on the Oxford Hand 

datasets in terms of mAP, with an accuracy of 79.37%. Our 

solution performed better than other approaches currently 

being used for gesture detection and recognition. Extensive 

testing was used to confirm its usefulness and superiority. 

YOLONAS offers several advantages. Firstly, it has a 

customized architecture that allows it to identify neural 

network topologies specifically designed for gesture 

recognition tasks. This customization has the potential to 

surpass pre-designed structures in terms of performance. (2) 

YOLONAS achieves real-time performance on devices with 

limited resources by combining the efficiency of YOLO with 

the integration of NAS. (3) Adaptability: YOLONAS can 

adapt to various gesture recognition circumstances and 

datasets, enhancing its ability to generalize. 

In a forthcoming study, we plan to investigate the viability 

of merging explainable artificial intelligence (XAI) and hand 

detection. Additionally, we intend to combine hand detection 

with a logic-based framework in the future so that we may 

automatically conclude the scene being recognized. 
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